JPH1066364A - Small size motor - Google Patents

Small size motor

Info

Publication number
JPH1066364A
JPH1066364A JP8220864A JP22086496A JPH1066364A JP H1066364 A JPH1066364 A JP H1066364A JP 8220864 A JP8220864 A JP 8220864A JP 22086496 A JP22086496 A JP 22086496A JP H1066364 A JPH1066364 A JP H1066364A
Authority
JP
Japan
Prior art keywords
rotor
magnetic force
stators
stator
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8220864A
Other languages
Japanese (ja)
Inventor
Toru Yanagisawa
徹 柳澤
Naoki Fujii
直樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP8220864A priority Critical patent/JPH1066364A/en
Publication of JPH1066364A publication Critical patent/JPH1066364A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small size motor having no exciting coil. SOLUTION: A rotor 10 consisting of a rotatable permanent magnet is provided around a rotary shaft 9. At least one pair of stators 5, 6, 7 and 8 are provided in a plane vertical to the rotary shaft 9 at approximately equal intervals. The stators 5, 6, 7 and 8 have identical construction. Each stator has a magnetic force control device, a permanent magnet and a piezoelectric device which are piled in series and housed in a housing. The respective tip parts 1a of the magnetic force control devices of the facing stators have the same polarity and face rotor 10. By applying a voltage successively to the stators 5, 6, 7 and 8 successively clockwise, the rotor 10 can be turned clockwise.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、時計や今後更に小
型化が要求される小型携帯機器等に用いられる小型モー
タの構成に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a configuration of a small motor used for a timepiece and a small portable device which requires further miniaturization in the future.

【0002】[0002]

【従来の技術】従来の前記小型モータの駆動力発生機構
は、大型モータと同じように、永久磁石からなる回転子
と、励磁コイルからなる固定子で構成される。該小型モ
ータはこの励磁コイルに励磁電流を流して磁界を発生さ
せ、永久磁石の磁気モーメントとの間に発生した磁力を
駆動力として回転子を回転させる。
2. Description of the Related Art A conventional driving force generating mechanism for a small motor comprises a rotor composed of a permanent magnet and a stator composed of an exciting coil, similarly to a large motor. The small motor causes an exciting current to flow through the exciting coil to generate a magnetic field, and rotates the rotor using the magnetic force generated between the exciting coil and the magnetic moment as a driving force.

【0003】[0003]

【発明が解決しようとする課題】励磁コイルを小型にす
るため導線の線径を細くしたいが、10μm以下の線径
では導線が切れやすくなるため、実用的ではない。
To reduce the size of the exciting coil, it is desirable to reduce the diameter of the conducting wire. However, if the diameter of the conducting wire is less than 10 μm, the conducting wire is likely to be cut, which is not practical.

【0004】また該コイルはかなり多くの巻き数を要求
されることもあるため励磁コイルの小型化は困難であ
る。励磁コイルはモータの構成の中で大きな容積を占め
るので、励磁コイルが小型化できなければモータ全体の
小型化は困難である。
[0004] Further, since the coil may require a considerably large number of turns, it is difficult to reduce the size of the exciting coil. Since the exciting coil occupies a large volume in the configuration of the motor, it is difficult to reduce the size of the entire motor unless the exciting coil can be reduced in size.

【0005】本発明の目的は、この課題を解決し、励磁
コイルを無くすことによって、全体の小型化を可能とす
る小型モータを提供することにある。
[0005] An object of the present invention is to solve the above-mentioned problem and to provide a small motor which can be downsized as a whole by eliminating an excitation coil.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の小型モータは、下記の構成を採用する。
In order to achieve the above object, a small motor according to the present invention employs the following configuration.

【0007】本発明の小型モータは、永久磁石からなる
回転子並びに、永久磁石と圧電素子と該圧電素子の変位
により生じた圧力により透磁率が変化する磁力制御素子
とを積層した固定子を備えることを特徴とする。
A small motor according to the present invention includes a rotor composed of a permanent magnet, and a stator in which a permanent magnet, a piezoelectric element, and a magnetic force control element whose magnetic permeability changes due to pressure generated by displacement of the piezoelectric element are stacked. It is characterized by the following.

【0008】また、本発明の小型モータは、前記磁力制
御素子の残存透磁率による磁力を打ち消す機構を有する
ことを特徴とする。
Further, the small motor according to the present invention is characterized in that it has a mechanism for canceling the magnetic force due to the residual magnetic permeability of the magnetic force control element.

