JPH1064556A - Manufacture of solid electrolyte type electrochemical cell - Google Patents

Manufacture of solid electrolyte type electrochemical cell

Info

Publication number
JPH1064556A
JPH1064556A JP8229443A JP22944396A JPH1064556A JP H1064556 A JPH1064556 A JP H1064556A JP 8229443 A JP8229443 A JP 8229443A JP 22944396 A JP22944396 A JP 22944396A JP H1064556 A JPH1064556 A JP H1064556A
Authority
JP
Japan
Prior art keywords
fuel electrode
solid electrolyte
electrochemical cell
type electrochemical
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8229443A
Other languages
Japanese (ja)
Inventor
Masahito Shida
雅人 志田
Makoto Uchino
信 内埜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8229443A priority Critical patent/JPH1064556A/en
Publication of JPH1064556A publication Critical patent/JPH1064556A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To lessen the diffusion resistance and the reaction resistance of a fuel cell. SOLUTION: A fuel electrode 2 and solid electrolyte 1 are integrally burnt and an air electrode 3 is fitted thereto so as to manufacture a flat solid electrolyte type electrochemical cell. At the formation of fuel electrode 2 a substance disappearing at a high temperature is added as a pore formation agent into fuel electrode 2 material, and the pore formation agent is caused to disappear in burning so as to form the fuel electrode 2 formed into porous.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体電解質型電気化
学セルの製造方法に関し、特に平板形固体電解質型電気
化学セルの燃料電池の製造に改良を施したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolyte type electrochemical cell, and more particularly, to a method for manufacturing a flat solid electrolyte type electrochemical cell fuel cell.

【0002】[0002]

【従来の技術】固体電解質型電気化学セルは、図1に示
すように、固体電解質1を燃料電極2と空気電極3で挟
んだ構成となっている。ここで、固体電解質1の材料と
してはイットリア安定化ジルコニア(YSZ)が用いら
れている。前記燃料電極2の材料としては、接合された
YSZとの熱膨張を合わせるためにNiとYSZを混合
したサーメットが使用されている。前記空気電極3の材
料としては、高温酸化雰囲気で安定な導電材料であるL
aMnO3 等のペロブスカイト型の酸化物が使用されて
いる。なお、図1中の符番4は燃料ガスを、符番5はO
2-イオンの流れを示す。
2. Description of the Related Art As shown in FIG. 1, a solid electrolyte type electrochemical cell has a structure in which a solid electrolyte 1 is sandwiched between a fuel electrode 2 and an air electrode 3. Here, yttria-stabilized zirconia (YSZ) is used as the material of the solid electrolyte 1. As a material of the fuel electrode 2, a cermet in which Ni and YSZ are mixed in order to match thermal expansion with the joined YSZ is used. The material of the air electrode 3 is a conductive material L which is stable in a high-temperature oxidizing atmosphere.
Perovskite-type oxides such as aMnO 3 are used. In FIG. 1, reference numeral 4 denotes fuel gas, and reference numeral 5 denotes O
2 shows the flow of ions.

【0003】前記燃料電極2は出発原料であるNiOと
YSZを所定の比でボールミル混合し、そのスラリーを
ドクターブレード法で成膜する。その燃料電極2に同様
にドクターブレード法により成膜した固体電解質1を張
り合わせ、1400℃で一体焼成する。そのように作製
した試料に空気電極3を取り付け、発電セルとする。
The fuel electrode 2 is obtained by mixing a starting material, NiO and YSZ, in a ball mill at a predetermined ratio, and forming a slurry by a doctor blade method. The solid electrolyte 1 similarly formed by the doctor blade method is attached to the fuel electrode 2 and integrally fired at 1400 ° C. The air electrode 3 is attached to the sample thus manufactured to form a power generation cell.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
固体電解質型電気化学セルの製造方法では、燃料電極2
が緻密な組織となり、燃料ガス4の拡散が阻害されるた
め、拡散抵抗が大きい。また、組織が緻密であるゆえ燃
料電極2と固体電解質1との界面でガスの反応の起こる
場、即ち燃料電極2のNi、固体電解質1のYSZ、そ
して気相からなる三相界面が少ないため、反応抵抗が大
きい。
However, in the conventional method for manufacturing a solid oxide electrochemical cell, the fuel electrode 2
Has a dense structure, and the diffusion of the fuel gas 4 is hindered, so that the diffusion resistance is large. Also, since the structure is dense, there are few fields where gas reaction occurs at the interface between the fuel electrode 2 and the solid electrolyte 1, that is, the three-phase interface consisting of Ni of the fuel electrode 2, YSZ of the solid electrolyte 1, and gas phase. , Large reaction resistance.

