JPH1064512A - Battery - Google Patents

Battery

Info

Publication number
JPH1064512A
JPH1064512A JP8218959A JP21895996A JPH1064512A JP H1064512 A JPH1064512 A JP H1064512A JP 8218959 A JP8218959 A JP 8218959A JP 21895996 A JP21895996 A JP 21895996A JP H1064512 A JPH1064512 A JP H1064512A
Authority
JP
Japan
Prior art keywords
battery
bushing
current collecting
electrode group
collecting lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8218959A
Other languages
Japanese (ja)
Inventor
Mitsuru Koseki
満 小関
Tatsuo Horiba
達雄 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP8218959A priority Critical patent/JPH1064512A/en
Publication of JPH1064512A publication Critical patent/JPH1064512A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery, having a small upper part space of an electrode group with high capacity energy density, which can shorten a collector lead. SOLUTION: An electrode group 5 is received in a metal-made battery vessel 1, in an opening part thereof, the battery vessel is connected to a metal-made battery cover 2 in a connection part 7. In the battery cover 2, a metal-made hollow bushing 4 is calked to be mounted through an electric insulating packing 3. Passing through in this hollow part, a collector lead 6 of the electrode group 5 is air-tightly connected in a connection part in an upper surface of the bushing 4 to form a positive or negative electrode battery terminal of a battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属製の電池蓋と
電池容器とが電池容器の開口部において接合されている
電池に関するものであり、特に電池端子の改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery in which a metal battery cover and a battery case are joined at an opening of the battery case, and more particularly to an improvement in a battery terminal.

【0002】[0002]

【従来の技術】従来の金属製の電池蓋と電池容器とが電
池容器の開口部において接合されている電池は、電池容
器に正極、負極、セパレータからなる電極群を収容した
後、電池蓋に予め設けられ、電池蓋と電気的に絶縁され
た電池端子と電極群の集電リードとを接合する。その
後、電解液を電池容器内に注入してから、電池蓋を電池
容器の開口部で嵌合し、電池蓋と電池容器との周縁部を
レーザ溶接等で接合し、密閉化している。この構造は、
特に角形形状の電池に多用されている。その理由は、従
来の円筒形電池のように電池蓋と電池容器とを電気絶縁
性パッキンを介してかしめる方法が採り難いためであ
る。角形電池は、小形の携帯機器に搭載した場合、容積
的に無駄が少なく、小さいスペースを有効に利用できる
という利点を有しており、近年、多種多様に発展してい
る携帯電話等の移動用電源として注目されている。
2. Description of the Related Art In a conventional battery in which a metal battery cover and a battery container are joined at an opening of the battery container, an electrode group including a positive electrode, a negative electrode, and a separator is housed in the battery container, and then the battery cover is mounted on the battery cover. A battery terminal, which is provided in advance and is electrically insulated from the battery lid, is joined to the current collecting lead of the electrode group. After that, the electrolyte is injected into the battery container, and then the battery cover is fitted in the opening of the battery container, and the peripheral edges of the battery cover and the battery container are joined by laser welding or the like to form a hermetic seal. This structure
In particular, it is frequently used for prismatic batteries. The reason is that it is difficult to adopt a method of caulking the battery lid and the battery container via an electrically insulating packing as in the case of a conventional cylindrical battery. Prismatic batteries have the advantage of being small in volume and being able to effectively use small spaces when mounted on small portable devices. Recently, various types of mobile batteries such as mobile phones have been developed. It is attracting attention as a power source.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの電池
は、電極群の集電リードと電池蓋に設けられた電池端子
とを接合した後に電池蓋を電池容器の開口部に嵌合する
ため、集電リードを長くしないと上記接合や嵌合するた
めの作業間隔が確保できない。従って、集電リードが長
くなるため高率放電時の電圧低下が大きいという問題点
や長い集電リードを収容するための空間が必要となり、
容積エネルギー密度を向上できないという問題点があっ
た。本発明の目的は、上記問題点を解決するもので、集
電リードを短くでき、電極群の上部空間が小さく容積エ
ネルギー密度の高い電池を提供することにある。
However, in these batteries, the battery lid is fitted into the opening of the battery container after the current collecting lead of the electrode group and the battery terminal provided on the battery lid are joined. If the current collecting lead is not long, the working interval for the joining and fitting cannot be secured. Therefore, the length of the current collecting lead becomes longer, so that the voltage drop at the time of high-rate discharge is large, and a space for accommodating a long current collecting lead becomes necessary.
There is a problem that the volume energy density cannot be improved. SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and to provide a battery which can shorten a current collecting lead, has a small space above an electrode group, and has a high volume energy density.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、金属製の電池蓋と電池容器とが電池容器
の開口部において接合されている電池であって、該電池
蓋には電気絶縁性パッキンを介して中空構造の金属製ブ
ッシングが取り付けられており、前記電池容器には集電
リード付の電極群が収容されており、該電極群の集電リ
ードは、前記中空構造の金属製ブッシングの下面から挿
入されて該ブッシング上面に接合されており、該ブッシ
ング上面が電池端子を形成していることを特徴とする。
In order to achieve the above object, the present invention provides a battery in which a metal battery cover and a battery container are joined at an opening of the battery container, wherein the battery cover has Is mounted with a metal bushing having a hollow structure through an electrically insulating packing, and the battery container houses an electrode group with a current collecting lead, and the current collecting lead of the electrode group has the hollow structure. The metal bushing is inserted from the lower surface thereof and joined to the upper surface of the bushing, and the upper surface of the bushing forms a battery terminal.