【0009】[0009]

【発明の実施の形態】以下、本発明による実施の形態を
図面を基に説明する。図1は本発明の実施の形態である
小型モータに用いられる固定子の構成を示す断面図であ
る。図2は本発明の実施の形態である小型モータの正面
図であり、回転子に殆ど力が加わらない状態を表してい
る。図3は図2の固定子の1つに電圧を加えた状態を示
し、図4は図2の固定子の他の1つに電圧を加えた状態
を示す。図5は固定子に電圧を加えるタイミングを示す
波形図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a configuration of a stator used for a small motor according to an embodiment of the present invention. FIG. 2 is a front view of the small motor according to the embodiment of the present invention, and shows a state where almost no force is applied to the rotor. 3 shows a state in which a voltage is applied to one of the stators in FIG. 2, and FIG. 4 shows a state in which a voltage is applied to another one of the stators in FIG. FIG. 5 is a waveform diagram showing timing for applying a voltage to the stator.

【0010】図1において、1は圧力を受けると透磁率
が変化する円筒形の磁力制御素子であり径小に形成した
先端部1aを持つ。2は円筒軸方向に磁極を有する円筒
形の永久磁石、3は印加電圧により円筒軸方向に変位す
る円筒形の圧電素子を示す。永久磁石2の一方の磁極に
接して円筒形の磁力制御素子1を置く。また、永久磁石
の他方の磁極に接して円筒形の圧電素子3を置く。4は
円筒軸方向に積層した磁力制御素子1,永久磁石2,圧
伝素子3を隙間無く包んだ円筒形のハウジングである。
但し先端部1aだけは覆わない。ここで磁力制御素子1
の一部1aをハウジング4で覆わなかったのは、透磁率
の高い部分(1a)をハウジング4の外部へ露出させて
おくためである。このとき、該ハウジング4と該ハウジ
ング4で覆われる磁力制御素子1、また該ハウジング4
と該ハウジング4で覆われる永久磁石2、そして該ハウ
ジング4と該ハウジング4で覆われる圧電素子3は、各
々互いに接合されていないようにする。該ハウジング4
は圧電素子3の発生する変位を圧力に変換するため、剛
性の高い材料で構成する。また、該ハウジング4には磁
力の回り込みを防ぐため、例えばSUS304の様な透
磁率の小さな物質を使用する。5は磁力制御素子1,永
久磁石2,圧伝素子3から成る磁力制御機構としての固
定子である。
In FIG. 1, reference numeral 1 denotes a cylindrical magnetic force control element whose magnetic permeability changes when pressure is applied, and has a tip portion 1a having a small diameter. Reference numeral 2 denotes a cylindrical permanent magnet having magnetic poles in a cylindrical axis direction, and reference numeral 3 denotes a cylindrical piezoelectric element which is displaced in a cylindrical axis direction by an applied voltage. The cylindrical magnetic force control element 1 is placed in contact with one magnetic pole of the permanent magnet 2. Further, the cylindrical piezoelectric element 3 is placed in contact with the other magnetic pole of the permanent magnet. Reference numeral 4 denotes a cylindrical housing that encloses the magnetic force control element 1, the permanent magnet 2, and the pressure transmission element 3 stacked in the cylindrical axis direction without any gap.
However, only the tip 1a is not covered. Here, the magnetic force control element 1
The reason why the portion 1a is not covered with the housing 4 is to expose a portion (1a) having a high magnetic permeability to the outside of the housing 4. At this time, the housing 4 and the magnetic force control element 1 covered with the housing 4 and the housing 4
The permanent magnet 2 covered by the housing 4 and the piezoelectric element 3 covered by the housing 4 and the housing 4 are not joined to each other. The housing 4
Is made of a highly rigid material in order to convert the displacement generated by the piezoelectric element 3 into pressure. The housing 4 is made of a material having a low magnetic permeability such as SUS304 in order to prevent the magnetic force from wrapping around. Reference numeral 5 denotes a stator as a magnetic force control mechanism including a magnetic force control element 1, a permanent magnet 2, and a pressure transmission element 3.