【0005】本発明はこうした事情を考慮してなされた
もので、燃料電極の形成時に気孔形成剤として高温で消
失する物質を予め燃料電極材料中に添加し、焼成時に前
記気孔形成剤を消失させて多孔質化した燃料電極を形成
することにより、燃料電極のもつ拡散抵抗及び反応抵抗
を低減しえる固体電解質型電気化学セルの製造方法を提
供することを目的とする。
The present invention has been made in view of such circumstances, and a substance which disappears at a high temperature as a pore-forming agent at the time of forming a fuel electrode is previously added to a fuel electrode material, and the pore-forming agent is eliminated during firing. It is an object of the present invention to provide a method for manufacturing a solid electrolyte type electrochemical cell capable of reducing the diffusion resistance and the reaction resistance of a fuel electrode by forming a fuel electrode which is made porous by the method.

【0006】[0006]

【課題を解決するための手段】本発明は、燃料電極と固
体電解質を一体焼成したものに空気電極を取り付けた平
板型の固体電解質型電気化学セルの製造方法において、
燃料電極の形成時に気孔形成剤として高温で消失する物
質を燃料電極材料中に添加し、焼成時に前記気孔形成剤
を消失させて多孔質化した燃料電極を形成することを特
徴とする固体電解質型電気化学セルの製造方法である。
SUMMARY OF THE INVENTION The present invention relates to a method of manufacturing a flat solid electrolyte type electrochemical cell in which a fuel electrode and a solid electrolyte are integrally fired and an air electrode is attached.
A solid electrolyte type wherein a substance which disappears at a high temperature as a pore-forming agent when forming a fuel electrode is added to a fuel electrode material, and the pore-forming agent is eliminated during firing to form a porous fuel electrode. This is a method for manufacturing an electrochemical cell.

【0007】本発明において、焼成時に気孔形成剤を消
失させることにより、図2に示すように内部に多数の気
孔11を有する燃料電極が作製される。このように燃料電
極2を多孔質化すると、燃料電極2中を燃料ガス4が拡
散しやすくなる。また、燃料ガス4とO2-イオン5との
反応が起こる場所である三相界面が増加するため、反応
が起こりやすくなる。従って、燃料電極2の拡散抵抗、
反応抵抗を同時に低減させることが可能となる。
In the present invention, a fuel electrode having a large number of pores 11 therein is produced as shown in FIG. 2 by eliminating the pore forming agent during firing. When the fuel electrode 2 is made porous, the fuel gas 4 is easily diffused in the fuel electrode 2. Further, since the three-phase interface where the reaction between the fuel gas 4 and the O 2− ions 5 occurs increases, the reaction easily occurs. Therefore, the diffusion resistance of the fuel electrode 2,
Reaction resistance can be reduced at the same time.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施例について説
明する。
Embodiments of the present invention will be described below.

【0009】(実施例1)まず、燃料電極の出発原料と
してNiO、YSZを所定量秤量し、エタノール/ブタ
ン比が6/4である混合アルコールを溶媒としてボール
ミルで混合した。また、粒径5μmのカーボンを気孔形
成剤として選び、エタノール/ブタノール比が6/4で
ある混合アルコールを溶媒としてボールミルで混合し、
カーボンのスラリーを作製した。そのカーボンのスラリ
ーを燃料電極の出発原料スラリーに所定量添加して、燃
料電極用の試料とした。
(Example 1) First, a predetermined amount of NiO and YSZ were weighed as starting materials for a fuel electrode, and mixed with a ball mill using a mixed alcohol having an ethanol / butane ratio of 6/4 as a solvent. Further, carbon having a particle size of 5 μm is selected as a pore-forming agent, and a mixed alcohol having an ethanol / butanol ratio of 6/4 is mixed with a ball mill using a solvent,
A slurry of carbon was prepared. A predetermined amount of the carbon slurry was added to the starting material slurry of the fuel electrode to obtain a fuel electrode sample.