【0005】本発明に用いられる金属製の電池蓋、電池
容器、ブッシングは、電池で使用される電解液と動作電
圧範囲で耐腐食性を有するものであれば、特に限定され
ず、従来より公知のものが使用できるが、鋼材、ニッケ
ルめっき鋼材、ステンレス鋼材、ニッケル材、アルミニ
ウム材、銅材などが好適である。電気絶縁性パッキン
は、合成樹脂など特に限定されず従来より公知のものが
使用できる。集電リードとブッシングとの接合は、ガス
溶接、アーク溶接、プラズマ溶接、レーザ溶接電子ビー
ム溶接、抵抗溶接など、使用する材料に合わせて適宜好
適な方法が用いられるが特に限定されない。
The metal battery lid, battery container, and bushing used in the present invention are not particularly limited as long as they have corrosion resistance in the range of operating voltage with the electrolyte used in the battery. Can be used, but steel, nickel-plated steel, stainless steel, nickel, aluminum, copper and the like are preferable. The electrically insulating packing is not particularly limited, such as a synthetic resin, and a conventionally known one can be used. For joining the current collecting lead and the bushing, a suitable method such as gas welding, arc welding, plasma welding, laser welding, electron beam welding, or resistance welding is used as appropriate according to the material to be used, but is not particularly limited.

【0006】[0006]

【発明の実施の形態】本発明に係る電池の実施の形態の
一例を図1に示した。図1は、電池の断面図を示し、金
属製の電池容器1は、電極群5を収容しており、その開
口部において金属製の電池蓋2と接合部7で接合されて
いる。電池蓋2には電気絶縁性パッキン3を介して金属
製の中空ブッシング4がかしめられて取り付けられてお
り、その中空部の中を通って電極群5の集電リード6が
ブッシング4の上面の接合部で気密に接合され、電池の
正極あるいは負極の電池端子を形成している。この電池
を組み立てる方法は、まず電極群5を電池容器1に挿入
し、電解液を注入した後、予めパッキン3とブッシング
4を設置した電池蓋2を電池容器1に嵌合させる。その
とき、集電リード6は、ブッシング4の中空部を貫通さ
せる。その後、電池容器と電池蓋とを接合して接合部7
を形成し、さらに、ブッシング4と集電リード6とを接
合して接合部8を形成し、電池が完成する。このような
構成であるため、集電リードを短くでき、且つ電極群と
蓋との間の空間を小さくすることができる。
FIG. 1 shows an example of an embodiment of a battery according to the present invention. FIG. 1 is a cross-sectional view of a battery. A metal battery container 1 houses an electrode group 5 and is joined to a metal battery lid 2 at a joint portion at an opening thereof. A metal hollow bushing 4 is caulked and attached to the battery lid 2 via an electrically insulating packing 3. The joints are hermetically joined at the joints to form a positive or negative battery terminal of the battery. In the method of assembling the battery, first, the electrode group 5 is inserted into the battery container 1, and after the electrolyte is injected, the battery cover 2 in which the packing 3 and the bushing 4 are previously installed is fitted to the battery container 1. At that time, the current collecting lead 6 penetrates through the hollow portion of the bushing 4. Thereafter, the battery container and the battery lid are joined to form a joint 7
Is formed, and the bushing 4 and the current collecting lead 6 are joined to form a joint 8, thereby completing the battery. With such a configuration, the current collecting lead can be shortened, and the space between the electrode group and the lid can be reduced.