【0011】本実施形態では、磁力制御素子として、高
磁歪材料(TbDy)Feを用いた場合について説明す
る。(TbDy)Feは、磁場方向に圧力を加えると透
磁率が変化する性質を持ち、10MPa程度の圧力を加
えるとその透磁率は30%程度変化する。
In this embodiment, a case where a high magnetostrictive material (TbDy) Fe is used as a magnetic force control element will be described. (TbDy) Fe has the property that the magnetic permeability changes when a pressure is applied in the direction of the magnetic field, and when a pressure of about 10 MPa is applied, the magnetic permeability changes by about 30%.

【0012】この構成で、圧電素子3に電圧を印加する
と、圧電素子3は軸方向に変位するので永久磁石2を介
して磁力制御素子1に圧力が加わる。これにより、磁力
制御素子1は透磁率が変化して、永久磁石2の作る磁場
により生成される磁力制御素子1の磁化の大きさが変化
する。これは磁場の変化をもたらす。従って永久磁石2
の生成する磁場は、これに接する磁力制御素子1の、永
久磁石2との接触面の反対側で変化することになる。結
果として永久磁石2の作る磁力を前記印加電圧で制御す
ることができる。
In this configuration, when a voltage is applied to the piezoelectric element 3, the piezoelectric element 3 is displaced in the axial direction, so that pressure is applied to the magnetic force control element 1 via the permanent magnet 2. Thereby, the magnetic permeability of the magnetic force control element 1 changes, and the magnitude of the magnetization of the magnetic force control element 1 generated by the magnetic field generated by the permanent magnet 2 changes. This results in a change in the magnetic field. Therefore, the permanent magnet 2
Will change on the opposite side of the contact surface of the magnetic force control element 1 in contact with the permanent magnet 2. As a result, the magnetic force generated by the permanent magnet 2 can be controlled by the applied voltage.

【0013】従来のモーターでは固定子側の磁力の制御
に励磁コイルを用いたが、本発明では磁力の制御をここ
で説明した磁力制御機構である固定子を用いて行う。
In the conventional motor, the excitation coil is used for controlling the magnetic force on the stator side, but in the present invention, the magnetic force is controlled using the stator which is the magnetic force control mechanism described here.

【0014】図2において、5は図1に示した固定子で
あり、6,7および8は5と同じ構成の固定子を示す。
10はN極とS極との1対の磁極を有する永久磁石から
なる回転子を示し、9は回転軸を示す。回転子10は回
転軸9を介して回転可能に軸支されている。
In FIG. 2, reference numeral 5 denotes the stator shown in FIG. 1, and reference numerals 6, 7, and 8 denote stators having the same configuration as 5.
Reference numeral 10 denotes a rotor composed of a permanent magnet having a pair of magnetic poles of an N pole and an S pole, and 9 denotes a rotation axis. The rotor 10 is rotatably supported via a rotation shaft 9.

【0015】また、本実施形態では、固定子5,6,
7,8を、回転軸9に垂直な面内に、磁力制御素子1の
先端部1aを回転軸9の方向に向けて、先端部1aと回
転軸9の中心と距離を回転子10の半径より僅かに大き
な距離に、回転方向に略90度等間隔に配置する。ここ
で回転子10と各固定子5,6,7及び8との距離を小
さくするのは、磁力を有効に利用するためである。
In this embodiment, the stators 5, 6,
With the tip 1 a of the magnetic force control element 1 oriented in the direction of the rotation axis 9 in a plane perpendicular to the rotation axis 9, the distance between the tip 1 a and the center of the rotation axis 9 is set to the radius of the rotor 10. At a slightly larger distance, they are arranged at regular intervals of approximately 90 degrees in the rotation direction. Here, the reason why the distance between the rotor 10 and each of the stators 5, 6, 7, and 8 is reduced is to effectively use the magnetic force.

【0016】前記(TbDy)Feは圧力を加えると透
磁率を減じるが、この物質の性質として、その値を極端
に小さくすることはできない。従って本実施例の固定子
では、常にある一定の値以上の透磁率を発生している。
この一定の値を残存透磁率と呼ぶ事にする。(TbD
y)Feの透磁率は真空透磁率の4から6倍程度であ
り、透磁率は最低の状態でも真空透磁率の4倍程度の透
磁率が残る。
Although the magnetic permeability of (TbDy) Fe decreases when pressure is applied, its value cannot be extremely reduced as a property of this substance. Therefore, in the stator of this embodiment, the magnetic permeability always exceeds a certain value.
This constant value will be referred to as the residual magnetic permeability. (TbD
y) The permeability of Fe is about 4 to 6 times the vacuum permeability, and the permeability remains about 4 times the vacuum permeability even in the lowest state.