【0010】次に、その試料をドクターブレード法によ
り厚さ300〜400μmの膜に成形し、1400℃で
焼成した。添加した気孔形成剤カーボンは燃料電極試料
焼成中に燃えてなくなり、その箇所が気孔として残る。
この方法により。燃料電極中に2〜40%の範囲で気孔
を形成することが可能となった。図3は、添加したカー
ボンの量と燃料電極の気孔率との関係を示す。また、図
4に、カーボンを20vol%添加した際の燃料電極試
料の金属組織を表わす顕微鏡写真を示す。
Next, the sample was formed into a film having a thickness of 300 to 400 μm by a doctor blade method and fired at 1400 ° C. The added pore-forming agent carbon no longer burns during firing of the fuel electrode sample, and the location remains as pores.
By this method. Pores can be formed in the fuel electrode in the range of 2 to 40%. FIG. 3 shows the relationship between the amount of added carbon and the porosity of the fuel electrode. FIG. 4 is a micrograph showing the metal structure of the fuel electrode sample when carbon was added at 20 vol%.

【0011】(実施例2)気孔形成剤を用いて多孔質化
させた燃料電極の抵抗評価試験を行った。図5に示すよ
うに、燃料電極12と固体電解質13を一体焼成したものに
白金14を用いて電極を取り付け、評価試験用セルとし
た。このセルを1000℃、還元雰囲気中で、交流イン
ピーダンス法、カレントインターラプト法の試験を行っ
た。これらの評価試験は還元雰囲気中で行うため、燃料
電極の出発原料として用いてNiOが還元され、Niと
なる。従って、評価試験に用いた試料の気孔率は、燃料
電極試料焼成時の気孔率よりも大きくなっている。
(Example 2) A resistance evaluation test was performed on a fuel electrode made porous using a pore-forming agent. As shown in FIG. 5, a fuel electrode 12 and a solid electrolyte 13 were integrally fired, and an electrode was attached using platinum 14 to form an evaluation test cell. This cell was subjected to tests of the AC impedance method and the current interrupt method in a reducing atmosphere at 1000 ° C. Since these evaluation tests are performed in a reducing atmosphere, NiO is reduced to Ni by using it as a starting material for the fuel electrode. Therefore, the porosity of the sample used for the evaluation test is larger than the porosity at the time of firing the fuel electrode sample.

【0012】交流インピーダンス法より求めた反応抵抗
の大きさを、試料の還元後気孔率、及び反応が起こる場
である三相界面の量と合わせて図6に示す。また、カレ
ントインターラプト法より求めた拡散抵抗と反応抵抗と
を合わせた抵抗値と試料の還元後気孔率との関係を、図
7に示す。これらの二つの評価試験結果より、燃料電極
の拡散抵抗、反応抵抗と気孔率との関係は図8のように
なると推定できる。本実施例において、燃料電極の拡散
抵抗、反応抵抗は還元後気孔率が30%付近の試料で極
小となった。
FIG. 6 shows the magnitude of the reaction resistance obtained by the AC impedance method together with the porosity after reduction of the sample and the amount of the three-phase interface where the reaction takes place. FIG. 7 shows the relationship between the resistance value obtained by adding the diffusion resistance and the reaction resistance obtained by the current interrupt method and the porosity after reduction of the sample. From the results of these two evaluation tests, the relationship between the diffusion resistance and reaction resistance of the fuel electrode and the porosity can be estimated as shown in FIG. In this example, the diffusion resistance and the reaction resistance of the fuel electrode were minimized in the sample whose porosity after reduction was around 30%.

