JPH1060125A - Preparation of additive-containing thermoplastic resin molding - Google Patents

Preparation of additive-containing thermoplastic resin molding

Info

Publication number
JPH1060125A
JPH1060125A JP8231441A JP23144196A JPH1060125A JP H1060125 A JPH1060125 A JP H1060125A JP 8231441 A JP8231441 A JP 8231441A JP 23144196 A JP23144196 A JP 23144196A JP H1060125 A JPH1060125 A JP H1060125A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
additive
transesterification
carbon dioxide
test film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8231441A
Other languages
Japanese (ja)
Other versions
JP3583557B2 (en
Inventor
Yoichiro Makimura
洋一郎 牧村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP23144196A priority Critical patent/JP3583557B2/en
Publication of JPH1060125A publication Critical patent/JPH1060125A/en
Application granted granted Critical
Publication of JP3583557B2 publication Critical patent/JP3583557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for preparing an additive-contg. thermoplastic resin molding which, in the preparation of a thermoplastic resin molding with an additive incorporated therein so as not to cause the volatilization of the additive by the transesterification of a polymer molecule of a thermoplastic resin with the additive, can significantly improve the rate of transesterification in a short time. SOLUTION: Before a thermoplastic resin wherein the polymer molecule has an ester bond or a carboxyl group is heat-melted and molded into a predetermined form, an additive having any one of an amino group, a hydroxyl group, a carboxyl group, and an ester bond is incorporated into the thermoplastic resin, followed by the transesterification of the polymer molecule of the thermoplastic resin in a heat-melted state with the additive in a carbon dioxide atmosphere. The plasticization effect, solvent effect, and catalytic effect attained by the carbon dioxide can markedly improve the rate of transesterification in a short time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種の添加剤が揮
散、滲出しないように含有されている熱可塑性樹脂成形
体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermoplastic resin molded article containing various additives so as not to volatilize or exude.

【0002】[0002]

【従来の技術】熱可塑性樹脂で成形される外装用建材な
どの成形体は、耐候性や耐汚染性等を向上させるために
紫外線吸収剤や防汚剤等の添加剤を含有させて使用され
ている。
2. Description of the Related Art Molded articles such as exterior building materials molded with a thermoplastic resin are used by adding additives such as an ultraviolet absorber and an antifouling agent in order to improve weather resistance and stain resistance. ing.

【0003】しかし、これまでの添加剤含有熱可塑性樹
脂成形体は、添加剤を物理的に混合して分散させたもの
であるため、添加剤が経時的に揮散、消失し、耐候性や
耐汚染性等を長期間維持することが困難であった。
[0003] However, the conventional additive-containing thermoplastic resin molded article is obtained by physically mixing and dispersing additives, so that the additives volatilize and disappear over time, and the weather resistance and the resistance to weathering are increased. It was difficult to maintain the contamination and the like for a long time.

【0004】そこで、本発明者らはエステル交換反応に
着目し、ポリエステル系樹脂を熱溶融成形する前に、ア
ミノ基、水酸基、カルボキシル基、エステル結合のいず
れかを有する添加剤をポリエステル系樹脂に配合して、
加熱溶融状態のポリエステル系樹脂のポリマー分子と添
加剤をエステル交換反応させることを要旨とする添加剤
含有樹脂成形体の製造方法(特願平5−128456
号)や、更にこの方法の適用範囲を広げて、ポリマー分
子の側鎖にエステル結合又はカルボキシル基を有する熱
可塑性樹脂を加熱溶融成形する前に、同様の添加剤を配
合してエステル交換反応させることを要旨とする添加剤
含有樹脂成形体の製造方法(特願平8−131201
号)を提案した。
Accordingly, the present inventors have focused on the transesterification reaction and prior to hot-melt molding the polyester resin, added an additive having any of an amino group, a hydroxyl group, a carboxyl group and an ester bond to the polyester resin. Mix
A method for producing an additive-containing resin molded article, which comprises subjecting a polymer molecule of a polyester resin in a heat-melted state to a transesterification reaction with an additive (Japanese Patent Application No. 5-128456).
No.) and further expand the application range of this method, and before heat-melting and molding a thermoplastic resin having an ester bond or a carboxyl group in the side chain of a polymer molecule, blending the same additives to carry out a transesterification reaction. A method for producing an additive-containing resin molded article (Japanese Patent Application No. 8-131201)
No.).

【0005】これらの方法で製造される樹脂成形体は、
添加剤がポリマー分子とエステル結合して固定化される
ため、経時的に揮散、滲出することがなく、長期にわた
って添加剤の効能を維持することができるものである。
[0005] The resin molded article produced by these methods is:
Since the additive is immobilized by ester bond with the polymer molecule, the additive does not volatilize or exude over time, and the effect of the additive can be maintained for a long time.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
製造方法はエステル交換反応の効率があまり高くなく、
適当なエステル交換触媒を添加しても、反応時間を長時
間にしないと反応率を高くできず、この点で改良の余地
があった。
However, the above-mentioned production method is not so efficient in transesterification,
Even if an appropriate transesterification catalyst is added, the reaction rate cannot be increased unless the reaction time is extended, and there is room for improvement in this respect.

【0007】本発明は上記事情に鑑みてなされたもの
で、エステル交換反応率を短時間で大幅に向上させるこ
とができる添加剤含有熱可塑性樹脂成形体の製造方法を
提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing an additive-containing thermoplastic resin molded article capable of greatly improving the transesterification reaction rate in a short time. .

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、本発明の添加剤含有熱可塑性樹脂成形体の製造方法
は、ポリマー分子がエステル結合又はカルボキシル基を
有する熱可塑性樹脂を加熱溶融して所定の形状に成形す
る前に、アミノ基、水酸基、カルボキシル基、エステル
結合のいずれかを有する添加剤を熱可塑性樹脂に配合
し、二酸化炭素雰囲気中で加熱溶融状態の熱可塑性樹脂
のポリマー分子と添加剤とをエステル交換反応させるこ
とを特徴とするものである。そして、望ましくは加圧し
た二酸化炭素雰囲気中、更に望ましくは超臨界状態の二
酸化炭素雰囲気中で、上記のエステル交換反応を行わせ
るものである。ここで、超臨界状態の二酸化炭素とは、
31.1℃以上で73気圧以上の状態にある二酸化炭素
のことをいう。
In order to achieve the above object, a method for producing an additive-containing thermoplastic resin molded article according to the present invention comprises heating and melting a thermoplastic resin having a polymer molecule having an ester bond or a carboxyl group. Before molding into a predetermined shape, an additive having an amino group, a hydroxyl group, a carboxyl group, or an ester bond is blended with the thermoplastic resin, and a polymer molecule of the thermoplastic resin in a heated and molten state in a carbon dioxide atmosphere. It is characterized by subjecting it to a transesterification reaction with an additive. The transesterification reaction is preferably performed in a pressurized carbon dioxide atmosphere, more preferably in a supercritical carbon dioxide atmosphere. Here, carbon dioxide in a supercritical state is
Carbon dioxide in a state of 31.1 ° C. or more and 73 atm or more.

【0009】本発明の製造方法のように二酸化炭素雰囲
気中で熱可塑性樹脂のポリマー分子と添加剤とをエステ
ル交換反応させると、適当なエステル交換触媒を添加し
なくても、後述の実験データに示されるようにエステル
交換反応率が60%以上と顕著に向上し、添加剤の6割
以上がポリマー分子にエステル結合して固定化された熱
可塑性樹脂成形体を得ることができる。
When a polymer molecule of a thermoplastic resin and an additive are transesterified in a carbon dioxide atmosphere as in the production method of the present invention, even if an appropriate transesterification catalyst is not added, the experimental data described below will be obtained. As shown, the transesterification reaction rate is remarkably improved to 60% or more, and it is possible to obtain a thermoplastic resin molded article in which 60% or more of the additives are ester-bonded to the polymer molecules and fixed.

【0010】上記のように二酸化炭素雰囲気中でエステ
ル交換反応させると反応率が顕著に向上するのは、二酸
化炭素の可塑化効果、溶媒効果、及び触媒効果によるも
のと推測される。
[0010] It is presumed that the remarkable improvement in the reaction rate when a transesterification reaction is performed in a carbon dioxide atmosphere as described above is due to a plasticizing effect, a solvent effect, and a catalytic effect of carbon dioxide.

【0011】二酸化炭素の可塑化効果とは、二酸化炭素
が熱可塑性樹脂の可塑剤的な作用をなし、樹脂の溶融粘
度を減少させるために、ポリマー分子のエステル結合部
分又はカルボキシル基と添加剤の官能基との接触する機
会が増大してエステル交換反応が促進されると考えられ
るものである。
The plasticizing effect of carbon dioxide means that carbon dioxide acts as a plasticizer for the thermoplastic resin and reduces the melt viscosity of the resin. It is thought that the transesterification reaction is promoted by increasing the chance of contact with the functional group.

【0012】また、二酸化炭素の溶媒効果とは、ポリマ
ー分子のエステル結合部分又はカルボキシル基の−CO
O−と二酸化炭素が同一の元素構成であるため、二酸化
炭素がエステル結合部分又はカルボキシル基の周囲に集
まって溶媒的な作用をし、エステル結合部分又はカルボ
キシル基が反応しやすい状態になってエステル交換反応
が促進されると考えられるものである。
The solvent effect of carbon dioxide refers to the ester bond portion of a polymer molecule or -CO of a carboxyl group.
Since O- and carbon dioxide have the same elemental composition, carbon dioxide gathers around the ester bond or carboxyl group and acts as a solvent, and the ester bond or carboxyl group reacts easily to form an ester. It is considered that the exchange reaction is promoted.

【0013】また、二酸化炭素の触媒効果とは、二酸化
炭素が炭酸となり、酸触媒として働いてエステル交換反
応が促進されると考えられるものである。
The catalytic effect of carbon dioxide is considered to be that carbon dioxide is converted to carbonic acid and acts as an acid catalyst to promote the transesterification reaction.