【0017】図2では、対向する2つの固定子5と7並
びに6と8の永久磁石の回転子10側の磁極を同極と
し、いずれの固定子にも電圧が印可されていない環境
で、対向する双方の永久磁石が回転子10に及ぼす回転
方向の力が互いにキャンセルし合うような配置としてい
る。この構成により回転子10に働く固定子5,6,
7,8の持つ残存透磁率による磁力同士を打ち消すこと
ができ、回転子10に回転方向に殆ど力が加わらない状
態を作り出している。
In FIG. 2, the permanent magnets of the two opposing stators 5 and 7 and 6 and 8 have the same magnetic pole on the rotor 10 side, and in an environment where no voltage is applied to any of the stators, The arrangement is such that the forces in the rotational direction exerted on the rotor 10 by the two opposing permanent magnets cancel each other. With this configuration, the stators 5, 6, which work on the rotor 10,
The magnetic forces due to the residual magnetic permeability possessed by 7, 8 can be canceled out, and a state is created in which almost no force is applied to the rotor 10 in the rotational direction.

【0018】次にこの小型モータの動作について説明す
る。図5において、V5,V6,V7,V8はそれぞれ
固定子5,6,7,8に与える電圧波形を示し、それぞ
れ波形が立ち上がった期間が電圧を印加した期間を表
す。
Next, the operation of the small motor will be described. In FIG. 5, V5, V6, V7, and V8 denote voltage waveforms applied to the stators 5, 6, 7, and 8, respectively, and the period during which the waveform rises represents the period during which a voltage is applied.

【0019】まず、いずれの固定子にも電圧が印可され
ていない、図5の例えばT0のタイミングでは、対向す
る固定子間の前記残存透磁率による磁力同士が打ち消し
合っていて回転子10に回転力が加わらないから、回転
子10は停止している(図2)。T1のタイミングにな
って固定子6の圧電素子に電圧V6が印可されると、固
定子6の磁力制御素子に永久磁石を介して圧力が加わ
り、磁力制御素子の透磁率が磁力が減少する方向に変化
して、対抗する固定子8との間の磁力バランスが崩れ
て、回転子10のS極が固定子8のN極へ引きつけられ
る。このため回転子10は図2の方向から時計回りに回
転移動する(図3)。
First, no voltage is applied to any of the stators. For example, at the timing T0 in FIG. 5, the magnetic forces due to the residual magnetic permeability between the opposing stators cancel each other out, and the rotor 10 rotates. Since no force is applied, the rotor 10 is stopped (FIG. 2). When the voltage V6 is applied to the piezoelectric element of the stator 6 at the timing of T1, pressure is applied to the magnetic force control element of the stator 6 via the permanent magnet, and the magnetic permeability of the magnetic force control element decreases in the direction in which the magnetic force decreases. , The balance of magnetic force between the opposing stator 8 is lost, and the S pole of the rotor 10 is attracted to the N pole of the stator 8. For this reason, the rotor 10 rotates clockwise from the direction of FIG. 2 (FIG. 3).

【0020】さらにT2のタイミングでこの固定子6に
印可した電圧V6を切って、この磁力制御素子に加えた
圧力を取り除き、同時に時計回りの隣の固定子7に電圧
V7を印可して、この磁力制御素子に圧力を加えると、
固定子6,8間の磁力バランスが回復し、固定子5,7
間に新たに生じた前述と同様な磁力アンバランスの影響
で回転子10は更に右回りに90度回転する(図4)。
Further, at the timing of T2, the voltage V6 applied to the stator 6 is cut off, the pressure applied to the magnetic force control element is removed, and at the same time, the voltage V7 is applied to the adjacent stator 7 in the clockwise direction. When pressure is applied to the magnetic force control element,
The magnetic balance between the stators 6, 8 is restored, and the stators 5, 7
The rotor 10 further rotates clockwise by 90 degrees under the influence of the newly generated magnetic imbalance similar to that described above (FIG. 4).