【0013】[0013]

【発明の効果】以上詳述したように本発明によれば、燃
料電極の形成時に気孔形成剤として高温で消失する物質
を予め燃料電極材料中に添加し、焼成時に前記気孔形成
剤を消失させて多孔質化した燃料電極を形成することに
より、燃料電極のもつ拡散抵抗及び反応抵抗を低減しえ
る固体電解質型電気化学セルの製造方法を提供できる。
As described above in detail, according to the present invention, a substance which disappears at a high temperature as a pore-forming agent when forming a fuel electrode is added to the fuel electrode material in advance, and the pore-forming agent is eliminated during firing. By forming a porous fuel electrode, a method for manufacturing a solid oxide electrochemical cell capable of reducing the diffusion resistance and reaction resistance of the fuel electrode can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の固体電解質型電気化学セルの断面を示す
概略図。
FIG. 1 is a schematic view showing a cross section of a conventional solid electrolyte type electrochemical cell.

【図2】本発明に係る固体電解質型電気化学セルの断面
を示す概略図。
FIG. 2 is a schematic view showing a cross section of a solid electrolyte type electrochemical cell according to the present invention.

【図3】気孔形成剤カーボンの添加量と燃料電極の気孔
率との関係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship between an amount of carbon added as a pore-forming agent and a porosity of a fuel electrode.

【図4】カーボンを20vol%添加した際の燃料電極
試料の金属組織を表わす顕微鏡写真。
FIG. 4 is a micrograph showing a metal structure of a fuel electrode sample when 20 vol% of carbon is added.

【図5】抵抗評価試験に用いたセルの外観図。FIG. 5 is an external view of a cell used in a resistance evaluation test.

【図6】気孔率と反応抵抗、三相界面量の関係を示す特
性図。
FIG. 6 is a characteristic diagram showing the relationship between porosity, reaction resistance, and three-phase interface amount.

【図7】気孔率と拡散抵抗、反応抵抗の関係を示す特性
図。
FIG. 7 is a characteristic diagram showing a relationship between porosity, diffusion resistance, and reaction resistance.

【図8】気孔率と燃料電極の抵抗の関係を示す特性図。FIG. 8 is a characteristic diagram showing a relationship between porosity and resistance of a fuel electrode.

【符号の説明】[Explanation of symbols]

1,11…固体電解質、 2,10…燃料電極、 3…空気電極、 4…燃料ガス、 5…O2-イオンの流れ、 11…気孔、 12…白金。1,11: solid electrolyte, 2,10: fuel electrode, 3: air electrode, 4: fuel gas, 5: flow of O2- ion, 11: pore, 12: platinum.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年11月7日[Submission date] November 7, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0001】[0001]

【発明の属する技術分野】本発明は固体電解質型電気化
学セルの製造方法に関し、特に平板型固体電解質型電気
化学セルの燃料電池の製造に改良を施したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolyte type electrochemical cell, and more particularly to a method for manufacturing a flat solid electrolyte type electrochemical cell fuel cell.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】(実施例1)まず、燃料電極の出発原料と
してNiO、YSZを所定量秤量し、エタノール/ブタ
ノール比が6/4である混合アルコールを溶媒としてボ
ールミルで混合した。また、粒径5μmのカーボンを気
孔形成剤として選び、エタノール/ブタノール比が6/
4である混合アルコールを溶媒としてボールミルで混合
し、カーボンのスラリーを作製した。そのカーボンのス
ラリーを燃料電極の出発原料スラリーに所定量添加し
て、燃料電極用の試料とした。
[0009] (Example 1) First, NiO, and YSZ was weighed in a predetermined amount as a starting material for the fuel electrode, ethanol / pigs
The mixture was mixed by a ball mill using a mixed alcohol having a knol ratio of 6/4 as a solvent. Further, carbon having a particle size of 5 μm was selected as a pore-forming agent, and the ethanol / butanol ratio was 6 /.
The mixed alcohol of No. 4 was used as a solvent in a ball mill to prepare a carbon slurry. A predetermined amount of the carbon slurry was added to the starting material slurry of the fuel electrode to obtain a fuel electrode sample.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】次に、その試料をドクターブレード法によ
り厚さ300〜400μmの膜に成形し、1400℃で
焼成した。添加した気孔形成剤カーボンは燃料電極試料
焼成中に燃えてなくなり、その箇所が気孔として残る。
この方法により。燃料電極中に2〜40%の範囲で気孔
を形成することが可能となった。図3は、添加したカー
ボンの量と燃料電極の気孔率との関係を示す。また、図
4に、カーボンを20vol%添加した際の燃料電極試
の組織を表わす顕微鏡写真を示す。
Next, the sample was formed into a film having a thickness of 300 to 400 μm by a doctor blade method and fired at 1400 ° C. The added pore-forming agent carbon no longer burns during firing of the fuel electrode sample, and the location remains as pores.
By this method. Pores can be formed in the fuel electrode in the range of 2 to 40%. FIG. 3 shows the relationship between the amount of added carbon and the porosity of the fuel electrode. FIG. 4 shows a micrograph showing the structure of the fuel electrode sample when carbon was added at 20 vol%.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の固体電解質型電気化学セルの断面を示す
概略図。
FIG. 1 is a schematic view showing a cross section of a conventional solid electrolyte type electrochemical cell.