【0014】本発明の製造方法は、常圧の二酸化炭素雰
囲気中でエステル交換反応させても上記のように反応率
が顕著に向上するものであるが、加圧された二酸化炭素
雰囲気中で反応させると、二酸化炭素が熱可塑性樹脂の
ポリマー分子間に浸透しやすくなって、二酸化炭素によ
る可塑化効果、溶媒効果、触媒効果が更に助長されるた
め、エステル交換反応率が一層向上するようになる。特
に、超臨界状態の二酸化炭素雰囲気中でエステル交換反
応させると、二酸化炭素が樹脂内部へ極めてすみやかに
浸透するため、可塑化効果や溶媒効果や触媒効果が顕著
に発揮され、エステル交換反応率がより一層顕著に向上
するようになる。
In the production method of the present invention, although the transesterification is remarkably improved as described above even when the transesterification reaction is carried out in a carbon dioxide atmosphere at normal pressure, the reaction is carried out in a pressurized carbon dioxide atmosphere. Then, carbon dioxide easily permeates between the polymer molecules of the thermoplastic resin, and the plasticizing effect, the solvent effect, and the catalytic effect by carbon dioxide are further promoted, so that the transesterification reaction rate is further improved. . In particular, when a transesterification reaction is performed in a carbon dioxide atmosphere in a supercritical state, carbon dioxide penetrates into the resin very quickly, so that a plasticizing effect, a solvent effect, and a catalytic effect are remarkably exhibited, and the transesterification reaction rate is reduced. It becomes even more remarkably improved.

【0015】[0015]

【発明の実施の形態】以下、図面を参照して本発明の具
体的な実施形態を詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

【0016】図1は本発明製造方法の一実施形態を示す
概略説明図であって、添加剤を含有した熱可塑性樹脂の
板状成形体を連続押出成形する場合を例示したものであ
る。
FIG. 1 is a schematic explanatory view showing one embodiment of the production method of the present invention, and illustrates a case where a plate-shaped molded article of a thermoplastic resin containing an additive is continuously extruded.

【0017】図1において、1は溶融押出成形機、1a
は成形機の後部に設けた樹脂投入用ホッパー、1bは成
形機の中間部に設けた添加剤投入用ホッパー、1cは成
形機に内装したスクリュー、1dは成形機の先端に設け
た成形用の金型、1eは成形機の中間部に設けた二酸化
炭素吹込み口、2は上下一対の冷却ロール、3は搬送ベ
ルト、4は切断機である。成形機1としては、2本のス
クリュー1cによって均一な混練を行える二軸押出成形
機が好適に使用される。
In FIG. 1, 1 is a melt extruder, 1a
Is a resin input hopper provided at the rear of the molding machine, 1b is an additive input hopper provided at an intermediate portion of the molding machine, 1c is a screw provided inside the molding machine, and 1d is a molding hopper provided at the tip of the molding machine. A mold, 1e is a carbon dioxide blowing port provided in an intermediate portion of the molding machine, 2 is a pair of upper and lower cooling rolls, 3 is a conveyor belt, and 4 is a cutter. As the molding machine 1, a twin-screw extruder capable of performing uniform kneading with two screws 1c is suitably used.

【0018】この実施形態では、予備加熱で乾燥させた
原料の熱可塑性樹脂5を成形機後部のホッパー1aから
成形機1の内部へ投入し、熱可塑性樹脂5を溶融温度以
上、熱分解温度以下に加熱して溶融させながらスクリュ
ー1cで混練する。そして、添加剤6を成形機中間部の
ホッパー1bから投入し、二酸化炭素吹込み口1eより
二酸化炭素を吹込みながら、加熱溶融状態の熱可塑性樹
脂5と添加剤6をスクリュー1cで均一に混練して、二
酸化炭素雰囲気中でエステル交換反応させた後、先端の
金型1dから板状に押出成形し、この板状成形体50を
上下一対の冷却ロール2,2で冷却しながら引き取って
搬送用ベルト3で切断機4へ搬送し、所定の長さに切断
する。
In this embodiment, a raw material thermoplastic resin 5 dried by preheating is introduced into the molding machine 1 from a hopper 1a at a rear portion of the molding machine, and the thermoplastic resin 5 is heated to a temperature higher than a melting temperature and lower than a thermal decomposition temperature. The mixture is kneaded with the screw 1c while being heated and melted. Then, the additive 6 is introduced from the hopper 1b in the middle part of the molding machine, and the thermoplastic resin 5 in the heated and molten state and the additive 6 are uniformly kneaded with the screw 1c while blowing carbon dioxide through the carbon dioxide blowing port 1e. Then, after a transesterification reaction in a carbon dioxide atmosphere, the mixture is extruded into a plate shape from the die 1d at the tip, and the plate-shaped formed body 50 is taken out and conveyed while being cooled by a pair of upper and lower cooling rolls 2 and 2. Is conveyed to the cutting machine 4 by the use belt 3 and cut into a predetermined length.

【0019】原料の熱可塑性樹脂5は、ポリマー分子の
主鎖又は側鎖にエステル結合又はカルボキシル基を有
し、添加剤6とエステル交換反応し得るものであれば全
て使用可能である。その代表的なものを例示すると、ポ
リマー分子の主鎖にエステル結合又はカルボキシル基を
有する熱可塑性樹脂としては、ポリカーボネート、ポリ
エチレンテレフタレート、ポリブチレンテレフタレー
ト、ポリアリレート、ポリカプロラクトン、ポリラクチ
ド等のポリエステル系樹脂が挙げられる。また、ポリマ
ー分子の側鎖にエステル結合又はカルボキシル基を有す
る熱可塑性としては、ポリアクリル酸、ポリメタクリル
酸、これらのアルキルエステル(メチルエステル、エチ
ルエステル、プロピルエステル等)、マレイン化したポ
リエチレン、マレイン化したポリスチレン、ポリ酢酸ビ
ニル等が挙げられる。
Any thermoplastic resin 5 can be used as long as it has an ester bond or a carboxyl group in the main chain or side chain of the polymer molecule and can undergo a transesterification reaction with the additive 6. Illustrative examples thereof include, as the thermoplastic resin having an ester bond or a carboxyl group in the main chain of the polymer molecule, polyester resins such as polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyarylate, polycaprolactone, and polylactide. No. Examples of the thermoplastic resin having an ester bond or a carboxyl group in the side chain of the polymer molecule include polyacrylic acid, polymethacrylic acid, their alkyl esters (methyl ester, ethyl ester, propyl ester, etc.), maleated polyethylene, maleic Polystyrene, polyvinyl acetate and the like.

【0020】一方、添加剤6は、分子末端又は分子中に
アミノ基、水酸基、カルボキシル基、エステル結合のい
ずれかを有し、上記の熱可塑性樹脂とエステル交換反応
し得るものであれば全て使用可能であり、目的とする熱
可塑性樹脂成形体に要求される効能を付与できるものを
種々選択して使用すればよい。そして、添加剤6の配合
量についても、その効能が充分発揮されるように適宜決
定すればよい。
On the other hand, the additive 6 can be used as long as it has an amino group, a hydroxyl group, a carboxyl group, or an ester bond at the molecular terminal or in the molecule and can transesterify with the thermoplastic resin. What is possible is to select and use various materials that can impart the required effect to the intended thermoplastic resin molded article. The amount of the additive 6 may be appropriately determined so that the effect is sufficiently exhibited.

【0021】添加剤6の代表的なものを例示すると、熱
可塑性樹脂成形体に耐汚染性が要求される場合には、下
記の[化1]の構造式で示される分子両末端にアミノ基
を有するポリジメチルシロキサン、下記の[化2]の構
造式で示される分子中にアミノ基を有するポリジメチル
シロキサン、下記の[化3]の構造式で示される分子片
末端にカルボキシル基を有するポリジメチルシロキサ
ン、下記の[化4]の構造式で示される分子両末端に水
酸基を有するポリジメチルシロキサン、下記の[化5]
の構造式で示される分子両端にエステル基を有するポリ
ジメチルシロキサン等のシリコン系化合物の防汚剤や、
分子両端に水酸基を有しているフッ素化ビスフェノール
A[2,2−ビス−(4−ヒドロキシフェニル)−ヘキ
サフルオロプロパン]等のフッ素系化合物の防汚剤が挙
げられる。
As a typical example of the additive 6, when contamination resistance is required for a thermoplastic resin molded article, an amino group is added to both ends of the molecule represented by the following structural formula. A polydimethylsiloxane having an amino group in the molecule represented by the following formula [Chemical Formula 2], a polydimethylsiloxane having a carboxyl group at one terminal of a molecule represented by the following Chemical Formula 3] Dimethylsiloxane, a polydimethylsiloxane having hydroxyl groups at both molecular terminals represented by the following structural formula [Chemical formula 4],
An antifouling agent of a silicon compound such as polydimethylsiloxane having ester groups at both ends of the molecule represented by the structural formula
An antifouling agent of a fluorine-based compound such as fluorinated bisphenol A [2,2-bis- (4-hydroxyphenyl) -hexafluoropropane] having hydroxyl groups at both molecular ends is exemplified.

【化1】 Embedded image

【化2】 Embedded image

【化3】 Embedded image

【化4】 Embedded image

【化5】 Embedded image

【0022】これらのシリコン系又はフッ素系の防汚剤
は、熱可塑性樹脂100重量部に対し0.1〜5重量部
の割合で配合してポリマー分子にエステル結合させる
と、樹脂成形体に良好な溌水性を付与して優れた耐汚染
性を長期間保持させることができる。尚、場合によって
は、官能基をもたない下記の[化6]の構造式で示され
るポリジメチルシロキサンや、フルオロカーボン等を上
記の防汚剤と併用してもよい。
When these silicone-based or fluorine-based antifouling agents are blended at a ratio of 0.1 to 5 parts by weight with respect to 100 parts by weight of the thermoplastic resin and are ester-bonded to polymer molecules, the resin molded article can be favorably formed. By imparting excellent water repellency, excellent stain resistance can be maintained for a long period of time. In some cases, polydimethylsiloxane having no functional group and represented by the following structural formula [Chemical Formula 6], fluorocarbon, or the like may be used in combination with the above antifouling agent.