【0021】さらに、引き続いて図5に示すように固定
子8,5に順次電圧V8,V5,V6,V7と印加して
ゆくことにより、回転子10は時計回りに連続回転を行
い、モータとして動作することができる。電圧印加の方
向を変えれば逆転させることができるし、また電圧印加
の周波数を変えることより回転速度の調整ができること
も当然である。
Further, by successively applying voltages V8, V5, V6, and V7 to the stators 8 and 5 sequentially as shown in FIG. 5, the rotor 10 continuously rotates clockwise and serves as a motor. Can work. If the direction of the voltage application is changed, the rotation can be reversed, and the rotation speed can be naturally adjusted by changing the frequency of the voltage application.

【0022】図2の実施形態では、固定子5,6,7,
8の永久磁石のすべてのN極を回転子10の方向に向け
る構成をとっているが、このN極をすべてS極に置き換
えた構成をとってもよい。また、対向して配置される固
定子同士の残留透磁率による磁力を打ち消す構成をとる
ためには、回転子10に向かって対向する永久磁石の磁
極同士が同極であればよいのであって、回転子10に向
かう固定子の磁極がすべて同じである必要はない。
In the embodiment of FIG. 2, the stators 5, 6, 7,
Although all the N poles of the eight permanent magnets are directed to the direction of the rotor 10, a configuration in which all the N poles are replaced with S poles may be adopted. In order to cancel the magnetic force due to the residual magnetic permeability between the stators arranged opposite to each other, it is sufficient that the magnetic poles of the permanent magnets facing the rotor 10 are the same. The magnetic poles of the stator towards the rotor 10 need not all be the same.

【0023】図6は本発明の他の実施の形態である固定
子が2個の小型モータの正面図を示しており、図6
(a)は回転子に殆ど力が加わらない状態を表してい
る。図6(b)は一方の固定子に電圧を加えた状態を示
し、図6(c)は他方の固定子に電圧を加えた状態を示
す。
FIG. 6 is a front view of a small motor having two stators according to another embodiment of the present invention.
(A) shows a state where almost no force is applied to the rotor. FIG. 6B shows a state in which a voltage is applied to one stator, and FIG. 6C shows a state in which a voltage is applied to the other stator.

【0024】図6において9,10,11及び12はそ
れぞれ図1と同様の構成の回転軸、回転子及び対向する
固定子を示し、13は非常に小さな軟磁性体の小片を示
す。小片13を配置する位置は、回転方向に固定子1
1,12のいずれかに寄せて配置する(ここでは固定子
12寄り)。ここで、小片13と回転子10の磁極との
間に働く磁力による回転方向の力は、固定子11,12
の磁力の大きい状態と磁力の小さい状態の磁力の差によ
り生じる回転方向の力より小さくなるようにしておく。
In FIG. 6, reference numerals 9, 10, 11 and 12 denote a rotating shaft, a rotor and an opposing stator having the same structure as in FIG. 1, and 13 denotes a very small piece of soft magnetic material. The position where the small pieces 13 are arranged is determined by rotating the stator 1 in the rotation direction.
1 and 12 (here, closer to the stator 12). Here, the force in the rotation direction due to the magnetic force acting between the small piece 13 and the magnetic pole of the rotor 10 is fixed to the stators 11 and 12.
Is smaller than the force in the rotational direction caused by the difference between the magnetic force of the large magnetic force and the magnetic force of the small magnetic force.

【0025】図6(a)においては、回転子10の何れ
か一方の磁極(ここではN極)は、前記小片13に接近
した位置にある。図6(b)において固定子11に電圧
が加えられると固定子11は透磁率変化により磁力が減
少し、他方の固定子12とこの固定子11の磁力の差に
より回転子10に働く回転方向の力が、小片13により
回転子10に働く回転方向の保持力に打ち勝ち、回転子
10のS極が固定子12のN極へ引きつけられる。この
ため回転子10は図6の方向から反時計回りに回転移動
し、回転子10の磁極(ここではS極)は、回転方向に
固定子12と小片13の間にある力のつりあった位置に
至る。ここでいったん印可電圧を取り除くと、固定子1
1,12による回転力は再び打ち消し合い回転子10に
働かないので図6(c)に示すように回転子10は更に
反時計回りに回転し、今度は回転子10の反対の磁極
(ここではS極)が小片13に引きつけられる。この時
点で固定子12に電圧を印加すると回転子10は更に反
時計回りに回転することは明かである。
In FIG. 6A, one of the magnetic poles (N pole in this case) of the rotor 10 is at a position close to the small piece 13. In FIG. 6B, when a voltage is applied to the stator 11, the magnetic force of the stator 11 decreases due to a change in the magnetic permeability, and the rotation direction acting on the rotor 10 due to the difference between the other stator 12 and the magnetic force of the stator 11. Force overcomes the holding force in the rotating direction acting on the rotor 10 by the small pieces 13, and the S pole of the rotor 10 is attracted to the N pole of the stator 12. As a result, the rotor 10 rotates counterclockwise from the direction shown in FIG. Leads to. Once the applied voltage is removed here, the stator 1
As shown in FIG. 6 (c), the rotor 10 further rotates counterclockwise because the torques of the rotors 1 and 12 cancel each other and do not act on the rotor 10. S pole) is attracted to the small piece 13. At this point, it is clear that when a voltage is applied to the stator 12, the rotor 10 further rotates counterclockwise.