【0007】[0007]

【実施例】本発明を実施例により更に詳細に説明する。 実施例1 (正極の作製方法)正極は次のようにして作製した。コ
バルト酸リチウム(LiCoO2)粉末88重量部、導電
材となるグラファイト8重量部、結着材となるポリフッ
化ビニリデン4重量部を混合して正極合剤を調製し、N
−メチルピロリドンに分散させて正極合剤スラリを調製
した。この正極合剤スラリを正極集電体となる厚さ20
μmの帯状のアルミニウム箔の両面に均一に塗布し、乾
燥させた後、圧縮成形した。
The present invention will be described in more detail with reference to examples. Example 1 (Production method of positive electrode) A positive electrode was produced as follows. A positive electrode mixture was prepared by mixing 88 parts by weight of lithium cobaltate (LiCoO 2 ) powder, 8 parts by weight of graphite as a conductive material, and 4 parts by weight of polyvinylidene fluoride as a binder.
-Dispersed in methylpyrrolidone to prepare a positive electrode mixture slurry. This positive electrode material mixture slurry is used as a positive electrode current collector with a thickness of 20%.
It was uniformly coated on both sides of a strip-shaped aluminum foil of μm, dried, and then compression-molded.

【0008】(負極の作製方法)負極は次のようにして
作製した。球状の高結晶性黒鉛粒子としてメソカーボン
マイクロビーズ(粒径1〜50μm,炭素含有量99.
9%,真密度2.1g/cm3,d002=3.366オングスト
ローム)90重量部と結着剤となるポリフッ化ビニリデ
ン10重量部を混合して負極合剤を調製し、N−メチル
ピロリドンに分散させて負極合剤スラリを調製した。こ
の負極合剤スラリを負極集電体となる厚さ20μmの帯
状の銅箔の両面に均一に塗布し、乾燥させた後、圧縮成
形した。
(Preparation method of negative electrode) The negative electrode was prepared as follows. Mesocarbon microbeads (particle diameter: 1 to 50 μm, carbon content: 99.000) as spherical highly crystalline graphite particles
90% by weight of 9%, true density of 2.1 g / cm3, d002 = 3.366 angstroms) and 10 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture, which was dispersed in N-methylpyrrolidone. Thus, a negative electrode mixture slurry was prepared. This negative electrode mixture slurry was uniformly applied to both sides of a 20 μm-thick strip-shaped copper foil serving as a negative electrode current collector, dried, and then compression-molded.

【0009】(電池の作製方法)正極(厚み200μ
m)の27mmX47mmの寸法のもの10枚と負極
(厚み200μm)の27mmX47mmの寸法のもの
11枚をポリエチレン微多孔フィルムセパレータ(厚み
25μm)を介して積層し、電極群を形成した。集電リ
ードは集電体に合剤未塗布部を設け、この部分を切り出
して形成した。図2と図3に電極の構造を示す。負極は
合剤塗布部9と集電リード10よりなる。正極は合剤塗
布部11と集電リード12よりなる。電極群を角形のス
テンレス製の電池容器(30mmX50mmX5.5m
m)1に収容し、負極集電リードは5枚束ねて一方の電
池容器側壁と残り6枚束ねてもう一方の電池容器側壁に
超音波溶接により接合した。正極の集電リードは10枚
束ねて図4に示すアルミニウム製極柱13に超音波溶接
した。非水電解液としてエチレンカーボネートとジメチ
ルカーボネートとの混合溶媒(1:1容積比)に1mol/
lの六フッ化燐酸リチウムを溶解させたものを注液した
後、予めポリプロピレン製パッキン3を介してアルミニ
ウム製中空ブッシング4をかしめにより取り付けたステ
ンレス製の電池蓋2を上記電池容器1に嵌合し、その
時、極柱13をブッシング4の中空部の中を通した。電
池蓋2と電池容器1との嵌合部はYAGレーザ溶接で接
合した。更に、ブッシング4と極柱13とはブッシング
4の上面にてYAGレーザ溶接で接合封口し、正極の電
池端子を形成した。
(Method of Manufacturing Battery) Positive electrode (200 μm thick)
m) of 27 mm × 47 mm dimensions and 11 negative electrodes (200 μm thickness) of 27 mm × 47 mm dimensions were laminated via a polyethylene microporous film separator (25 μm thickness) to form an electrode group. The current collecting lead was formed by providing an uncoated portion on the current collector and cutting out this portion. 2 and 3 show the structure of the electrode. The negative electrode includes a mixture application section 9 and a current collecting lead 10. The positive electrode includes a mixture application section 11 and a current collecting lead 12. The electrode group is a rectangular stainless steel battery container (30 mm × 50 mm × 5.5 m).
m) The negative electrode current collecting lead was bundled into 5 pieces, and the five negative electrode current collecting leads were bundled, and the remaining six pieces were bundled together and joined to the other battery container side wall by ultrasonic welding. The ten positive electrode current collecting leads were bundled and ultrasonically welded to the aluminum pole 13 shown in FIG. As a non-aqueous electrolyte, 1 mol / mol of a mixed solvent of ethylene carbonate and dimethyl carbonate (1: 1 volume ratio)
After dissolving 1 l of lithium hexafluorophosphate dissolved therein, a stainless steel battery cover 2 to which an aluminum hollow bushing 4 has been previously caulked via a polypropylene packing 3 is fitted to the battery container 1. Then, the pole 13 was passed through the hollow portion of the bushing 4. The fitting portion between the battery lid 2 and the battery container 1 was joined by YAG laser welding. Further, the bushing 4 and the pole 13 were joined and sealed on the upper surface of the bushing 4 by YAG laser welding to form a positive battery terminal.