【化6】 Embedded image

【0023】また、熱可塑性樹脂成形体に耐候性が要求
される場合には、添加剤6として、分子末端にカルボキ
シル基を有する2−(2′−ヒドロキシ−5′−カルボ
キシフェニル)ベンゾトリアゾール、2−ヒドロキシベ
ンゾフェノン−4−オキシ酢酸、或は、分子末端に2つ
以上の水酸基を有する2−ヒドロキシ−4−(2′−ヒ
ドロキシエトキシ)ベンゾフェノン、2,2′,4,
4′,6,6′−ヘキサヒドロキシベンゾフェノン、2
−(2′,4′−ジヒドロキシフェニル)ベンゾトリア
ゾール、2−ヒドロキシ−4−(2′−ヒドロキシエト
キシ)ベンゾトリアゾール、2−ヒドロキシ−5−
(2′−ヒドロキシエチル)ベンゾトリアゾール、或
は、分子末端にアミノ基を有する2−(2′−ヒドロキ
シ−3′−アミノ−5′−t−ブチル)ベンゾトリアゾ
ール、或は、分子中にエステル基を有する2−ヒドロキ
シ−4−(2′−メタクリロイルオキシエトキシ)ベン
ゾフェノン、2,4−ジ−t−ブチルフェニル−
(3′,5′−ジ−t−ブチル−4′−ヒドロキシ)ベ
ンゾフェノン、2−ヒドロキシベンゾフェノン−4−オ
キシ酢酸メチル、2−(2′−アクリロイルオキシ−
5′−メチル)ベンゾトリアゾールなどの、2−ヒドロ
キシベンゾトリアゾール誘導体又は2−ヒドロキシフェ
ニルベンゾフェノン誘導体の紫外線吸収剤が好適に使用
される。
When the thermoplastic resin molded article is required to have weather resistance, the additive 6 may be 2- (2'-hydroxy-5'-carboxyphenyl) benzotriazole having a carboxyl group at the molecular terminal, 2-hydroxybenzophenone-4-oxyacetic acid, or 2-hydroxy-4- (2'-hydroxyethoxy) benzophenone having two or more hydroxyl groups at molecular terminals, 2,2 ', 4,
4 ', 6,6'-hexahydroxybenzophenone, 2
-(2 ', 4'-dihydroxyphenyl) benzotriazole, 2-hydroxy-4- (2'-hydroxyethoxy) benzotriazole, 2-hydroxy-5
(2'-hydroxyethyl) benzotriazole, or 2- (2'-hydroxy-3'-amino-5'-t-butyl) benzotriazole having an amino group at the molecular terminal, or an ester in the molecule 2-hydroxy-4- (2'-methacryloyloxyethoxy) benzophenone having a group, 2,4-di-t-butylphenyl-
(3 ', 5'-di-t-butyl-4'-hydroxy) benzophenone, methyl 2-hydroxybenzophenone-4-oxyacetate, 2- (2'-acryloyloxy-
An ultraviolet absorber of a 2-hydroxybenzotriazole derivative or a 2-hydroxyphenylbenzophenone derivative such as 5'-methyl) benzotriazole is preferably used.

【0024】これらの紫外線吸収剤は、熱可塑性樹脂1
00重量部に対し0.01〜5重量部の割合で配合して
ポリマー分子にエステル結合させると、紫外線による成
形体の劣化を抑制して優れた耐候性を長期間保持させる
ことができる。
These ultraviolet absorbers are thermoplastic resins 1
When it is blended in an amount of 0.01 to 5 parts by weight with respect to 00 parts by weight and ester-bonded to the polymer molecule, deterioration of the molded article due to ultraviolet rays can be suppressed, and excellent weather resistance can be maintained for a long time.

【0025】その他、熱可塑性樹脂成形体に要求される
効能に応じて、テトラブロモビスフェノール等の難燃
剤、チオジフェノール等の耐放射線剤、N,N−ジフェ
ニル−p−フェニレンジアミン等の抗酸化剤、トリブチ
ル錫ラウレート等の抗菌剤、テトラフェニルジプロピレ
ングリコールジホスファイト等の帯電防止剤、ジオクチ
ルフタレートやドデカノール等の可塑剤など、各種の添
加剤が使用可能である。
In addition, depending on the effect required for the thermoplastic resin molded article, a flame retardant such as tetrabromobisphenol, a radiation-resistant agent such as thiodiphenol, and an antioxidant such as N, N-diphenyl-p-phenylenediamine. Various additives can be used, such as an antimicrobial agent, an antibacterial agent such as tributyltin laurate, an antistatic agent such as tetraphenyldipropylene glycol diphosphite, and a plasticizer such as dioctyl phthalate and dodecanol.

【0026】上記の添加剤6のうち、分子両端に官能基
を有する二官能の添加剤を選択使用し、且つ、熱可塑性
樹脂5としてポリマー分子の側鎖にエステル結合又はカ
ルボキシル基を有するものを選択使用してエステル交換
反応させると、熱可塑性樹脂のポリマー分子が、その側
鎖にエステル結合した二官能の添加剤によって三次元架
橋された構造となるため、得られる熱可塑性樹脂成形体
50の物性、殊に耐熱性が顕著に向上する。
Among the above-mentioned additives 6, a bifunctional additive having a functional group at both ends of the molecule is selectively used, and a thermoplastic resin 5 having an ester bond or a carboxyl group in a side chain of a polymer molecule is used. When the transesterification reaction is selectively performed, the polymer molecules of the thermoplastic resin have a structure three-dimensionally cross-linked by a bifunctional additive ester-bonded to the side chain. Physical properties, especially heat resistance, are significantly improved.

【0027】熱可塑性樹脂5と添加剤6のエステル交換
反応は、空気雰囲気中や窒素雰囲気中でも生じるが、こ
の実施形態のように二酸化炭素を吹込んで二酸化炭素雰
囲気中でエステル交換反応させると、既述したように二
酸化炭素の可塑化効果や溶媒効果や触媒効果によってエ
ステル交換反応が著しく促進され、適当なエステル交換
触媒を添加しなくても、常圧(1気圧)で反応率が60
%以上と顕著に向上する。
The transesterification reaction between the thermoplastic resin 5 and the additive 6 occurs in an air atmosphere or a nitrogen atmosphere. However, when the transesterification reaction is performed in a carbon dioxide atmosphere by blowing carbon dioxide as in this embodiment, the transesterification reaction is already performed. As described above, the transesterification reaction is remarkably promoted by the plasticizing effect, the solvent effect and the catalytic effect of carbon dioxide, and the reaction rate is 60 at normal pressure (1 atm) without adding an appropriate transesterification catalyst.
% Or more.

【0028】その場合、二酸化炭素の圧力を上げ、この
加圧された二酸化炭素雰囲気中でエステル交換反応させ
ると、二酸化炭素が熱可塑性樹脂のポリマー分子間に浸
透しやすくなり、二酸化炭素による可塑化効果や溶媒効
果や触媒効果が更に助長されるため、反応率が一層向上
するようになる。特に、超臨界状態の二酸化炭素雰囲気
中でエステル交換反応させると、二酸化炭素が熱可塑性
樹脂中に極めてすみやかに浸透するため、エステル交換
反応率が一層顕著に向上するようになる。また、適当な
エステル交換触媒を添加すると、エステル交換反応が促
進され、反応率が更に向上するので好ましい。エステル
交換触媒としては、ルイス酸(例えば塩化鉄、酢酸コバ
ルト)、三級アミン類(例えばトリメチルアミン)等が
好適に使用される。これらの触媒は、熱可塑性樹脂10
0重量部に対し0.001〜0.5重量部の割合で配合
するのが適当であり、これより多量に配合すると、樹脂
成形体50が着色するといった不都合を生じる。
In this case, when the pressure of carbon dioxide is increased and transesterification is performed in this pressurized carbon dioxide atmosphere, carbon dioxide easily penetrates between the polymer molecules of the thermoplastic resin, and plasticization by carbon dioxide is performed. Since the effect, the solvent effect, and the catalytic effect are further promoted, the reaction rate is further improved. In particular, when a transesterification reaction is carried out in a carbon dioxide atmosphere in a supercritical state, carbon dioxide penetrates into the thermoplastic resin very quickly, so that the transesterification reaction rate is further remarkably improved. Further, it is preferable to add an appropriate transesterification catalyst since the transesterification reaction is promoted and the reaction rate is further improved. As the transesterification catalyst, Lewis acids (eg, iron chloride, cobalt acetate), tertiary amines (eg, trimethylamine) and the like are preferably used. These catalysts are used in thermoplastic resins 10
It is appropriate to mix it in a ratio of 0.001 to 0.5 part by weight with respect to 0 part by weight, and if it is added in a larger amount, there arises a disadvantage that the resin molded body 50 is colored.

【0029】エステル交換の反応速度は、熱可塑性樹脂
の種類や添加剤の種類によって多少異なるが、通常1〜
15分程度で反応がほぼ終了する。従って、この実施形
態のように成形機1の内部でエステル交換反応を行わせ
て押出成形する場合は、添加剤6を成形機1に投入して
熱可塑性樹脂5と1〜15分程度混練したのち金型1d
から押出されるように、添加剤投入用ホッパー1bの位
置やスクリュー設計、その他の押出条件を設定して、エ
ステル交換反応を充分に行わせることが重要である。
The transesterification reaction rate varies somewhat depending on the type of the thermoplastic resin and the type of the additive, but is usually 1 to 3.
The reaction is almost completed in about 15 minutes. Therefore, when extruding by performing a transesterification reaction inside the molding machine 1 as in this embodiment, the additive 6 is charged into the molding machine 1 and kneaded with the thermoplastic resin 5 for about 1 to 15 minutes. Later mold 1d
It is important to set the position of the additive hopper 1b, the screw design, and other extrusion conditions so that the transesterification reaction is sufficiently performed so that the transesterification reaction is sufficiently performed.

【0030】以上のような本発明の製造方法によって得
られる熱可塑性樹脂成形体50は、エステル交換反応率
が高いため、含有されている添加剤の大部分がポリマー
分子にエステル結合して固定化されており、このように
固定化された添加剤は経時的に揮散、滲出することがな
いので、長期間に亘って添加剤の効能を維持することが
できる。しかも、この方法で透明な熱可塑性樹脂成形体
を製造すると、添加剤がエステル結合により分子レベル
で細かく分散して、物理的に分散させた場合のように添
加剤の粒子が二次凝集しないため、添加剤の分散粒子と
熱可塑性樹脂の光屈折率が異なっていても、透過光の屈
折、散乱により成形体の透明性が低下することは殆どな
く、透明な樹脂単独の成形体とあまり変わらない良好な
透明性を保持できる。
The thermoplastic resin molded article 50 obtained by the above-described production method of the present invention has a high transesterification reaction rate, so that most of the additives contained are immobilized by ester bonding to polymer molecules. Since the additive thus immobilized does not volatilize or exude over time, the efficacy of the additive can be maintained for a long period of time. Moreover, when a transparent thermoplastic resin molded article is produced by this method, the additives are finely dispersed at the molecular level by ester bonds, and the particles of the additives do not secondary aggregate as in the case of physically dispersing. Even if the additive particles and the thermoplastic resin have different optical refractive indices, the transparency of the molded article hardly decreases due to the refraction and scattering of transmitted light, and it is very different from the molded article made of a transparent resin alone. No good transparency can be maintained.