【0026】回転子10を時計回りに回転させるために
は、予め小片13の配置を図6の位置から回転軸9を中
心に反時計回りに90度回転した位置に配置しておき、
最初に電圧を印加する固定子を12とすればよい。この
ように、最初に電圧を印加する固定子の選択と小片13
の追加及びその配置により回転子10の回転方向が制御
できることを示した。
In order to rotate the rotor 10 clockwise, the small pieces 13 are previously arranged at a position rotated 90 degrees counterclockwise from the position in FIG.
The stator to which the voltage is applied first may be 12. Thus, the selection of the stator to which the voltage is first applied and the small pieces 13
It has been shown that the rotation direction of the rotor 10 can be controlled by the addition and the arrangement thereof.

【0027】4個の固定子の場合は、回転方向制御のた
めの機構を除けば、該2個の固定子の機構を組み合わせ
た物と考えて良く、同様にNを自然数として、2×N個
の固定子を有するモータを構成し、複数の圧電素子に順
次、印加電圧を与えて変位を引き起こし、該変位により
対応する固定子の磁力を変化させ、該固定子と回転子と
の間に働く力を変化させ、かつその変化を回転軸から見
て、時計方向または反時計方向に回転させることによ
り、回転子をどちらの方向にも回転させることができる
ことは明かである。
In the case of four stators, except for a mechanism for controlling the rotation direction, it can be considered as a combination of the mechanisms of the two stators. Similarly, when N is a natural number, 2 × N Constituting a motor having a plurality of stators, sequentially applying an applied voltage to a plurality of piezoelectric elements to cause displacement, changing the magnetic force of the corresponding stator by the displacement, and between the stator and the rotor. Obviously, the rotor can be rotated in either direction by changing the applied force and turning the change clockwise or counterclockwise as viewed from the axis of rotation.

【0028】また、本発明の実施の形態では、固定子の
形状として加工の容易な円筒形状としたが、多角柱でも
可能であるし、モーターの設計の都合に合わせ、平板状
等、形状に特に制約はない。
Further, in the embodiment of the present invention, the shape of the stator is a cylindrical shape which is easy to process. However, a polygonal prism may be used, and the shape may be a flat plate or the like according to the design of the motor. There are no particular restrictions.

【0029】以上のような、本発明の実施の形態に用い
る圧電素子は、チタン酸バリウム、ジルコチタン酸鉛、
多成分系固容体セラミックス等の圧電セラミックスや、
チタン酸バリウム単結晶や、水晶や、ロッシェル塩等の
圧電性を示す物質なら何でも良い。
As described above, the piezoelectric element used in the embodiment of the present invention includes barium titanate, lead zirconate titanate,
Piezoelectric ceramics such as multi-component solid solution ceramics,
Any material exhibiting piezoelectricity such as barium titanate single crystal, quartz, Rochelle salt, etc. may be used.

【0030】また、本発明の実施の形態に磁力制御素子
として用いる磁歪物質は、磁歪の大きい(TbDy)F
e、特に結晶に異方性を持たせたものが有利であるが、
TbFe2,DyFe2,SmFe2等の稀土類金属と
遷移金属の合金や磁性酸化物やフッ化物等で、圧力によ
る透磁率の変化の大きな物質なら何でも良い。また、図
1において磁力制御素子の先端部1aは必ずしも磁歪物
質である必要はなく、加工性の良い、透磁率の高い軟磁
性物質であって、これが磁歪物質に接合された構造であ
っても良い。
Further, the magnetostrictive material used as the magnetic force control element in the embodiment of the present invention has a large magnetostriction (TbDy) F.
e, especially those having anisotropy in the crystal are advantageous,
Any substance, such as an alloy of a rare earth metal and a transition metal such as TbFe2, DyFe2, and SmFe2, a magnetic oxide, and a fluoride, which has a large change in magnetic permeability due to pressure, may be used. In FIG. 1, the tip 1a of the magnetic force control element does not necessarily need to be made of a magnetostrictive material, but may be made of a soft magnetic material with good workability and high magnetic permeability, which is joined to the magnetostrictive material. good.