【図2】本発明に係る固体電解質型電気化学セルの断面
を示す概略図。
FIG. 2 is a schematic view showing a cross section of a solid electrolyte type electrochemical cell according to the present invention.

【図3】気孔形成剤カーボンの添加量と燃料電極の気孔
率との関係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship between an amount of carbon added as a pore-forming agent and a porosity of a fuel electrode.

【図4】カーボンを20vol%添加した際の燃料電極
試料の組織を表わす顕微鏡写真。
FIG. 4 is a micrograph showing the structure of a fuel electrode sample when 20 vol% of carbon is added.

【図5】抵抗評価試験に用いたセルの外観図。FIG. 5 is an external view of a cell used in a resistance evaluation test.

【図6】気孔率と反応抵抗、三相界面量の関係を示す特
性図。
FIG. 6 is a characteristic diagram showing the relationship between porosity, reaction resistance, and three-phase interface amount.

【図7】気孔率と拡散抵抗、反応抵抗の関係を示す特性
図。
FIG. 7 is a characteristic diagram showing a relationship between porosity, diffusion resistance, and reaction resistance.

【図8】気孔率と燃料電極の抵抗の関係を示す特性図。FIG. 8 is a characteristic diagram showing a relationship between porosity and resistance of a fuel electrode.

【符号の説明】 1,13…固体電解質、 2,12…燃料電極、 3…空気電極、 4…燃料ガス、 5…O2-イオンの流れ、 11…気孔、 14…白金。[Description of Signs] 1,13: solid electrolyte, 2,12: fuel electrode, 3: air electrode, 4: fuel gas, 5: flow of O2- ion, 11: pore, 14: platinum.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図5[Correction target item name] Fig. 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図5】 FIG. 5

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料電極と固体電解質を一体焼成したも
のに空気電極を取り付けた平板型の固体電解質型電気化
学セルの製造方法において、 燃料電極の形成時に気孔形成剤として高温で消失する物
質を燃料電極材料中に添加し、焼成時に前記気孔形成剤
を消失させて多孔質化した燃料電極を形成することを特
徴とする固体電解質型電気化学セルの製造方法。
1. A method for manufacturing a flat solid electrolyte type electrochemical cell in which an air electrode is attached to a fuel electrode and a solid electrolyte which are integrally fired, wherein a substance which disappears at a high temperature as a pore-forming agent when the fuel electrode is formed. A method for producing a solid electrolyte type electrochemical cell, comprising adding to a fuel electrode material and eliminating the pore-forming agent during firing to form a porous fuel electrode.
JP8229443A 1996-08-13 1996-08-13 Manufacture of solid electrolyte type electrochemical cell Withdrawn JPH1064556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8229443A JPH1064556A (en) 1996-08-13 1996-08-13 Manufacture of solid electrolyte type electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8229443A JPH1064556A (en) 1996-08-13 1996-08-13 Manufacture of solid electrolyte type electrochemical cell

Publications (1)

Publication Number Publication Date
JPH1064556A true JPH1064556A (en) 1998-03-06

Family

ID=16892299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8229443A Withdrawn JPH1064556A (en) 1996-08-13 1996-08-13 Manufacture of solid electrolyte type electrochemical cell

Country Status (1)

Country Link
JP (1) JPH1064556A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059496A (en) * 2001-08-13 2003-02-28 Nissan Motor Co Ltd Solid electrolyte fuel cell and its manufacturing method
JP2005141969A (en) * 2003-11-05 2005-06-02 Honda Motor Co Ltd Electrolyte/electrode assembly and its manufacturing method
US7604670B2 (en) 2003-11-05 2009-10-20 Honda Motor Co., Ltd. Electrolyte-electrode joined assembly and method for producing the same
JP2021034249A (en) * 2019-08-26 2021-03-01 日本特殊陶業株式会社 Electrochemical cell, and electrochemical reaction cell stack
JP2021034248A (en) * 2019-08-26 2021-03-01 日本特殊陶業株式会社 Electrochemical cell, and electrochemical reaction cell stack

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059496A (en) * 2001-08-13 2003-02-28 Nissan Motor Co Ltd Solid electrolyte fuel cell and its manufacturing method
JP2005141969A (en) * 2003-11-05 2005-06-02 Honda Motor Co Ltd Electrolyte/electrode assembly and its manufacturing method
US7604670B2 (en) 2003-11-05 2009-10-20 Honda Motor Co., Ltd. Electrolyte-electrode joined assembly and method for producing the same
JP4695828B2 (en) * 2003-11-05 2011-06-08 本田技研工業株式会社 Electrolyte / electrode assembly and method for producing the same
JP2021034249A (en) * 2019-08-26 2021-03-01 日本特殊陶業株式会社 Electrochemical cell, and electrochemical reaction cell stack
JP2021034248A (en) * 2019-08-26 2021-03-01 日本特殊陶業株式会社 Electrochemical cell, and electrochemical reaction cell stack

Similar Documents

Publication Publication Date Title
US6248468B1 (en) Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell
Yasuda et al. Electrical conductivity and mechanical properties of alumina-dispersed doped lanthanum gallates
Panthi et al. Fabrication and evaluation of a micro-tubular solid oxide fuel cell with an inert support using scandia-stabilized zirconia electrolyte
JP4596158B2 (en) Solid oxide fuel cell
JPH05174852A (en) Conductive connecting material for solid electrolyte fuel cell
JP3599894B2 (en) Fuel electrode of solid oxide fuel cell
Ohrui et al. Performance of a solid oxide fuel cell fabricated by co-firing
KR20070008454A (en) Solid oxide fuel cell directly utilizing flame
JPH1021935A (en) Solid electrolyte fuel cell
JPH11219710A (en) Electrode of solid electrolyte fuel cell and manufacture thereof
JPH1064556A (en) Manufacture of solid electrolyte type electrochemical cell
JP3631923B2 (en) Substrate tube for fuel cell and its material
Hanifi et al. Development of redox resistant fully infiltrated tubular SOFCs
Nagato et al. Magnetic alignment of anode microstructure in solid oxide fuel cell
JP2003208902A (en) Solid electrolyte-type fuel cell
Tsipis et al. Cellulose-precursor synthesis of nanocrystalline Ce 0.8 Gd 0.2 O 2− δ for SOFC anodes
JP3377693B2 (en) Method for manufacturing solid oxide fuel cell
Ruiz‐Morales et al. Cost‐Effective Microstructural Engineering of Solid Oxide Fuel Cell Components for Planar and Tubular Designs
JPH0689723A (en) Fuel electrde fabrication method for fuel cell with solid electrolyte
JP3533694B2 (en) Porous conductive material powder, method for producing the same, and method for producing fuel cell
JP2007012498A (en) Manufacturing method of fuel electrode for solid oxide fuel cell and fuel cell
Kao et al. Fabrication and characterization of the anode-supported solid oxide fuel cell with Ni current collector layer
JPH09241076A (en) Electrically conductive ceramic and solid electrolyte type fuel cell
JPH05234604A (en) Solid electrolyte type fuel cell
EP1071150B1 (en) Base tube for fuel cell and material for base tube

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104