【0031】図1に例示した実施形態では、熱可塑性樹
脂5と添加剤6をホッパー1a,1bから別々に成形機
1に投入しているが、例えばホッパー1aから両者を一
緒に投入してもよいし、ホッパー1bから両者を混合し
たものを適量ずつ投入してもよく、このように投入方法
は適宜選択することができる。また、この実施形態で
は、添加剤をエステル結合させた溶融熱可塑性樹脂を金
型1dから単層で押出して板状の成形体50を製造して
いるが、金型1d等を変更してシート、フィルム、異形
品など種々の形状の成形体を製造できることは勿論であ
り、更に、共押出成形機等を用いて、添加剤をエステル
結合させた溶融熱可塑性樹脂を上層とし、該上層より添
加剤が少ないか又は全く含まない溶融熱可塑性樹脂を上
下二層もしくは三層に共押出成形して、添加剤を含む熱
可塑性樹脂層を表面に積層した二層ないし三層構造の板
状成形体を製造することも勿論可能である。また、射出
成形の場合でも、溶融熱可塑性樹脂を射出成形機の金型
内部へ射出する前に添加剤を混合してエステル交換反応
させれば、同様に添加剤がポリマー分子に固定化されて
揮散しない成形品を得ることができる。
In the embodiment illustrated in FIG. 1, the thermoplastic resin 5 and the additive 6 are separately charged into the molding machine 1 from the hoppers 1a and 1b. Alternatively, a mixture of both may be charged from the hopper 1b in appropriate amounts, and the charging method can be appropriately selected. Further, in this embodiment, the plate-like molded body 50 is manufactured by extruding the molten thermoplastic resin in which the additives are ester-bonded in a single layer from the mold 1d. Of course, it is possible to produce molded articles of various shapes such as films, irregularly shaped articles, and further, using a co-extrusion molding machine or the like, forming an upper layer of a molten thermoplastic resin in which additives are ester-bonded, and adding from the upper layer. A two- or three-layer plate-like molded product obtained by co-extrusion of a molten thermoplastic resin containing little or no additives into upper and lower two or three layers and laminating a thermoplastic resin layer containing additives on the surface It is of course possible to produce Also, in the case of injection molding, if the additives are mixed and transesterified before the molten thermoplastic resin is injected into the mold of the injection molding machine, the additives are similarly fixed to the polymer molecules. A molded product that does not volatilize can be obtained.

【0032】[0032]

【実施例】次に、本発明の更に具体的な実施例と比較例
を説明する。
Next, more specific examples and comparative examples of the present invention will be described.

【0033】[実施例1]熱可塑性樹脂として、側鎖に
エステル結合を有するポリメチルメタクリレート(PM
MA)を100重量部、添加剤として、シリコン系防汚
剤である分子両端にアミノ基を備えたポリジメチルシロ
キサン(PDMS)を2.0重量部の割合で混合し、こ
の混合物を二軸押出成形機に投入した。そして、二軸押
出成形機に3気圧の二酸化炭素を吹き込みながら、上記
混合物を230℃で20分間溶融混練してエステル交換
反応させた後、成形機の金型から板状に押出成形して成
形体を得た。
Example 1 As a thermoplastic resin, polymethyl methacrylate having an ester bond in a side chain (PM
MA) as an additive, and a silicone-based antifouling agent, polydimethylsiloxane (PDMS) having amino groups at both ends, at a ratio of 2.0 parts by weight. It was put into a molding machine. Then, the mixture is melt-kneaded at 230 ° C. for 20 minutes to perform transesterification while blowing carbon dioxide at 3 atm into the twin-screw extruder, and is extruded into a plate shape from the mold of the molder and molded. I got a body.

【0034】この成形体を切削して溶剤(ジクロロメタ
ン)に溶解し、その溶液をキャスティングすることによ
り、厚さ50μmの試験用フィルムを作製した。
The molded body was cut and dissolved in a solvent (dichloromethane), and the solution was cast to prepare a test film having a thickness of 50 μm.

【0035】この試験用フィルムについて、PDMSの
エステル交換反応の反応率を以下の方法で求めたとこ
ろ、下記の[表1]に示すように、エステル交換反応し
たPDMSの量は1.25重量部であり、反応率は6
2.6%であった。
For this test film, the transesterification rate of the PDMS was determined by the following method. As shown in Table 1 below, the amount of the transesterified PDMS was 1.25 parts by weight. And the reaction rate is 6
2.6%.

【0036】(エステル交換反応の反応率の試験方法)
試験用フィルムをジクロロメタンに溶解し、ジエチルエ
ーテルで沈殿させて未反応のPDMSを除去したのち、
濾過し、乾燥して試料を得た。そして、該試料の重クロ
ロホルム溶液の 1HNMRスペクトルを測定し、Si−
CH3 のプロトンの強度からエステル交換反応したPD
MSの量を計算し、次式[数1]から反応率を求めた。
(Testing Method of Transesterification Reaction Rate)
After dissolving the test film in dichloromethane and precipitating with diethyl ether to remove unreacted PDMS,
The sample was filtered and dried to obtain a sample. Then, the 1 H NMR spectrum of a heavy chloroform solution of the sample was measured, and the
PD transesterified based on the proton intensity of CH 3
The amount of MS was calculated, and the reaction rate was calculated from the following equation [Equation 1].

【数1】 (Equation 1)

【0037】[実施例2]熱可塑性樹脂として、側鎖に
エステル結合を有するポリメチルメタクリレート(PM
MA)を100重量部、添加剤として、シリコン系防汚
剤である分子両端にアミノ基を備えたポリジメチルシロ
キサン(PDMS)を2.0重量部の割合で混合し、こ
の混合物を二軸押出成形機に投入した。そして、二軸押
出成形機に80気圧の二酸化炭素を吹き込んだ以外は実
施例1と同様にして、実施例2の試験用フィルムを得
た。
Example 2 As a thermoplastic resin, polymethyl methacrylate having an ester bond in a side chain (PM
MA) as an additive, and a silicone-based antifouling agent, polydimethylsiloxane (PDMS) having amino groups at both ends, at a ratio of 2.0 parts by weight. It was put into a molding machine. Then, a test film of Example 2 was obtained in the same manner as in Example 1, except that carbon dioxide at 80 atm was blown into the twin-screw extruder.

【0038】この試験用フィルムについて、実施例1と
同様にしてエステル交換反応率を求めたところ、下記の
[表1]に示すように、85.0%と高率であった。
When the transesterification rate of this test film was determined in the same manner as in Example 1, it was as high as 85.0%, as shown in Table 1 below.

【0039】[比較例1〜3]二酸化炭素に代えて窒素
ガスを二軸押出成形機に吹き込んだ以外は実施例1と同
様にして、比較例1の試験用フィルム(厚さ50μm)
を作製した。また、二酸化炭素に代えて3気圧の空気を
二軸押出成形機を吹き込んだ以外は実施例1と同様にし
て、比較例2の試験用フィルム(厚さ50μm)を作製
した。更に、二軸押出成形機に何の気体も吹き込まない
ようにした以外は実施例1と同様にして、比較例3の試
験用フィルム(厚さ50μm)を作製した。
Comparative Examples 1 to 3 The test film of Comparative Example 1 (thickness: 50 μm) was prepared in the same manner as in Example 1 except that nitrogen gas was blown into the twin screw extruder instead of carbon dioxide.
Was prepared. Further, a test film (thickness: 50 μm) of Comparative Example 2 was produced in the same manner as in Example 1, except that air at 3 atm was blown into the twin-screw extruder instead of carbon dioxide. Further, a test film (thickness: 50 μm) of Comparative Example 3 was produced in the same manner as in Example 1 except that no gas was blown into the twin-screw extruder.

【0040】そして、これら比較例1〜3の試験用フィ
ルムについて、実施例1と同様にしてエステル交換反応
率を求めたところ、下記の[表1]に示す通りであっ
た。
The transesterification rates of the test films of Comparative Examples 1 to 3 were determined in the same manner as in Example 1. The results are as shown in Table 1 below.

【表1】 [Table 1]

【0041】この表1を見ると、二酸化炭素に代えて窒
素ガスや空気を吹き込んでエステル交換反応させた比較
例1,2の試験用フィルム、及び、何の気体も吹き込ま
ないでエステル交換反応させた比較例3の試験用フィル
ムは、いずれもPDMSのエステル交換反応率が20%
以下と低率である。これはエステル交換触媒を使用して
いないためである。
Referring to Table 1, the test films of Comparative Examples 1 and 2 were subjected to transesterification by blowing nitrogen gas or air instead of carbon dioxide, and the transesterification reaction was conducted without blowing any gas. Each of the test films of Comparative Example 3 had a transesterification reaction rate of PDMS of 20%.
Below is a low rate. This is because no transesterification catalyst was used.

【0042】これに対し、二酸化炭素を吹き込んでエス
テル交換反応させた実施例1の試験用フィルムは、エス
テル交換触媒を使用していないにも拘らず、PDMSの
エステル交換反応率が62.6%と高率であり、二酸化
炭素の可塑化効果や溶媒効果や触媒効果によってエステ
ル交換反応が著しく促進されたことが判る。
On the other hand, in the test film of Example 1 in which carbon dioxide was blown and the transesterification reaction was performed, the transesterification rate of PDMS was 62.6% even though the transesterification catalyst was not used. It can be seen that the transesterification reaction was remarkably promoted by the plasticizing effect, the solvent effect and the catalytic effect of carbon dioxide.

【0043】そして、二酸化炭素を80気圧で吹き込ん
でエステル交換反応させた実施例2の試験用フィルム
は、さらにエステル交換反応率が85.0%と向上して
おり、超臨界状態(80気圧、230℃)の二酸化炭素
によりエステル交換反応率が非常に高くなることが判
る。
The test film of Example 2 in which carbon dioxide was blown at 80 atm and the transesterification reaction was performed, the transesterification rate was further improved to 85.0%, and the supercritical state (80 atm. It can be seen that the transesterification rate becomes very high with carbon dioxide at 230 ° C).

【0044】[実施例3,4]熱可塑性樹脂としてポリ
メチルメタクリレート(PMMA)を100重量部、添
加剤として分子両端にアミノ基を有するポリジメチルシ
ロキサン(PDMS)を2.0重量部、エステル交換触
媒として塩化鉄(FeCl3 )を0.00331重量部
の割合で混合した以外は実施例1と同様にして、実施例
3の試験用フィルム(厚さ50μm)を作製した。
Examples 3 and 4 100 parts by weight of polymethyl methacrylate (PMMA) as a thermoplastic resin, 2.0 parts by weight of polydimethylsiloxane (PDMS) having amino groups at both molecular ends as additives, and transesterification A test film (thickness: 50 μm) of Example 3 was produced in the same manner as in Example 1, except that 0.00331 parts by weight of iron chloride (FeCl 3 ) was mixed as a catalyst.