【0010】このようにして作製した電池を500m
A,4.1V,2時間充電した後、100mAで2.8
Vまで室温で放電して得た容量は600mAhであっ
た。容積エネルギー密度は260Wh/lであった。同
様の条件で充電した後、1.5Aで2.8Vまで室温で
放電して得た容量は535mAhであった。
The battery fabricated in this way is 500 m
A, 4.1V, after charging for 2 hours, 2.8 at 100mA
The capacity obtained by discharging at room temperature to V was 600 mAh. The volumetric energy density was 260 Wh / l. After charging under the same conditions, the battery was discharged to 2.8 V at 1.5 A at room temperature, and the capacity obtained was 535 mAh.

【0011】比較例 正極と負極は実施例1と同様に作製した。正極(厚み2
00μm)の27mmX40mmの寸法のものと負極
(厚み200μm)の27mmX40mmの寸法のもの
を用いた以外は実施例1と同様に電極群を形成した。電
極群を角形のステンレス製の電池容器1(30mmX5
0mmX5.5mm)に収容し、負極集電リードは5枚
束ねて一方の電池容器側壁と残り6枚束ねてもう一方の
電池容器側壁に超音波溶接により接合した。正極の集電
リードは10枚束ねて図5に示す予めステンレス製の電
池蓋2にポリプロピレン製パッキンを介して取り付けた
アルミニウム製正極端子14に超音波溶接した。この
時、正極の集電リードは溶接作業をするため実施例1に
比べ4倍の長さになった。非水電解液としてエチレンカ
ーボネートとジメチルカーボネートとの混合溶媒(1:
1容積比)に1mol/lの六フッ化燐酸リチウムを溶解さ
せたものを注液した後、電池蓋2を上記電池容器1に嵌
合し、嵌合部をYAGレーザ溶接で接合し封口した。正
極の集電リードを電池容器1の内部に収容するため、実
施例1に比べて約3倍の空間が必要であった。
Comparative Example A positive electrode and a negative electrode were produced in the same manner as in Example 1. Positive electrode (thickness 2
An electrode group was formed in the same manner as in Example 1 except that a 27 μm × 40 mm (00 μm) dimension and a 27 mm × 40 mm negative electrode (200 μm thickness) were used. The electrode group is a rectangular stainless steel battery container 1 (30 mm × 5
0 mm × 5.5 mm), and five negative electrode current collecting leads were bundled, one battery container side wall was bundled, and the other six were bundled and joined to the other battery container side wall by ultrasonic welding. The current collecting leads of the positive electrode were bundled in ten pieces and ultrasonically welded to the aluminum positive electrode terminal 14 previously attached to the stainless steel battery lid 2 via the polypropylene packing shown in FIG. At this time, the length of the current collecting lead of the positive electrode was four times longer than that of Example 1 due to welding work. As a non-aqueous electrolyte, a mixed solvent of ethylene carbonate and dimethyl carbonate (1:
After dissolving 1 mol / l of lithium hexafluorophosphate in 1 volume ratio), the battery lid 2 was fitted to the battery container 1, and the fitted portion was joined by YAG laser welding and sealed. . In order to house the current collecting lead of the positive electrode inside the battery case 1, about three times as much space as in Example 1 was required.

【0012】このようにして作製した電池を500m
A,4.1V,2時間充電した後、100mAで2.8
Vまで室温で放電して得た容量は510mAhであっ
た。容積エネルギー密度は220Wh/lであった。同
様の条件で充電した後、1.5Aで2.8Vまで室温で
放電して得た容量は340mAhであった。
The battery manufactured in this way is 500 m
A, 4.1V, after charging for 2 hours, 2.8 at 100mA
The capacity obtained by discharging at room temperature to V was 510 mAh. The volumetric energy density was 220 Wh / l. After charging under the same conditions, the capacity obtained by discharging the battery at 1.5 A to 2.8 V at room temperature was 340 mAh.

【0013】なお、実施例では電極を積層した角形電池
について例示したが、電極を捲回して角形や円筒形の電
池容器に収容したものについても、本発明を適用するこ
とができる。また、非水電解液二次電池について例示し
たが、他の電池系についても本発明を適用することがで
きる。
Although the embodiments have been described with reference to a prismatic battery in which electrodes are stacked, the present invention can be applied to a battery in which electrodes are wound and accommodated in a rectangular or cylindrical battery container. Further, although the non-aqueous electrolyte secondary battery has been exemplified, the present invention can be applied to other battery systems.

【0014】[0014]

【発明の効果】上述したように、本発明によれば、集電
リードと電池端子との距離を短く接合でき、電極群上部
の空間を小さくすることができるので、容積エネルギー
密度の高い、高率放電特性に優れた電池を得ることがで
きる。また、電池蓋を電池容器に嵌合させる際に集電リ
ードを電極群上部に収容するために折たたむなどの手間
を省くことができる。
As described above, according to the present invention, the distance between the current collecting lead and the battery terminal can be shortened, and the space above the electrode group can be reduced. A battery having excellent rate discharge characteristics can be obtained. In addition, when the battery cover is fitted to the battery container, it is possible to save labor such as folding to accommodate the current collecting lead above the electrode group.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す電池の断面図である。FIG. 1 is a sectional view of a battery showing an example of the present invention.

【図2】本発明の実施例における負極を示す平面図であ
る。
FIG. 2 is a plan view showing a negative electrode according to an example of the present invention.

【図3】本発明の実施例における正極を示す平面図であ
る。
FIG. 3 is a plan view showing a positive electrode according to an example of the present invention.

【図4】本発明の実施例における極柱と集電リードとの
接合状態を示す斜視図である。
FIG. 4 is a perspective view showing a bonding state between a pole and a current collecting lead in the embodiment of the present invention.

【図5】比較例に用いた電池の短側面の断面図である。FIG. 5 is a cross-sectional view of a short side surface of a battery used in a comparative example.

【符号の説明】[Explanation of symbols]

1は電池容器、2は電池蓋、3は電気絶縁性パッキン、
4は中空ブッシング、5は電極群、6は集電リード、7
は電池蓋と電池容器との接合部、8はブッシングと集電
リードとの接合部、9は負極の合剤塗布部、10は負極
の集電リード、11は正極の合剤塗布部、12は正極の
集電リード、13は極柱、14は正極端子
1 is a battery container, 2 is a battery cover, 3 is an electrically insulating packing,
4 is a hollow bushing, 5 is an electrode group, 6 is a current collecting lead, 7
Is a junction between the battery lid and the battery container, 8 is a junction between the bushing and the current collecting lead, 9 is a negative electrode mixture applying section, 10 is a negative electrode current collecting lead, 11 is a positive electrode mixture applying section, 12 Is a positive collector lead, 13 is a pole, 14 is a positive terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属製の電池蓋と電池容器とが電池容器の
開口部において接合されている電池であって、該電池蓋
には電気絶縁性パッキンを介して中空構造の金属製ブッ
シングが取り付けられており、前記電池容器には集電リ
ード付の電極群が収容されており、該電極群の集電リー
ドは、前記中空構造の金属製ブッシングの下面から挿入
されて該ブッシング上面に接合されており、該ブッシン
グ上面が電池端子を形成していることを特徴とする電
池。
1. A battery in which a metal battery cover and a battery case are joined at an opening of the battery case, and a hollow metal bushing is attached to the battery cover via an electrically insulating packing. The battery container accommodates an electrode group with a current collecting lead, and the current collecting lead of the electrode group is inserted from the lower surface of the hollow metal bushing and joined to the upper surface of the bushing. Wherein the upper surface of the bushing forms a battery terminal.
JP8218959A 1996-08-20 1996-08-20 Battery Pending JPH1064512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8218959A JPH1064512A (en) 1996-08-20 1996-08-20 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8218959A JPH1064512A (en) 1996-08-20 1996-08-20 Battery

Publications (1)

Publication Number Publication Date
JPH1064512A true JPH1064512A (en) 1998-03-06

Family

ID=16728036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8218959A Pending JPH1064512A (en) 1996-08-20 1996-08-20 Battery

Country Status (1)

Country Link
JP (1) JPH1064512A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031206A (en) * 2001-05-09 2003-01-31 Toyota Motor Corp Storage battery element, its manufacturing method, and terminal
JP2006527468A (en) * 2003-06-14 2006-11-30 バルタ・オートモーティブ・ズュステームズ・ゲーエムベーハー Manufacturing methods for batteries and sealed contact terminal bushings
JP2007149701A (en) * 2007-02-06 2007-06-14 Hitachi Maxell Ltd Manufacturing method of stacked polymer electrolyte battery and stacked polymer electrolyte battery manufactured by the manufacturing method
JP2007200669A (en) * 2006-01-25 2007-08-09 Gs Yuasa Corporation:Kk Method of manufacturing battery
WO2019025237A1 (en) * 2017-07-31 2019-02-07 Robert Bosch Gmbh Method for manufacturing energy storage device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031206A (en) * 2001-05-09 2003-01-31 Toyota Motor Corp Storage battery element, its manufacturing method, and terminal
JP2006527468A (en) * 2003-06-14 2006-11-30 バルタ・オートモーティブ・ズュステームズ・ゲーエムベーハー Manufacturing methods for batteries and sealed contact terminal bushings
JP2007200669A (en) * 2006-01-25 2007-08-09 Gs Yuasa Corporation:Kk Method of manufacturing battery
JP2007149701A (en) * 2007-02-06 2007-06-14 Hitachi Maxell Ltd Manufacturing method of stacked polymer electrolyte battery and stacked polymer electrolyte battery manufactured by the manufacturing method
WO2019025237A1 (en) * 2017-07-31 2019-02-07 Robert Bosch Gmbh Method for manufacturing energy storage device
JP2019029226A (en) * 2017-07-31 2019-02-21 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG Method of manufacturing power storage element
CN110998896A (en) * 2017-07-31 2020-04-10 罗伯特·博世有限公司 Method of manufacturing an energy storage device
US11462788B2 (en) 2017-07-31 2022-10-04 Gs Yuasa International Ltd. Method for manufacturing energy storage device
CN110998896B (en) * 2017-07-31 2023-03-28 株式会社杰士汤浅国际 Method of manufacturing an energy storage device

Similar Documents

Publication Publication Date Title
JP4866496B2 (en) Manufacturing method of secondary battery
JP4416770B2 (en) Assembled battery
CN102646844B (en) Rechargeable battery
JP3368877B2 (en) Cylindrical lithium-ion battery
EP1126538A1 (en) Non-aqueous electrolyte secondary battery
US20060204841A1 (en) Battery and method of manufacturing same
JPH11307076A (en) Secondary battery
JP2001313022A (en) Nonaqueous electrolyte secondary battery
JP2001093579A (en) Non-aqueous electrolytic secondary battery
JP2002100342A (en) Cylindrical secondary battery
JP2003346774A (en) Battery
JP2003059539A (en) Cylindrical lithium ion battery
JP3519953B2 (en) Rechargeable battery
JP2001126769A (en) Cylindrical lithium ion battery
JP4023213B2 (en) Lithium ion secondary battery
JP2000353502A (en) Nonaqueous electrolyte secondary battery
JP2018147574A (en) Square Lithium Ion Secondary Battery
JPH08329972A (en) Battery
JPH1064512A (en) Battery
JPH0973915A (en) Manufacture of flat secondary battery
JP2003346769A (en) Battery
JP4389398B2 (en) Non-aqueous electrolyte secondary battery
JP2003346775A (en) Battery
JP3457462B2 (en) Non-aqueous electrolyte secondary battery
JP2003346877A (en) Battery