【0031】将来磁力制御可能で、透磁率を強磁性から
常磁性物質程度に変化させられる物質が発見されれば、
更に効率の良い小型モータを提供できる。
In the future, if a material that can control the magnetic force and change the magnetic permeability from ferromagnetic to paramagnetic is discovered,
Further, a more efficient small motor can be provided.

【0032】[0032]

【発明の効果】以上の説明で明らかなように、本発明に
よる小型モータは、印加電圧により変位する圧電素子の
変位を圧力に変換し、該圧力を磁力制御素子に加えで磁
力を制御し固定子の磁力を変化させ、回転子を回転させ
ているため、大きなコイルは必要なく、小型機械、例え
ば、小型の時計ムーブメントや、小型の携帯機器や、モ
ータによる画素駆動型の、大きすぎない表示パネル等を
実現することができる。
As is apparent from the above description, the small motor according to the present invention converts the displacement of the piezoelectric element, which is displaced by the applied voltage, into pressure, and applies the pressure to the magnetic force control element to control and fix the magnetic force. Since the magnetic force of the child is changed and the rotor is rotated, a large coil is not necessary, and a small machine, for example, a small watch movement, a small portable device, or a pixel driven type by a motor, not too large display. A panel or the like can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態である小型モータに使用す
る磁力制御機構(固定子)を示す断面図である。
FIG. 1 is a sectional view showing a magnetic force control mechanism (stator) used for a small motor according to an embodiment of the present invention.

【図2】本発明の実施の形態である小型モータの構成を
示す正面図である。
FIG. 2 is a front view showing a configuration of a small motor according to an embodiment of the present invention.

【図3】図2の小型モータの動作を説明する正面図であ
る。
FIG. 3 is a front view illustrating the operation of the small motor in FIG. 2;

【図4】図2の小型モータの動作を説明する正面図であ
る。
FIG. 4 is a front view illustrating the operation of the small motor in FIG. 2;

【図5】図2の小型モータを回転させる駆動電圧の波形
図である。
FIG. 5 is a waveform diagram of a driving voltage for rotating the small motor of FIG. 2;

【図6】本発明の他の実施の形態である小型モータの動
作を説明する正面図である。
FIG. 6 is a front view illustrating the operation of a small motor according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 磁力制御素子 1a 先端部 2 永久磁石 3 圧電素子 4 フレーム 5,6,7,8,11,12 磁力制御機構(固定子) 9 回転軸 10 回転子 13 小片 V5,V6,V7,V8 印可電圧 T0,T1,T2,T3,T4,T5,T6,T7 タ
イミング
DESCRIPTION OF SYMBOLS 1 Magnetic force control element 1a Tip part 2 Permanent magnet 3 Piezoelectric element 4 Frame 5, 6, 7, 8, 11, 12 Magnetic force control mechanism (stator) 9 Rotating shaft 10 Rotor 13 Small piece V5, V6, V7, V8 Applied voltage T0, T1, T2, T3, T4, T5, T6, T7 Timing

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 永久磁石からなる回転子並びに、永久磁
石と圧電素子と該圧電素子の変位により生じた圧力によ
り透磁率が変化する磁力制御素子とを積層した固定子を
備えることを特徴とする小型モータ。
1. A rotor comprising a permanent magnet, and a stator in which a permanent magnet, a piezoelectric element, and a magnetic force control element whose magnetic permeability changes due to pressure generated by displacement of the piezoelectric element are stacked. Small motor.
【請求項2】 前記磁力制御素子の残存透磁率による磁
力を打ち消す機構を有することを特徴とする請求項1記
載の小型モータ。
2. The small motor according to claim 1, further comprising a mechanism for canceling a magnetic force due to a residual magnetic permeability of the magnetic force control element.
JP8220864A 1996-08-22 1996-08-22 Small size motor Pending JPH1066364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8220864A JPH1066364A (en) 1996-08-22 1996-08-22 Small size motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8220864A JPH1066364A (en) 1996-08-22 1996-08-22 Small size motor