【0045】そして、塩化鉄の配合量を0.05重量部
に変更した以外は上記と同様にして実施例4の試験用フ
ィルム(厚さ50μm)を作製した。
Then, a test film (thickness: 50 μm) of Example 4 was prepared in the same manner as above except that the amount of iron chloride was changed to 0.05 part by weight.

【0046】これら実施例3,4の試験用フィルムにつ
いて、実施例1と同様にPDMSのエステル交換反応率
を求めたところ、下記の[表2]に示すように、実施例
3の試験用フィルムは92.6%、実施例4の試験用フ
ィルムは98.6%と極めて高率であった。
With respect to the test films of Examples 3 and 4, the transesterification rate of PDMS was determined in the same manner as in Example 1. As shown in Table 2 below, the test films of Example 3 were obtained. Was 92.6%, and the test film of Example 4 was an extremely high rate of 98.6%.

【0047】[比較例4,5]熱可塑性樹脂としてポリ
メチルメタクリレート(PMMA)を100重量部、添
加剤として分子両端にアミノ基を有するポリジメチルシ
ロキサン(PDMS)を2.0重量部、エステル交換触
媒として塩化鉄(FeCl3 )を0.00331重量部
の割合で混合し、二酸化炭素に代えて3気圧の窒素ガス
を吹き込んだ以外は実施例1と同様にして、比較例4の
試験用フィルム(厚さ50μm)を作製した。
Comparative Examples 4 and 5 100 parts by weight of polymethyl methacrylate (PMMA) as a thermoplastic resin, 2.0 parts by weight of polydimethylsiloxane (PDMS) having amino groups at both molecular ends as an additive, and transesterification The test film of Comparative Example 4 was prepared in the same manner as in Example 1 except that 0.00331 parts by weight of iron chloride (FeCl 3 ) was mixed as a catalyst, and nitrogen gas at 3 atm was blown in instead of carbon dioxide. (Thickness: 50 μm).

【0048】そして、塩化鉄の配合量を0.05重量部
に変更した以外は上記と同様にして比較例5の試験用フ
ィルム(厚さ50μm)を作製した。
Then, a test film (thickness: 50 μm) of Comparative Example 5 was prepared in the same manner as above except that the amount of iron chloride was changed to 0.05 part by weight.

【0049】これら比較例4,5の試験用フィルムにつ
いて、実施例1と同様にPDMSのエステル交換反応率
を求めた結果を下記の[表2]に示す。
For the test films of Comparative Examples 4 and 5, the transesterification rate of PDMS was determined in the same manner as in Example 1, and the results are shown in Table 2 below.

【0050】[比較例6,7]熱可塑性樹脂としてポリ
メチルメタクリレート(PMMA)を100重量部、添
加剤として分子両端にアミノ基を有するポリジメチルシ
ロキサン(PDMS)を2.0重量部、エステル交換触
媒として塩化鉄(FeCl3 )を0.00331重量部
の割合で混合し、二酸化炭素に代えて3気圧の空気を吹
き込んだ以外は実施例1と同様にして、比較例6の試験
用フィルム(厚さ50μm)を作製した。
Comparative Examples 6 and 7 100 parts by weight of polymethyl methacrylate (PMMA) as a thermoplastic resin, 2.0 parts by weight of polydimethylsiloxane (PDMS) having amino groups at both molecular ends as additives, and transesterification The same procedure as in Example 1 was repeated except that 0.00331 parts by weight of iron chloride (FeCl 3 ) was mixed as a catalyst and air at 3 atm was blown in instead of carbon dioxide. (Thickness: 50 μm).

【0051】そして、塩化鉄の配合量を0.05重量部
に変更した以外は上記と同様にして比較例7の試験用フ
ィルム(厚さ50μm)を作製した。
Then, a test film (thickness: 50 μm) of Comparative Example 7 was prepared in the same manner as described above except that the amount of iron chloride was changed to 0.05 part by weight.

【0052】これら比較例6,7の試験用フィルムにつ
いて、実施例1と同様にPDMSのエステル交換反応率
を求めた結果を下記の[表2]に示す。
For the test films of Comparative Examples 6 and 7, the transesterification rate of PDMS was determined in the same manner as in Example 1, and the results are shown in Table 2 below.

【0053】[比較例8,9]熱可塑性樹脂としてポリ
メチルメタクリレート(PMMA)を100重量部、添
加剤として分子両端にアミノ基を有するポリジメチルシ
ロキサン(PDMS)を2.0重量部、エステル交換触
媒として塩化鉄(FeCl3 )を0.00331重量部
の割合で混合し、二軸押出成形機に何の気体も吹き込ま
ないようにした以外は実施例1と同様にして、比較例8
の試験用フィルム(厚さ50μm)を作製した。
Comparative Examples 8 and 9 100 parts by weight of polymethyl methacrylate (PMMA) as a thermoplastic resin, 2.0 parts by weight of polydimethylsiloxane (PDMS) having amino groups at both molecular ends as an additive, and transesterification Comparative Example 8 was carried out in the same manner as in Example 1 except that 0.00331 parts by weight of iron chloride (FeCl 3 ) was mixed as a catalyst, and no gas was blown into the twin-screw extruder.
The test film (thickness: 50 μm) was prepared.

【0054】そして、塩化鉄の配合量を0.05重量部
に変更した以外は上記と同様にして比較例9の試験用フ
ィルム(厚さ50μm)を作製した。
Then, a test film (thickness: 50 μm) of Comparative Example 9 was prepared in the same manner as described above except that the amount of iron chloride was changed to 0.05 part by weight.

【0055】これら比較例8,9の試験用フィルムにつ
いて、実施例1と同様にPDMSのエステル交換反応率
を求めた結果を下記の[表2]に示す。
For the test films of Comparative Examples 8 and 9, the transesterification rate of PDMS was determined in the same manner as in Example 1 and the results are shown in Table 2 below.

【表2】 [Table 2]

【0056】この表2と前記の表1を対比すれば、触媒
(塩化鉄)の添加によって、いずれの試験用フィルムも
PDMSのエステル交換反応が大幅に促進され、触媒添
加量の多い実施例4、比較例5,7,9の試験用フィル
ムの方が、触媒添加量の少ない実施例3、比較例4,
6,8の試験用フィルムよりも、反応率が高くなってい
る。
Comparing Table 2 with Table 1 above, the addition of a catalyst (iron chloride) drastically accelerated the transesterification reaction of PDMS in any of the test films, and Example 4 containing a large amount of the catalyst was added. The test films of Comparative Examples 5, 7, and 9 are less than those of Example 3, Comparative Example 4,
The reaction rate is higher than that of the test films of Nos. 6 and 8.

【0057】しかし、触媒添加量が0.05重量部と多
いものでも、窒素ガスや空気を吹き込んでエステル交換
反応させた比較例5,7の試験用フィルムや、何の気体
も吹き込まないでエステル交換反応させた比較例9の試
験用フィルムは、いずれも反応率が70%前後であるの
に対し、二酸化炭素を吹き込んでエステル交換反応させ
た実施例4の試験用フィルムは、反応率が98.6%と
驚異的に向上しており、この事実から二酸化炭素がエス
テル交換反応の促進に如何に有効であるかを知ることが
できる。
However, even when the catalyst addition amount was as large as 0.05 parts by weight, the test films of Comparative Examples 5 and 7 in which a transesterification reaction was performed by blowing nitrogen gas or air, or the ester film was blown without blowing any gas. The test films of Comparative Example 9 subjected to the exchange reaction all had a reaction rate of about 70%, whereas the test films of Example 4 in which the transesterification reaction was carried out by blowing carbon dioxide had a reaction rate of 98. As a result, it is possible to know how effective carbon dioxide is in promoting the transesterification reaction.

【0058】[実施例5]熱可塑性樹脂としてポリメチ
ルメタクリレート(PMMA)を100重量部、添加剤
として分子両端にアミノ基を有するポリジメチルシロキ
サン(PDMS)を2.0重量部、エステル交換触媒と
して塩化鉄(FeCl3 )を0.00331重量部の割
合で混合した以外は実施例1と同様にして、厚さ70μ
mの試験用フィルムを作製した。この試験用フィルム
は、実施例3の試験用フィルムと厚さが異なるだけのも
のであり、PDMSのエステル交換反応率は、実施例3
の試験用フィルムと同じ92.6%である。
Example 5 100 parts by weight of polymethyl methacrylate (PMMA) as a thermoplastic resin, 2.0 parts by weight of polydimethylsiloxane (PDMS) having amino groups at both molecular ends as additives, and a transesterification catalyst A thickness of 70 μm was obtained in the same manner as in Example 1 except that iron chloride (FeCl 3 ) was mixed at a ratio of 0.00331 parts by weight.
m of test films were prepared. This test film was different from the test film of Example 3 only in thickness, and the transesterification rate of PDMS was
92.6%, which is the same as that of the test film.

【0059】この試験用フィルムについて、550nm
の光の透過率を測定したところ、下記の[表3]に示す
ように87%であった。更に、この試験用フィルムを室
温で事務用インクのブルーブラックインクに浸漬し、2
週間浸漬後の550nmの光透過率を測定したところ、
下記の[表3]に示すように光透過率は82%であっ
た。
For this test film, 550 nm
Was measured and found to be 87% as shown in Table 3 below. Further, this test film was immersed in a blue-black ink for office use at room temperature,
When the light transmittance at 550 nm after immersion for a week was measured,
As shown in Table 3 below, the light transmittance was 82%.

【0060】[比較例10〜12]熱可塑性樹脂として
ポリメチルメタクリレート(PMMA)を100重量
部、添加剤として分子両端にアミノ基を有するポリジメ
チルシロキサン(PDMS)を2.0重量部、エステル
交換触媒として塩化鉄(FeCl3 )を0.00331
重量部の割合で混合し、二軸押出成形機に何の気体も吹
き込まないようにした以外は実施例1と同様にして、比
較例10の試験用フィルム(厚さ70μm)を作製し
た。この試験用フィルムは比較例8の試験用フィルムと
厚さが異なるだけのものであり、PDMSのエステル交
換反応率は、比較例8の試験用フィルムと同じ55.0
%である。
Comparative Examples 10 to 12 100 parts by weight of polymethyl methacrylate (PMMA) as a thermoplastic resin, 2.0 parts by weight of polydimethylsiloxane (PDMS) having amino groups at both molecular ends as an additive, and transesterification 0.00331 of iron chloride (FeCl 3 ) as a catalyst
A test film (thickness: 70 μm) of Comparative Example 10 was produced in the same manner as in Example 1 except that the components were mixed at a ratio of parts by weight and no gas was blown into the twin-screw extruder. This test film was different from the test film of Comparative Example 8 only in thickness, and the transesterification reaction rate of PDMS was the same as the test film of Comparative Example 8: 55.0.
%.

【0061】また、PMMAを100重量部、PDMS
を2.0重量部の割合で混合し、この混合物をジクロロ
メタンに溶解して、これをキャスティングすることによ
り、PDMSを物理的に分散させた比較例11の試験用
フィルム(厚さ70μm)を作製した。
Also, 100 parts by weight of PMMA, PDMS
Was mixed at a ratio of 2.0 parts by weight, and this mixture was dissolved in dichloromethane and cast to prepare a test film (thickness: 70 μm) of Comparative Example 11 in which PDMS was physically dispersed. did.

【0062】更に、PMMAをジクロロメタンに溶解
し、これをキャスティングすることによって、PDMS
を含まない比較例12の試験用フィルム(厚さ70μ
m)を作製した。
Further, by dissolving PMMA in dichloromethane and casting the same, PDMS is obtained.
Of the test film of Comparative Example 12 containing no
m) was prepared.

【0063】これら比較例10〜12の試験用フィルム
について、実施例5と同様にして、ブルーブラックイン
クに浸漬する前、及び、2週間浸漬した後の550nm
の光透過率を測定した。その結果を下記の[表3]に示
す。
For the test films of Comparative Examples 10 to 12, 550 nm before immersion in blue black ink and after immersion for 2 weeks in the same manner as in Example 5.
Was measured for light transmittance. The results are shown in Table 3 below.

【表3】 [Table 3]

【0064】この表3を見ると、比較例12のPMMA
単独の試験用フィルムは、ブルーブラックインク浸漬前
の光透過率が90%と高く、透明性に優れているが、P
DMSを全く含まないため、ブルーブラックインク浸漬
後の光透過率が50%と大幅に低下し、耐汚染性に劣る
ことが判る。
As can be seen from Table 3, the PMMA of Comparative Example 12
The single test film has a high light transmittance of 90% before immersion in blue-black ink and is excellent in transparency.
Since DMS is not contained at all, the light transmittance after immersion in the blue black ink is significantly reduced to 50%, which indicates that the stain resistance is poor.

【0065】また、PDMSを物理的に分散させた比較
例11の試験用フィルムは、PDMSの分散性が悪く、
二次凝集しやすいため、ブルーブラックインク浸漬前の
光透過率が30%と低く、しかも、PDMSが固定化さ
れていないため、ブルーブラックインク浸漬後の光透過
率が更に10%も低下して20%になっており、透明性
にも耐汚染性にも劣るものであることが判る。
The test film of Comparative Example 11 in which PDMS was physically dispersed had poor PDMS dispersibility.
The light transmittance before immersion in the blue black ink is as low as 30% because of the secondary aggregation, and the light transmittance after immersion in the blue black ink is further reduced by 10% because the PDMS is not fixed. 20%, which indicates that the transparency and the stain resistance are inferior.

【0066】一方、エステル交換反応によってPDMS
をポリマー分子にエステル結合させた実施例5の試験用
フィルムや比較例10の試験用フィルムは、エステル結
合したPDMSが分子レベルで分散しているため、PD
MSを物理的に分散させた比較例11の試験用フィルム
に比べると、光透過率が大幅に向上している。しかし何
の気体も吹き込まないでエステル交換反応させた比較例
10の試験用フィルムは、反応率が55%と低く、PD
MSの約半分近くが未反応のままフィルム中に分散して
いるため、ブルーブラックインク浸漬前の光透過率が7
5%とあまり高くなく、ブルーブラックインク浸漬後の
光透過率は68%まで低下しており、透明性も耐汚染性
も不満足なものである。
On the other hand, by transesterification reaction, PDMS
In the test film of Example 5 and the test film of Comparative Example 10 in which was ester-bonded to a polymer molecule, the PDMS having the ester bond was dispersed at the molecular level.
Compared to the test film of Comparative Example 11 in which MS was physically dispersed, the light transmittance was significantly improved. However, the test film of Comparative Example 10 in which transesterification was performed without blowing any gas, the reaction rate was as low as 55%, and the PD was low.
Nearly half of the MS is dispersed in the film unreacted, so that the light transmittance before immersion in the blue-black ink is 7%.
5%, which is not so high, the light transmittance after immersion in the blue black ink is reduced to 68%, and both the transparency and the stain resistance are unsatisfactory.

【0067】これに対し、本発明の製造方法によって二
酸化炭素を吹き込みながらエステル交換反応させた実施
例5の試験用フィルムは、反応率が92.6%と極めて
高く、PDMSの9割以上が分子レベルで細かく分散し
て固定化されているため、ブルーブラックインク浸漬前
の光透過率は87%と高く、PMMA単独の比較例12
の試験用フィルムの光透過率とあまり変わらない値であ
り、また、ブルーブラックインク浸漬後の光透過率も8
2%と高い数値を維持しており、透明性も耐汚染性も良
好であることが判る。
On the other hand, in the test film of Example 5 in which the transesterification reaction was performed while blowing carbon dioxide by the production method of the present invention, the reaction rate was extremely high at 92.6%, and 90% or more of the PDMS was a molecule. Since the particles were finely dispersed and fixed at a level, the light transmittance before immersion in the blue-black ink was as high as 87%, and Comparative Example 12 of PMMA alone was used.
And the light transmittance after immersion in blue-black ink was 8%.
It maintains a high value of 2%, which indicates that both the transparency and the stain resistance are good.

【0068】[実施例6]フィルムの厚さを70μmか
ら20μmに変更した以外は実施例5と同様にして、試
験用フィルムを作製した。
Example 6 A test film was produced in the same manner as in Example 5, except that the thickness of the film was changed from 70 μm to 20 μm.

【0069】この試験用フィルムについて表面の接触角
を測定したところ、下記の[表4]に示すように84°
であった。次に、この試験用フィルムをジメチルエーテ
ルに浸漬し、室温で15時間放置した後、再び表面の接
触角を測定したところ、下記の[表4]に示すように8
4°であり、変化はなかった。
The contact angle of the surface of this test film was measured and found to be 84 ° as shown in Table 4 below.
Met. Next, the test film was immersed in dimethyl ether, allowed to stand at room temperature for 15 hours, and the contact angle of the surface was measured again. As shown in [Table 4] below, 8
4 °, no change.

【0070】[比較例13〜15]フィルムの厚さを7
0μmから20μmに変更した以外は比較例10〜12
と同様にして、PDMSのエステル交換反応率が55%
の比較例13の試験用フィルムと、PDMSを物理的に
分散させた比較例14の試験用フィルムと、PDMSを
含まないPMMA単独の比較例15の試験用フィルムを
作製した。
[Comparative Examples 13 to 15] The film thickness was 7
Comparative Examples 10 to 12 except that 0 μm was changed to 20 μm.
Similarly, the transesterification rate of PDMS was 55%.
The test film of Comparative Example 13, the test film of Comparative Example 14, in which PDMS was physically dispersed, and the test film of Comparative Example 15, which contained only PMMA without PDMS, were produced.

【0071】これら比較例13〜15の試験用フィルム
について、実施例6と同様にジメチルエーテル浸漬前及
び浸漬後の表面の接触角を測定した。その結果を下記の
[表4]に示す。
The contact angles of the surfaces of the test films of Comparative Examples 13 to 15 before and after immersion in dimethyl ether were measured in the same manner as in Example 6. The results are shown in [Table 4] below.

【表4】 [Table 4]

【0072】この表4を見ると、比較例15のPMMA
単独の試験用フィルムは、PDMSを全く含まないた
め、ジメチルエーテル浸漬前及び浸漬後の接触角が70
°と71°であり、溌水性があまり良くないことが判
る。
Referring to Table 4, the PMMA of Comparative Example 15
Since the test film alone does not contain any PDMS, the contact angle before and after immersion in dimethyl ether is 70.
° and 71 °, indicating that the water repellency is not very good.

【0073】これに対し、PDMSを含有する実施例
6、比較例13,14の試験用フィルムは、ジメチルエ
ーテル浸漬前のPDMS含有量が同一であるため、浸漬
前の接触角はいずれも84°又は85°であり、良好な
溌水性を示す。しかし、ジメチルエーテルに浸漬する
と、PDMSを物理的に分散させた比較例14の試験用
フィルムは、表層部のPDMSがジメチルエーテルに溶
出されるため、浸漬後の接触角がPMMA単独の比較例
15の試験用フィルムと同じ71°となり、溌水性が大
幅に低下する。そして、エステル交換反応率が55%と
低い比較例13の試験用フィルムも、表層部に含まれる
PDMSのうち約半分近くの未反応のものがジメチルエ
ーテルに溶出されるため、浸漬後の接触角が76%まで
低下し、溌水性が不充分となる。
On the other hand, the test films of Example 6 and Comparative Examples 13 and 14 containing PDMS had the same PDMS content before immersion in dimethyl ether. 85 °, indicating good water repellency. However, when immersed in dimethyl ether, the test film of Comparative Example 14 in which PDMS was physically dispersed showed that the contact angle after immersion was lower than that of Comparative Example 15 in which PMMA alone was used because the PDMS in the surface layer was eluted in dimethyl ether. 71 °, which is the same as that of the film for use, and the water repellency is greatly reduced. In the test film of Comparative Example 13 having a low transesterification reaction rate of 55%, about half of the unreacted PDMS contained in the surface layer is eluted in dimethyl ether. It decreases to 76%, and the water repellency becomes insufficient.

【0074】これに対し、二酸化炭素を吹き込んで9
2.6%の高率でエステル交換反応させた実施例6の試
験用フィルムは、ジメチルエーテルに浸漬しても、溶出
される未反応のPDMSが極く少量であり、実質的にP
DMSの含有量が減少しないため、浸漬後の接触角は浸
漬前の接触角と同じ84°であり、良好な溌水性を維持
していることが判る。
On the other hand, carbon dioxide was blown into 9
The test film of Example 6 subjected to transesterification at a high rate of 2.6% had a very small amount of unreacted PDMS eluted even when immersed in dimethyl ether.
Since the DMS content does not decrease, the contact angle after immersion is 84 °, which is the same as the contact angle before immersion, which indicates that good water repellency is maintained.