Publications (1)

Publication Number Publication Date
JPH1066364A true JPH1066364A (en) 1998-03-06

Family

ID=16757748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8220864A Pending JPH1066364A (en) 1996-08-22 1996-08-22 Small size motor

Country Status (1)

Country Link
JP (1) JPH1066364A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1424767A2 (en) * 2002-11-29 2004-06-02 ASML Netherlands B.V. Magnetic actuator under piezoelectric control
US6885117B2 (en) 2002-11-29 2005-04-26 Asml Netherlands B.V. Magnetic actuator under piezoelectric control
FR2874737A1 (en) * 2004-08-02 2006-03-03 Bernard Lucien Saumon Electromagnetic motor for producing driving force, has permanent magnets placed in triangular manner to form rotor, to obtain rotation by attraction and repulsion, upon successively supplying four electromagnets by electronic control
US7476998B2 (en) 2004-07-21 2009-01-13 Citizen Holdings Co., Ltd. Magnetic drive device
US7573172B2 (en) * 2006-01-23 2009-08-11 Citizen Holdings Co., Ltd. Magnetic drive apparatus
JP2009219237A (en) * 2008-03-10 2009-09-24 Nissan Motor Co Ltd Rotary electric machine
CN105846716A (en) * 2015-01-30 2016-08-10 精工爱普生株式会社 Piezoelectric drive device, robot, and drive method of robot

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1424767A2 (en) * 2002-11-29 2004-06-02 ASML Netherlands B.V. Magnetic actuator under piezoelectric control
US6885117B2 (en) 2002-11-29 2005-04-26 Asml Netherlands B.V. Magnetic actuator under piezoelectric control
EP1424767A3 (en) * 2002-11-29 2006-06-21 ASML Netherlands B.V. Magnetic actuator under piezoelectric control
CN100336140C (en) * 2002-11-29 2007-09-05 Asml荷兰有限公司 Magnetic actuator under piezoelectric control
US7476998B2 (en) 2004-07-21 2009-01-13 Citizen Holdings Co., Ltd. Magnetic drive device
FR2874737A1 (en) * 2004-08-02 2006-03-03 Bernard Lucien Saumon Electromagnetic motor for producing driving force, has permanent magnets placed in triangular manner to form rotor, to obtain rotation by attraction and repulsion, upon successively supplying four electromagnets by electronic control
US7573172B2 (en) * 2006-01-23 2009-08-11 Citizen Holdings Co., Ltd. Magnetic drive apparatus
JP2009219237A (en) * 2008-03-10 2009-09-24 Nissan Motor Co Ltd Rotary electric machine
CN105846716A (en) * 2015-01-30 2016-08-10 精工爱普生株式会社 Piezoelectric drive device, robot, and drive method of robot

Similar Documents

Publication Publication Date Title
US4103191A (en) Step motor
JPH01264574A (en) Electrostrictive revolution piece and single-phase ultrasonic motor
JPS6229976B2 (en)
US3984972A (en) Transducer for quartz crystal timepiece
JPH1066364A (en) Small size motor
EP0682403B1 (en) Micromotor
JP2005086978A (en) Stepping motor
EP0001334A1 (en) Transducer for an electronic timepiece
US4262353A (en) Transducer for electronic timepiece
US4167848A (en) Driving device for an electric timepiece
JP2698801B2 (en) Rotating magnetic field type motor
JPS5836221Y2 (en) Denchidokeiyo Dendouki
JPS5822938B2 (en) Reversible rotary motor
JPS605915B2 (en) Electric clock drive device
JP2881160B2 (en) Rotating magnetic field type motor
JP2773001B2 (en) Cylindrical rotary drive
JPH06225509A (en) Pm-type stepping motor
JPH10174414A (en) Pulse-drive type brushless motor
JP7410760B2 (en) Stepping motor control device, movement, clock and stepping motor control method
JP2002219414A (en) Electric rotary-type vibration generator
KR0141424B1 (en) Display element with odd display surface and display device using same
JPS6315825B2 (en)
JPH11102810A (en) Electromagnetic actuator with rotary permanent magnet
JPH0984324A (en) Reciprocating rotary actuator
JPS6110957A (en) Normal/reverse rotatable motor