【0075】[実施例7〜9]熱可塑性樹脂として、主
鎖にエステル結合を有するポリカーボネート(PC)を
100重量部、添加剤として、ベンゾトリアゾール系紫
外線吸収剤である2−ヒドロキシ−5−(2′−ヒドロ
キシエチル)ベンゾトリアゾール(HHEBT)を1.
0重量部の割合で混合し、この混合物を二軸押出成形機
に投入した。そして、二軸押出成形機に3気圧の二酸化
炭素を吹き込みながら、上記混合物を255℃で10分
間溶融混練してエステル交換反応させた後、成形機の金
型から板状に押出成形して成形体を得た。
Examples 7 to 9 100 parts by weight of a polycarbonate (PC) having an ester bond in the main chain as a thermoplastic resin, and 2-hydroxy-5- (a benzotriazole ultraviolet absorber as an additive) 2'-hydroxyethyl) benzotriazole (HHEBT)
The mixture was mixed at a ratio of 0 parts by weight, and the mixture was charged into a twin-screw extruder. Then, while blowing carbon dioxide at 3 atm into the twin screw extruder, the above mixture is melt-kneaded at 255 ° C. for 10 minutes to cause a transesterification reaction, and then extruded into a plate shape from the mold of the extruder to be formed. I got a body.

【0076】この成形体を切削して溶剤(ジクロロメタ
ン)に溶解し、この溶液をキャスティングすることによ
って、実施例7の試験用フィルム(厚さ50μm)を作
製した。
This molded product was cut and dissolved in a solvent (dichloromethane), and this solution was cast to prepare a test film (thickness: 50 μm) of Example 7.

【0077】熱可塑性樹脂として上記のPCを100重
量部、添加剤として上記のHHEBTを1.0重量部、
エステル交換触媒として酢酸コバルトを0.01重量部
の割合で混合した以外は上記と同様にして、実施例8の
試験用フィルム(厚さ50μm)を作製した。更に、酢
酸コバルトの添加量を0.0498重量部に変更し、エ
ステル交換反応の反応時間を5分に変更して、実施例9
の試験用フィルム(厚さ50μm)を作製した。
100 parts by weight of the above PC as a thermoplastic resin, 1.0 part by weight of the above HHEBT as an additive,
A test film (thickness: 50 μm) of Example 8 was produced in the same manner as above, except that 0.01 parts by weight of cobalt acetate was mixed as a transesterification catalyst. Further, the amount of cobalt acetate added was changed to 0.0498 parts by weight, and the transesterification reaction time was changed to 5 minutes.
The test film (thickness: 50 μm) was prepared.

【0078】これら実施例7〜9の試験用フィルムにつ
いて、HHEBTのエステル交換反応率を次の方法で求
めた。その結果は下記の[表5]に示す通りであった。
For the test films of Examples 7 to 9, the transesterification rate of HHEBT was determined by the following method. The results were as shown in [Table 5] below.

【0079】(エステル交換反応の反応率の試験方法)
試験用フィルムをジクロロメタンに溶解し、メタノール
で沈殿させて未反応のHHEBTを除去したのち、濾過
し、乾燥して試料を得た。そして、該試料の重クロロホ
ルム溶液の 1HNMRスペクトルを測定し、2位の炭素
に結合している水酸基のプロトンのシグナルの強度か
ら、エステル交換反応したHHEBTの料を計算し、次
式[数2]から反応率を求めた。
(Testing method of reaction rate of transesterification reaction)
The test film was dissolved in dichloromethane and precipitated with methanol to remove unreacted HHEBT, and then filtered and dried to obtain a sample. Then, the 1 H NMR spectrum of the deuterated chloroform solution of the sample was measured, and from the intensity of the signal of the proton of the hydroxyl group bonded to the carbon at the 2-position, the amount of the transesterified HHEBT was calculated. ] To determine the reaction rate.

【数2】 (Equation 2)

【0080】[比較例16〜18]二軸押出成形機に何
の気体も吹き込まないでエステル交換反応させた以外は
上記の実施例7〜9と同様にして、比較例16〜18の
試験用フィルム(厚さ50μm)を作製した。
Comparative Examples 16 to 18 Tests for Comparative Examples 16 to 18 were carried out in the same manner as in Examples 7 to 9 except that the transesterification reaction was carried out without blowing any gas into the twin-screw extruder. A film (thickness: 50 μm) was produced.

【0081】これら比較例16〜18の試験用フィルム
について、実施例7〜9と同様にしてHHEBTのエス
テル交換反応率を求めた結果を下記の[表5]に示す。
For the test films of Comparative Examples 16 to 18, the transesterification rate of HHEBT was determined in the same manner as in Examples 7 to 9, and the results are shown in Table 5 below.

【表5】 [Table 5]

【0082】この表5を見ると、何の気体も吹き込まな
いでエステル交換反応させた比較例16の触媒無添加の
試験用フィルムは、HHEBTの反応率がわずか7.6
%であるのに対し、二酸化炭素を吹き込んでエステル交
換反応させた実施例7の触媒無添加の試験用フィルム
は、HHEBTの反応率が71.6%であり、二酸化炭
素の可塑化効果、溶媒効果、触媒効果によってエステル
交換反応が顕著に促進されることが判る。
As can be seen from Table 5, the test film of Comparative Example 16 in which the transesterification was carried out without blowing any gas had no HHEBT reaction rate of only 7.6.
%, Whereas the test film without catalyst added in Example 7 in which carbon dioxide was blown to cause a transesterification reaction had a HHEBT conversion of 71.6%, a plasticizing effect of carbon dioxide, a solvent It can be seen that the transesterification reaction is remarkably promoted by the effect and the catalytic effect.

【0083】そして、触媒として酢酸コバルトを0.0
1重量部添加すると、何の気体も吹き込まないでエステ
ル交換反応させた比較例17の試験用フィルムは、HH
EBTの反応率が50%まで上昇するだけであるのに対
し、二酸化炭素を吹き込んでエステル交換反応させた実
施例8の試験用フィルムは、HHEBTの反応率が9
8.6%と驚異的に向上する。更に、酢酸コバルトの添
加量を0.498重量部まで増加すると、二酸化炭素を
吹き込んでエステル交換反応させた実施例9の試験用フ
ィルムは、反応時間を5分に短縮してもHHEBTの反
応率が83.2%と高率であり、何の気体も吹き込まな
いでエステル交換反応させた比較例18の試験用フィル
ムに比べると、反応率が約21%も上昇する。これらの
結果を見ても、二酸化炭素はエステル交換反応に極めて
有効であることが判る。
Then, cobalt acetate was used as a catalyst in 0.0
When 1 part by weight was added, the test film of Comparative Example 17 subjected to the transesterification reaction without blowing any gas was HH
While the reaction rate of EBT only increased to 50%, the test film of Example 8 in which the transesterification reaction was performed by blowing in carbon dioxide, the reaction rate of HHEBT was 9%.
The improvement is astoundingly 8.6%. Further, when the amount of cobalt acetate added was increased to 0.498 parts by weight, the test film of Example 9 in which carbon dioxide was blown and the transesterification reaction was performed, the reaction rate of HHEBT was reduced even when the reaction time was reduced to 5 minutes. Is 83.2%, which is about 21% higher than that of the test film of Comparative Example 18 in which transesterification was performed without blowing any gas. These results also indicate that carbon dioxide is extremely effective for the transesterification reaction.

【0084】[実施例10]熱可塑性樹脂として前記の
PCを100重量部、添加剤として前記のHHEBTを
1.0重量部、エステル交換触媒として前記の酢酸コバ
ルトを0.01重量部の割合で混合し、実施例7と同様
にして厚さ100μmの試験用フィルムを作製した。こ
の試験用フィルムは実施例8の試験用フィルムと厚さが
異なるだけのものであり、HHEBTのエステル交換反
応率は、実施例8の試験用フィルムと同じ98.6%で
ある。
Example 10 100 parts by weight of the above-mentioned PC as a thermoplastic resin, 1.0 part by weight of the above-mentioned HHEBT as an additive, and 0.01 part by weight of the above-mentioned cobalt acetate as a transesterification catalyst. After mixing, a test film having a thickness of 100 μm was prepared in the same manner as in Example 7. This test film is different from the test film of Example 8 only in the thickness, and the transesterification rate of HHEBT is 98.6%, which is the same as that of the test film of Example 8.

【0085】この試験用フィルムについて、キセノンウ
エザオメーターを用いて1ケ月の促進耐候性試験を行
い、黄変度(ΔYI)をΣ90カラーメジャーリングシ
ステム(日本電色株式会社製)で測定したところ、下記
の[表6]に示すように1.4であった。
The test film was subjected to an accelerated weathering test for one month using a xenon weatherometer, and the degree of yellowing (ΔYI) was measured using a # 90 color measuring system (manufactured by Nippon Denshoku Co., Ltd.). , As shown in Table 6 below.

【0086】[比較例19〜21]熱可塑性樹脂として
前記のPCを100重量部、添加剤として前記のHHE
BTを1.0重量部、エステル交換触媒として前記の酢
酸コバルトを0.01重量部の割合で混合し、何の気体
も吹き込まないでエステル交換反応させた以外は実施例
7と同様にして、比較例19の試験用フィルム(厚さ1
00μm)を作製した。この試験用フィルムは、比較例
17の試験用フィルムと厚さが異なるだけのものであ
り、HHEBTのエステル交換反応率は、比較例17の
試験用フィルムと同じ50.0%である。
Comparative Examples 19 to 21 100 parts by weight of the above-mentioned PC as a thermoplastic resin and the above-mentioned HHE as an additive
As in Example 7, except that 1.0 part by weight of BT and 0.01 part by weight of the above-mentioned cobalt acetate as a transesterification catalyst were mixed and transesterified without blowing any gas, The test film of Comparative Example 19 (thickness 1
00 μm). This test film is different from the test film of Comparative Example 17 only in the thickness, and the transesterification reaction rate of HHEBT is 50.0%, which is the same as the test film of Comparative Example 17.

【0087】また、PCを100重量部、HHEBTを
1.0重量部の割合で混合し、この混合物をジクロロメ
タンに溶解して、これをキャスティングすることによ
り、HHEBTを物理的に分散させた比較例20の試験
用フィルム(厚さ100μm)を作製した。
A comparative example in which HHEBT was physically dispersed by mixing 100 parts by weight of PC and 1.0 part by weight of HHEBT, dissolving the mixture in dichloromethane, and casting the mixture was used. Twenty test films (thickness: 100 μm) were prepared.

【0088】更に、PCをジクロロメタンに溶解し、こ
れをキャスティングすることによって、HHEBTを含
まないPC単独の比較例21の試験用フィルム(厚さ1
00μm)を作製した。
Further, by dissolving PC in dichloromethane and casting the same, the test film (thickness: 1) of PC alone containing no HHEBT was used.
00 μm).

【0089】これら比較例19〜21の試験用フィルム
について、実施例10と同様に1ケ月の促進耐候性試験
を行い、黄変度(ΔYI)を測定した結果を下記の[表
6]に示す。
The accelerated weathering test for one month was performed on the test films of Comparative Examples 19 to 21 in the same manner as in Example 10, and the yellowing degree (ΔYI) was measured. The results are shown in Table 6 below. .

【表6】 [Table 6]

【0090】この表6を見ると、PC単独の比較例21
の試験用フィルムは、黄変度(ΔYI)が6.0と大き
く、耐候性に劣っており、また、HHEBTを物理的に
分散させた比較例20の試験用フィルムも、1ケ月の間
にHHEBTがかなり揮散するため、黄変度(ΔYI)
が4.0と比較的大きく、耐候性が不充分であることが
判る。
Looking at Table 6, it can be seen that Comparative Example 21 using only PC was used.
Has a large yellowing degree (ΔYI) of 6.0 and is inferior in weather resistance, and the test film of Comparative Example 20 in which HHEBT is physically dispersed is also used for one month. Because HHEBT volatilizes considerably, the degree of yellowing (ΔYI)
Is relatively large at 4.0, indicating that the weather resistance is insufficient.

【0091】一方、HHEBTをエステル交換反応で固
定化した実施例10及び比較例19の試験用フィルム
は、黄変度(ΔYI)の減少が見られるけれども、比較
例19の試験用フィルムはHHEBTの半分が未反応で
あるため、黄変度(ΔYI)の減少が小さく、良好な耐
候性を有するとは言い難いものである。これに対し、二
酸化炭素を吹き込んで98.6%の高反応率でエステル
交換反応させた実施例10の試験用フィルムは、HHE
BTの揮散が皆無に等しいので、黄変度(ΔYI)が
1.4と顕著に減少し、優れた耐候性を備えていること
が判る。
On the other hand, although the test films of Example 10 and Comparative Example 19 in which HHEBT was immobilized by a transesterification reaction exhibited a decrease in the degree of yellowing (ΔYI), the test film of Comparative Example 19 was the same as that of HHEBT. Since half are unreacted, the decrease in the degree of yellowing (ΔYI) is small, and it is hard to say that it has good weather resistance. On the other hand, the test film of Example 10 in which carbon dioxide was blown and the transesterification reaction was performed at a high conversion of 98.6% was obtained by using HHE.
Since the volatilization of BT is almost zero, the degree of yellowing (ΔYI) is remarkably reduced to 1.4, indicating that the BT has excellent weather resistance.

【0092】[0092]

【発明の効果】以上の説明から明らかなように、本発明
の添加剤含有熱可塑性樹脂成形体の製造方法は、加熱溶
融成形前に、エステル交換反応に極めて有効な二酸化炭
素の雰囲気中で、加熱溶融状態の熱可塑性樹脂のポリマ
ー分子と添加剤とをエステル交換反応させるため、エス
テル交換反応の反応率を顕著に向上させることが可能と
なり、それによって含有添加剤の大部分が熱可塑性樹脂
のポリマー分子とエステル結合して揮散不能に固定化さ
れた、添加剤の効能持続期間が極めて長い成形体を容易
に製造することができるといった顕著な効果を奏する。
As is apparent from the above description, the method for producing an additive-containing thermoplastic resin molded article of the present invention is carried out in an atmosphere of carbon dioxide, which is extremely effective for a transesterification reaction, before heat-melt molding. The transesterification reaction between the polymer molecules of the thermoplastic resin in the heat-melted state and the additives makes it possible to remarkably improve the reaction rate of the transesterification reaction, whereby most of the contained additives are of the thermoplastic resin. It has a remarkable effect that it is possible to easily produce a molded article in which the effect duration of the additive is extremely long, which is immobilized in an ester bond with the polymer molecule and immobilized so as not to be volatilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の添加剤含有熱可塑性樹脂成形体の製造
方法の一実施形態を示す概略説明図である。
FIG. 1 is a schematic explanatory view showing one embodiment of a method for producing an additive-containing thermoplastic resin molded article of the present invention.

【符号の説明】[Explanation of symbols]

1 押出成形機 1e 二酸化炭素吹込み口 5 熱可塑性樹脂 6 添加剤 50 添加剤含有熱可塑性樹脂成形体 DESCRIPTION OF SYMBOLS 1 Extrusion molding machine 1e Carbon dioxide injection port 5 Thermoplastic resin 6 Additive 50 Additive-containing thermoplastic resin molded body

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ポリマー分子がエステル結合又はカルボキ
シル基を有する熱可塑性樹脂を加熱溶融して所定の形状
に成形する前に、アミノ基、水酸基、カルボキシル基、
エステル結合のいずれかを有する添加剤を熱可塑性樹脂
に配合し、二酸化炭素雰囲気中で加熱溶融状態の熱可塑
性樹脂のポリマー分子と添加剤とをエステル交換反応さ
せることを特徴とする添加剤含有熱可塑性樹脂成形体の
製造方法。
An amino group, a hydroxyl group, a carboxyl group, a thermoplastic resin having a polymer molecule having an ester bond or a carboxyl group before being heated and melted to form a predetermined shape.
An additive containing any one of ester bonds is blended into a thermoplastic resin, and the polymer molecules of the thermoplastic resin in a heat-melted state are subjected to a transesterification reaction with the additive in a carbon dioxide atmosphere. A method for producing a plastic resin molded article.
【請求項2】加圧した二酸化炭素雰囲気中でエステル交
換反応させることを特徴とする請求項1に記載の製造方
法。
2. The method according to claim 1, wherein the transesterification is carried out in a pressurized carbon dioxide atmosphere.
【請求項3】超臨界状態の二酸化炭素雰囲気中でエステ
ル交換反応させることを特徴とする請求項2に記載の製
造方法。
3. The method according to claim 2, wherein the transesterification is carried out in a carbon dioxide atmosphere in a supercritical state.
JP23144196A 1996-08-12 1996-08-12 Method for producing additive-containing thermoplastic resin molded article Expired - Fee Related JP3583557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23144196A JP3583557B2 (en) 1996-08-12 1996-08-12 Method for producing additive-containing thermoplastic resin molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23144196A JP3583557B2 (en) 1996-08-12 1996-08-12 Method for producing additive-containing thermoplastic resin molded article

Publications (2)

Publication Number Publication Date
JPH1060125A true JPH1060125A (en) 1998-03-03
JP3583557B2 JP3583557B2 (en) 2004-11-04

Family

ID=16923596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23144196A Expired - Fee Related JP3583557B2 (en) 1996-08-12 1996-08-12 Method for producing additive-containing thermoplastic resin molded article

Country Status (1)

Country Link
JP (1) JP3583557B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514891A (en) * 2006-12-29 2010-05-06 チェイル インダストリーズ インコーポレイテッド Polycarbonate-polysiloxane copolymer resin composition having high low temperature impact strength and mechanical strength
JP2013530288A (en) * 2010-06-29 2013-07-25 ビーエーエスエフ ソシエタス・ヨーロピア Method for improving the flow properties of polymer melts
KR20180086320A (en) * 2017-01-20 2018-07-31 주식회사 효성 Medical or industrial yarn containing polyethyleneterephthalate copolymer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101947489B1 (en) * 2017-01-20 2019-02-14 효성티앤씨 주식회사 Method of manufacturing polyethyleneterephthalate copolymer
KR101947491B1 (en) 2017-01-20 2019-02-14 효성티앤씨 주식회사 Method of manufacturing polyethyleneterephthalate copolymer
WO2018135786A1 (en) * 2017-01-20 2018-07-26 (주)효성 Copolymerized polyethylene terephthalate polymer, yarn/bcf/film comprising same, and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514891A (en) * 2006-12-29 2010-05-06 チェイル インダストリーズ インコーポレイテッド Polycarbonate-polysiloxane copolymer resin composition having high low temperature impact strength and mechanical strength
JP2013530288A (en) * 2010-06-29 2013-07-25 ビーエーエスエフ ソシエタス・ヨーロピア Method for improving the flow properties of polymer melts
KR20180086320A (en) * 2017-01-20 2018-07-31 주식회사 효성 Medical or industrial yarn containing polyethyleneterephthalate copolymer

Also Published As

Publication number Publication date
JP3583557B2 (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP5940301B2 (en) Polyvinyl acetal resin for thermoforming
EP1401924B2 (en) Organic/inorganic nanocomposites obtained by extrusion
US6933335B1 (en) Thermoplastic polymer blend produced from thermoplastic starch and method for the production thereof
JP2018536073A (en) Aromatic thermoplastic copolyesters containing 1,4: 3,6-dianhydrohexitol and various cyclic diols
JP2003183431A (en) Metalized polyester composition
JP3583557B2 (en) Method for producing additive-containing thermoplastic resin molded article
JP4050564B2 (en) Method for producing anisotropic light scattering sheet
CN103897164A (en) Polycarbonate resin for film, method for preparing the same and film including the same
CN117106289A (en) Thermoplastic composite laminated material and preparation method thereof
CA1109174A (en) Thermoplastic polycarbonate molding materials with improved mold release
JP3590194B2 (en) Additive-containing thermoplastic resin molded article and method for producing the same
JP2006124440A (en) Method for producing amorphous polyester resin
JP3866869B2 (en) Polycarbonate resin composition and molded body thereof
JP2005213410A (en) Resin composition with high refractive index
JP2528793B2 (en) Resin composition with excellent compatibility
JP3697654B2 (en) Corrugated sheet containing UV absorber
JP2790629B2 (en) Photochromic transparent molded body
CN111647259A (en) Biodegradable composite cable and preparation method thereof
JPH07145247A (en) Molded article of resin containing ultraviolet absorber and its production
CN116426099B (en) Seawater degradation film and preparation method thereof
JPS5923347B2 (en) thermoplastic molding material
JP3236978B2 (en) UV absorbent-containing resin molded article and method for producing the same
JP3448851B2 (en) Additive-containing resin molded article and method for producing the same
JPH06107805A (en) Additive-containing resin molding and its production
JP4121296B2 (en) Resin composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees