JPH1059910A - Production of aminodicarboxylic acid-n,n-diacetic acid salts - Google Patents

Production of aminodicarboxylic acid-n,n-diacetic acid salts

Info

Publication number
JPH1059910A
JPH1059910A JP21371596A JP21371596A JPH1059910A JP H1059910 A JPH1059910 A JP H1059910A JP 21371596 A JP21371596 A JP 21371596A JP 21371596 A JP21371596 A JP 21371596A JP H1059910 A JPH1059910 A JP H1059910A
Authority
JP
Japan
Prior art keywords
acid
reaction
aminodicarboxylic
alkali metal
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21371596A
Other languages
Japanese (ja)
Other versions
JP3870448B2 (en
Inventor
Makoto Saito
信 斎藤
Toru Yamamoto
徹 山本
Sumio Soya
住男 征矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP21371596A priority Critical patent/JP3870448B2/en
Publication of JPH1059910A publication Critical patent/JPH1059910A/en
Application granted granted Critical
Publication of JP3870448B2 publication Critical patent/JP3870448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an aminodicarboxylic acid-N,N- diacetic acid salt in a high yield in a state suppressed in the coloration of the reaction solution and capable of being applied as an industrial process. SOLUTION: This method comprises reacting and distilling an aminodicarboxylic acid salt, formaldehyde and an alkali metal cyanide in the molar ratios of the formaldehyde and the alkali metal cyanide to the aminodicarboxylic acid salt in values of 2.6-3.0, respectively, under a vacuum condition. When the formaldehyde and the alkali metal cyanide are added and reacted with the aminodicarboxylic acid salt, the reaction is carried out at a reaction temperature of 85-110 deg.C, while water is continuously supplied in a rate of >=7 (g/min)/aminodicarboxylic acid salt (mole) and simultaneously distilled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アミノジカルボン
酸−N,N−二酢酸塩類の製造法に関する。アミノジカ
ルボン酸−N,N−二酢酸塩類は、特に下記一般式
(I)の化合物はキレート剤として、洗剤組成物、洗剤
ビルダー、重金属封鎖剤、過酸化水素安定剤、写真用薬
剤など、工業用途及び家庭用途に広く検討されてきてい
る。現在、これらの用途には、一般的にEDTAが広く
使用されているが、EDTAに生分解性がないことか
ら、環境への問題等で代替品の研究が盛んに行われてい
る。その中で、アミノジカルボン酸−N,N−二酢酸塩
類は、生分解性を有し、代替のキレート剤として有効な
ものである。
The present invention relates to a method for producing aminodicarboxylic acid-N, N-diacetates. Aminodicarboxylic acid-N, N-diacetates, especially compounds of the following general formula (I) as chelating agents, such as detergent compositions, detergent builders, heavy metal sequestering agents, hydrogen peroxide stabilizers, photographic agents, etc. It has been widely considered for use and home use. At present, EDTA is generally widely used for these applications. However, since EDTA does not have biodegradability, research on alternative products has been actively conducted due to environmental problems and the like. Among them, aminodicarboxylic acid-N, N-diacetates have biodegradability and are effective as alternative chelating agents.

【化1】 (式中、Xは互いに無関係に水素原子、アルカリ金属原
子、アンモニウム塩、アミン塩を意味し、nは0から5
までの数を意味する。)
Embedded image (Wherein X independently of one another represents a hydrogen atom, an alkali metal atom, an ammonium salt, an amine salt, and n is 0 to 5
Means number up to. )

【0002】[0002]

【従来の技術】アミノジカルボン酸−N,N−二酢酸塩
類を製造する方法は従来から種々知られている。例え
ば、アルカリ条件下でアミノジカルボン酸に二分子の
クロル酢酸を付加してアミノジカルボン酸−N,N−二
酢酸塩類を合成する方法(西独特許3739610号、
特開昭63ー267751)、アミノジカルボン酸の
アルカリ金属塩にホルムアルデヒドと青酸を反応させ、
中間体として、アミノジカルボン酸−N,N−ジアセト
ニトリルを経由する方法(独開4211713A1)、
アミノジカルボン酸のアルカリ金属塩にホルムアルデ
ヒドとアルカリ金属シアン化物を反応させる方法(米国
特許2500019)などがある。
2. Description of the Related Art Various processes for producing aminodicarboxylic acid-N, N-diacetates have been known. For example, a method of synthesizing aminodicarboxylic acid-N, N-diacetates by adding two molecules of chloroacetic acid to aminodicarboxylic acid under alkaline conditions (West German Patent 3739610,
JP-A-63-26751), formaldehyde and hydrocyanic acid are reacted with an alkali metal salt of aminodicarboxylic acid,
As an intermediate, a method via aminodicarboxylic acid-N, N-diacetonitrile (Japanese Patent No. 4211713A1),
There is a method of reacting an alkali metal salt of aminodicarboxylic acid with formaldehyde and an alkali metal cyanide (US Patent No. 2500019).

【0003】しかしながら、のアミノジカルボン塩類
にクロル酢酸を用いる方法はアミノジカルボン酸−N,
N−二酢酸塩類の製造のために相応しい原料を選んでい
るとは言い難い。すなわち、クロル酢酸は、反応生成物
中に、用いたクロル酢酸と当モル量の塩化ナトリウムな
どの副生が避けられず、かつ、反応器の材質もクロルイ
オンに対して耐食性のものを使用する必要があり、工業
的な製造方法としては問題が多い。また、のアミノジ
カルボン酸−N,N−ジアセトニトリルの合成について
は、α位のニトリル基の効果により、生成が困難であ
り、目的物の収率の点で問題がある。更に、シアノメチ
ル化・加水分解工程を他段階で行うため、全製造工程は
必然的に長く、煩雑となってしまう。
[0003] However, the method using chloroacetic acid as the aminodicarboxylic acid salt is known as aminodicarboxylic acid-N,
It is hard to say that suitable raw materials are selected for the production of N-diacetates. That is, chloroacetic acid is inevitable in the reaction product, such as by-products such as sodium chloride in an equimolar amount to the chloracetic acid used, and the material of the reactor uses a material that is corrosion resistant to chlorion. It is necessary, and there are many problems as an industrial production method. In addition, the synthesis of aminodicarboxylic acid-N, N-diacetonitrile is difficult to produce due to the effect of the nitrile group at the α-position, and there is a problem in the yield of the target product. Further, since the cyanomethylation / hydrolysis step is performed at another stage, the entire production step is inevitably long and complicated.

【0004】更に、のホルムアルデヒドとアルカリ金
属シアン化物を反応させる方法については、極めて反応
性に富む化合物を原料とするため、反応液の着色、副反
応の抑制の観点から反応方法等種々の制限があり、反応
液の着色を抑制すること、不純物を低減して目的とする
アミノジカルボン酸−N,N−二酢酸塩類を高収率で得
ることのそれぞれについて困難であるばかりか、双方を
同時に満たすことは、極めて困難である。例えば、の
特許中で行われている、アミノジカルボン酸に対して反
応モル比2〜2.5モルのホルムアルデヒドとアルカリ
金属シアン化物を反応させる場合、この方法で製造され
たアミノジカルボン酸−N,N−二酢酸塩類の反応液の
着色について、反応液をそのまま洗浄剤に配合する等の
用途、あるいは、反応液からアミノジカルボン酸−N,
N−二酢酸塩類の固形を取り出す上でも、好ましいもの
とは言えず、更に、目的とするアミノジカルボン酸−
N,N−二酢酸の中間生成物で、下記の一般式(II)に
示す、アミノジカルボン酸−N−モノ酢酸の残存が避け
られず、収率上、コスト的にも好ましくない。
Further, the method of reacting formaldehyde with an alkali metal cyanide involves various restrictions such as a reaction method from the viewpoint of coloration of a reaction solution and suppression of side reactions since a compound having extremely high reactivity is used as a raw material. In addition, it is not only difficult to suppress the coloring of the reaction solution and to obtain the desired aminodicarboxylic acid-N, N-diacetate in a high yield by reducing impurities, but also to satisfy both simultaneously. It is extremely difficult. For example, when a reaction molar ratio of 2-2.5 moles of formaldehyde and an alkali metal cyanide with respect to aminodicarboxylic acid is carried out in the patent of Aminodicarboxylic acid, the aminodicarboxylic acid -N, Regarding the coloring of the reaction solution of N-diacetates, the reaction solution may be used as it is in a detergent, or aminodicarboxylic acid-N,
It is not preferable for taking out solids of N-diacetates, and furthermore, the target aminodicarboxylic acid-
It is an intermediate product of N, N-diacetate, and it is inevitable that aminodicarboxylic acid-N-monoacetic acid shown in the following general formula (II) remains, which is not preferable in terms of yield and cost.

【0005】[0005]

【化2】 (式中、X、nは前記の通りである。)Embedded image (In the formula, X and n are as described above.)

【0006】また、反応時に発生するアンモニアの除去
の必要性が大きな問題点の1つとなっている。即ち、こ
の反応の過程で発生するアンモニアは原料のホルムアル
デヒドやアルカリ金属シアン化物と容易に反応してニト
リロトリ酢酸等の不純物を副生し、反応液の着色、目的
物の純度、収率の低下等を招くことから、総じて、工業
的製造法としては種々の難点を有している。
[0006] One of the major problems is the necessity of removing ammonia generated during the reaction. That is, ammonia generated in the course of this reaction easily reacts with formaldehyde or alkali metal cyanide as a raw material to produce impurities such as nitrilotriacetic acid as a by-product, thereby coloring the reaction solution, lowering the purity and yield of the target product, and the like. In general, there are various difficulties as an industrial production method.

【0007】[0007]

【発明が解決しようとする課題】以上のように、従来の
技術では、目的とするアミノジカルボン酸−N,N−二
酢酸塩類の収率、反応液の着色等の点で重大な問題が残
っており、また、反応の長時間化を避けられないばかり
でなく、反応行程及び精製工程において、煩雑な操作を
伴い、工業的製造法として種々の問題点がある。本発明
は、これらの問題点を解決すべくなされたもので、アミ
ノジカルボン酸−N,N−二酢酸塩類の工業的規模での
効率的な製造法を提供することを目的としており、具体
的には、工業プロセス的に有利な原料を用いた効率的な
工程で、生分解性に優れたキレート剤であるアミノジカ
ルボン酸−N,N−二酢酸塩類を、反応液の着色を抑制
し、且つ高収率、安価に取得する製造方法の提供を課題
とする。
As described above, in the prior art, serious problems remain in terms of the yield of the desired aminodicarboxylic acid-N, N-diacetate and the coloring of the reaction solution. In addition to the fact that the reaction is prolonged, it is inevitable that the reaction process and the purification step involve complicated operations, and there are various problems as an industrial production method. The present invention has been made to solve these problems, and an object of the present invention is to provide an efficient method for producing an aminodicarboxylic acid-N, N-diacetate on an industrial scale. In an efficient process using raw materials advantageous for industrial processes, aminodicarboxylic acid-N, N-diacetates, which are chelating agents excellent in biodegradability, suppress coloring of the reaction solution, Another object of the present invention is to provide a production method which can be obtained at a high yield and at a low cost.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記課題を
解決するため鋭意研究した結果、アミノジカルボン酸を
原料とし、アミノジカルボン酸塩類に対するホルムアル
デヒド及びアルカリ金属シアン化物の反応モル比を各々
2.6〜3.0の範囲で、さらには減圧条件で、またさ
らには反応温度、供給速度その他反応条件を選択して反
応させることによって、従来の方法に比較して、反応液
の着色が抑制され、且つ、ニトリロトリ酢酸の副生や、
中間生成物のアミノジカルボン酸−N−モノ酢酸の残存
がほとんど無く、目的とするアミノジカルボン酸−N,
N−二酢酸塩類が、効率的な工程によって、高収率、安
価で得られることを見いだし、本発明を完成するに至っ
た。以下、詳細に説明する。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, using aminodicarboxylic acid as a raw material, the reaction molar ratio of formaldehyde and alkali metal cyanide to aminodicarboxylates is 2 respectively. In the range of 0.6 to 3.0, further under reduced pressure conditions, and further by selecting the reaction temperature, supply rate and other reaction conditions, the reaction is suppressed in coloration as compared with the conventional method. And the by-product of nitrilotriacetic acid,
There is almost no residual aminodicarboxylic acid-N-monoacetic acid as an intermediate product, and the desired aminodicarboxylic acid-N,
The inventors have found that N-diacetates can be obtained at a high yield and at low cost by an efficient process, and have completed the present invention. The details will be described below.

【0009】[0009]

【発明の実施の形態】本発明における原料であるアミノ
ジカルボン酸塩類(本発明においては、酸自体も意味す
る。)としては、好ましくは、以下の一般式(III) のア
ミノジカルボン酸塩類がそのN,N−二酢酸誘導体のキ
レート力及び生分解性の見地から好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The aminodicarboxylates (the acid itself in the present invention) which are raw materials in the present invention are preferably aminodicarboxylates of the following general formula (III). It is preferable from the viewpoint of chelating power and biodegradability of the N, N-diacetate derivative.

【0010】[0010]

【化3】 (式中、X、nは前記の通りである。)Embedded image (In the formula, X and n are as described above.)

【0011】上記のnは0から5までの整数であるが、
好ましくは、n=1または2であり、n=1の場合には
アスパラギン酸誘導体、n=2の場合にはグルタミン酸
誘導体である。また、Xは互いに無関係に水素原子、ア
ルカリ金属原子、アンモニウム塩、アミン塩であるが、
ナトリウム塩が好ましい。これらのアミノジカルボン酸
は工業的に入手できる純度70%以上、好ましくは、8
5%以上の固体が一般に用いられるが、その製造途中で
得られるアルカリ金属塩またはアルカリ金属塩水溶液を
直接用いることもできる。純度の低いアミノジカルボン
酸アルカリ金属塩の水溶液を用いる場合は、不純物とし
てのアンモニアは、ニトリロトリ酢酸の副生増加につな
がるので留意すべきであり、アンモニア濃度が3%以下
であることが望ましい。また、これらのアミノジカルボ
ン酸はD−体、L−体、D,L−体のいずれの光学異性
体も用いることができる。
The above n is an integer from 0 to 5,
Preferably, n = 1 or 2, when n = 1, an aspartic acid derivative, and when n = 2, a glutamic acid derivative. X is independently a hydrogen atom, an alkali metal atom, an ammonium salt, or an amine salt,
Sodium salts are preferred. These aminodicarboxylic acids are commercially available with a purity of 70% or more, preferably 8%.
Although a solid of 5% or more is generally used, an alkali metal salt or an aqueous solution of an alkali metal salt obtained during the production can be directly used. When using an aqueous solution of a low-purity alkali metal salt of aminodicarboxylic acid, it should be noted that ammonia as an impurity leads to an increase in by-products of nitrilotriacetic acid, and the ammonia concentration is desirably 3% or less. These aminodicarboxylic acids may be any of the D-form, L-form, and D, L-form optical isomers.

【0012】本発明において用いられるホルムアルデヒ
ドは、ガス状品、水溶液品、あるいは固体品のパラホル
ムアルデヒドなど種々の形態のものが用いられるが、工
業的には、10〜60重量%、好ましくは20〜50重
量%、更に好ましくは、35〜40重量%の水溶液品を
使用するのが良い。更に、本発明で用いられるアルカリ
金属シアン化物については、アルカリ金属としては、L
i、NaまたはK、好ましくはNaまたはK、更に好ま
しくはNaが選ばれ、工業的には、10〜60重量%、
好ましくは20〜50重量%、更に好ましくは、30〜
35重量%の水溶液品を使用するのが良い。本発明の方
法は、通常、一般式(III) のアミノジカルボン酸塩類
(好ましくは。アルカリ金属塩で、特に好ましくは、ナ
トリウム塩が使用される。)とアルカリ金属水酸化物
(好ましくは、水酸化ナトリウムが使用される。)等を
含む水溶液を反応器に仕込み、ここに、ホルムアルデヒ
ド及びアルカリ金属シアン化物の水溶液を同時に供給し
て反応させる形態で実施する。本発明では、この仕込み
〜反応時において、原料モル比及び仕込みあるいは反応
濃度、反応温度・圧力等の条件を設定範囲にすること
で、従来の方法に比較して、反応生成物の着色を大幅に
抑制し、且つ、ニトリロトリ酢酸の副生や、中間生成物
のアミノジカルボン酸−N−モノ酢酸の残存がほとんど
無く、目的とするアミノジカルボン酸−N,N−二酢酸
塩類が、高収率で得られる。本発明で設定している種々
の条件(以下に説明する)は、個々にも、着色の抑制や
不純物の低減に効果を示すものであるが、これらを組み
合わせることで、本発明の如く、相乗的な効果を示すも
のである。以下に反応操作に従って説明する。
As the formaldehyde used in the present invention, various forms such as a gaseous product, an aqueous solution product, and a solid product such as paraformaldehyde are used, but industrially, it is 10 to 60% by weight, preferably 20 to 60% by weight. It is preferable to use an aqueous solution of 50% by weight, more preferably 35 to 40% by weight. Further, as for the alkali metal cyanide used in the present invention, the alkali metal may be L
i, Na or K, preferably Na or K, more preferably Na is selected, and industrially, 10 to 60% by weight,
Preferably it is 20 to 50% by weight, more preferably 30 to 50% by weight.
It is preferable to use an aqueous solution of 35% by weight. The method of the present invention generally comprises the steps of preparing an aminodicarboxylic acid salt of the general formula (III) (preferably, an alkali metal salt, particularly preferably a sodium salt) and an alkali metal hydroxide (preferably, hydroxide). An aqueous solution containing sodium oxide is used in a reactor, and an aqueous solution of formaldehyde and an alkali metal cyanide is simultaneously supplied thereto to carry out the reaction. In the present invention, the coloring of the reaction product is significantly improved as compared with the conventional method by setting the conditions such as the raw material molar ratio and the charging or the reaction concentration, the reaction temperature and the pressure in the setting range during the charging to the reaction. And the target aminodicarboxylic acid-N, N-diacetate is obtained in high yield, with little by-product nitrilotriacetic acid or residual aminodicarboxylic acid-N-monoacetic acid as an intermediate product. Is obtained. Various conditions (described below) set in the present invention individually show an effect of suppressing coloring and reducing impurities, but by combining these, synergistic effects as in the present invention can be obtained. It shows a typical effect. This will be described below according to the reaction procedure.

【0013】仕込みの条件については、アミノジカルボ
ン酸塩類、アルカリ金属水酸化物をアミノジカルボン酸
塩類に対して0.01〜1.0倍モル、好ましくは0.
1倍モル、アルカリ金属シアン化物(通常シアン化ナト
リウム)をアミノジカルボン酸塩類に対して0.01〜
0.5倍モル、好ましくは0.2〜0.3倍モル(反応
に用いるアルカリ金属シアン化物の1/10モル量程
度)及び水を加えてアミノジカルボン酸塩類の濃度を
2.0モル/kg以上、好ましくは2.2〜2.3モル
/kgとする。このように仕込んだアミノジカルボン酸
塩類をふくむ水溶液に攪拌下、ホルムアルデヒド及びア
ルカリ金属シアン化物の水溶液を同時に供給して反応さ
せる際、減圧下、常圧〜−600mmHg、好ましくは−
100〜−300mmHgとし、反応温度を85〜110
℃、好ましくは95〜105℃で制御し、アミノジカル
ボン酸塩類に対してモル比2.6〜3.0、好ましくは
2.7〜2.8倍量のホルムアルデヒド及びアルカリ金
属シアン化物(アルカリ金属シアン化物は仕込みに用い
た分を含めて)を、供給速度としては、アミノジカルボ
ン酸塩類に対して2.0×10-2(モル/min)/ア
ミノジカルボン酸塩類(モル)以下、好ましくは1.0
×10-2〜1.5×10-2(モル/min)/アミノジ
カルボン酸塩類(モル)とする。この際、ホルムアルデ
ヒド及びアルカリ金属シアン化物と同時に、水がアミノ
ジカルボン酸塩類に対して7(g/min)/アミノジ
カルボン酸塩類(モル)以上、好ましくは8〜12(g
/min)/アミノジカルボン酸塩類(モル)供給され
る様、ホルムアルデヒド及びアルカリ金属シアン化物水
溶液の濃度を調整するか、水を別途、ホルムアルデヒド
水溶液及びアルカリ金属シアン化物水溶液と同時に供給
し、反応液レベルを仕込み液レベルのまま一定に保つ
様、連続的に水を蒸留しながら反応させる。ホルムアル
デヒド及びアルカリ金属シアン化物の供給が終了後、3
0分〜2時間、好ましくは1時間熟成させ、反応を完遂
させる。
With respect to the charging conditions, the aminodicarboxylates and alkali metal hydroxides are used in a molar amount of 0.01 to 1.0 times, preferably 0.1 to 1.0 times the aminodicarboxylates.
1 mol of alkali metal cyanide (usually sodium cyanide) is used in an amount of 0.01 to 1 mol per mol of aminodicarboxylic acid salts.
0.5 times mol, preferably 0.2 to 0.3 times mol (about 1/10 mol amount of alkali metal cyanide used in the reaction) and water are added to adjust the concentration of the aminodicarboxylate to 2.0 mol / mol. kg or more, preferably 2.2 to 2.3 mol / kg. When the aqueous solution containing the aminodicarboxylates charged in this way is reacted by simultaneously supplying an aqueous solution of formaldehyde and an alkali metal cyanide under stirring, under reduced pressure, normal pressure to -600 mmHg, preferably-
100 to -300 mmHg, and the reaction temperature is 85 to 110.
° C, preferably 95 to 105 ° C, and formaldehyde and alkali metal cyanide (alkali metal cyanide) in a molar ratio of 2.6 to 3.0, preferably 2.7 to 2.8 times the amount of aminodicarboxylates. The supply rate of cyanide (including the amount used for preparation) is 2.0 × 10 −2 (mol / min) / aminodicarboxylate (mol) or less, preferably aminodicarboxylate. 1.0
× 10 -2 to 1.5 × 10 -2 (mol / min) / aminodicarboxylic acid salts (mol). At this time, water is not less than 7 (g / min) / aminodicarboxylate (mol) or more, preferably 8 to 12 (g) based on aminodicarboxylate at the same time as formaldehyde and alkali metal cyanide.
/ Min) / Aminodicarboxylic acid salts (mol) by adjusting the concentration of the formaldehyde and alkali metal cyanide aqueous solution or separately supplying water simultaneously with the formaldehyde aqueous solution and alkali metal cyanide aqueous solution. The reaction is carried out while continuously distilling water so that is kept at the same level as the charged liquid. After the supply of formaldehyde and alkali metal cyanide ends, 3
The mixture is aged for 0 minute to 2 hours, preferably for 1 hour to complete the reaction.

【0014】上記のように本発明の方法を実施すること
で、従来の方法に比べ、反応液の着色を抑制でき、反応
中に発生するアンモニアを効率的に除去し、副生ニトリ
ロトリ酢酸を低減できる。更に、アミノジカルボン酸−
N,N−二酢酸の中間生成物であるアミノジカルボン酸
−N−モノ酢酸の残存を大幅に抑制することができ、目
的とするアミノジカルボン酸−N,N−二酢酸塩類を工
業的に、高収率、かつ経済的に有利に製造することがで
きる。本発明の方法により、反応終了時には目的物の収
率99%以上で、約60重量%水溶液を得ることができ
る。この反応液中には主成分で目的物であるアミノジカ
ルボン酸−N,N−二酢酸塩類の他、アミノジカルボン
酸−N,N−二酢酸塩類に対して1重量%以下のアミノ
ジカルボン酸−N−モノ酢酸塩類、アミノジカルボン酸
−N,N−二酢酸塩類に対して3重量%以下のニトリロ
トリ酢酸塩類で得ることができ、その着色もAPHA6
00以下に抑えることができる。本発明において、色数
はJIS 4101の色数測定法に準じたAPHA標準
液と目視で比較して測定する方法による値である。
By performing the method of the present invention as described above, the coloring of the reaction solution can be suppressed, the ammonia generated during the reaction can be efficiently removed, and the by-product nitrilotriacetic acid can be reduced as compared with the conventional method. it can. Furthermore, aminodicarboxylic acid-
The residual aminodicarboxylic acid-N-monoacetic acid, which is an intermediate product of N, N-diacetate, can be significantly suppressed, and the desired aminodicarboxylic acid-N, N-diacetate can be industrially produced. It can be produced with high yield and economically. By the method of the present invention, about 60% by weight aqueous solution can be obtained at the end of the reaction with the yield of the target product being 99% or more. In this reaction solution, in addition to aminodicarboxylic acid-N, N-diacetate which is the main component and the target substance, 1% by weight or less of aminodicarboxylic acid-N, N-diacetate relative to aminodicarboxylic acid-N, N-diacetate is contained. N-monoacetates and aminodicarboxylic acid-N, N-diacetates can be obtained with 3% by weight or less of nitrilotriacetates, and their coloring is also APHA6.
00 or less. In the present invention, the color number is a value obtained by visually comparing with an APHA standard solution according to the color number measuring method of JIS 4101 and measuring.

【0015】本発明の方法により得られた反応液から、
所望の場合は、反応液を蒸発乾固あるいはスプレー乾燥
等の手段で結晶化することによりアミノジカルボン酸−
N,N−二酢酸塩Iを単離することができる。より高純
度のアミノジカルボン酸−N,N−二酢酸塩類あるいは
アミノジカルボン酸−N,N−二酢酸の結晶を得るため
には、反応液、または反応液に硫酸、塩酸、硝酸、好ま
しくは硫酸でpH=1〜3、好ましくはpH=2に調製
した後、2倍〜5倍量、好ましくは3倍量のメタノール
中に添加し、結晶化させる。このようにして得られたア
ミノジカルボン酸−N,N−二酢酸を所定量のアルカリ
金属水酸化物、アンモニア、有機アミンなどの塩基で中
和、または部分中和することにより所望の塩を製造する
ことができる。
From the reaction solution obtained by the method of the present invention,
If desired, the reaction solution is crystallized by means of evaporation to dryness or spray drying to give aminodicarboxylic acid-
N, N-diacetate I can be isolated. In order to obtain crystals of aminodicarboxylic acid-N, N-diacetate or aminodicarboxylic acid-N, N-diacetate with higher purity, sulfuric acid, hydrochloric acid, nitric acid, preferably sulfuric acid is added to the reaction solution or the reaction solution. And then adjusted to pH = 1 to 3, preferably pH = 2, and then added to 2- to 5-fold, preferably 3-fold, methanol to crystallize. The desired salt is produced by neutralizing or partially neutralizing the aminodicarboxylic acid-N, N-diacetate thus obtained with a predetermined amount of a base such as an alkali metal hydroxide, ammonia or an organic amine. can do.

【0016】[0016]

【実施例】次に実施例により本発明を詳細に説明する
が、本発明は以下の実施例に限定されるものではない。
Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples.

【0017】実施例1 攪拌機、温度計、滴下装置2系列、蒸留装置を付した反
応器に、グルタミン酸モノナトリウム塩一水和物10
9.0g(0.58モル)、水酸化ナトリウム26.7
g(0.64モル)、32重量%シアン化ナトリウム水
溶液24.6g(0.16モル)及び水100gを仕込
んだ。この混合液を−100mmHg、沸点(105
℃)まで昇温させる。蒸留装置から水の留出が始まった
ところで、激しく攪拌しながら、2系列の滴下装置よ
り、40重量%ホルムアルデヒド水溶液119.4g
(1.59モル、グルタミン酸モノナトリウム塩に対し
て2.73倍モル)に水238.8gを加えて希釈した
水溶液と32重量%シアン化ナトリウム水溶液221.
8g(1.45モル、グルタミン酸モノナトリウム塩に
対して、仕込みに使用した分も含めて2.76倍モル)
に水443.6gを加えて希釈した水溶液が同時に3時
間で滴下された。この間、圧力を−100〜−200m
mHg、反応温度を105℃とし、反応液のレベルを仕
込み液レベルのまま一定に保つよう連続的に蒸留し、生
成するアンモニアを除去しながら反応させる。ホルムア
ルデヒド及びシアン化ナトリウムの滴下終了後、1時
間、95℃で熟成させ、反応を完結させた。これにより
グルタミン酸−N,N−二酢酸四ナトリウム塩を液中収
率99%(対グルタミン酸モノナトリウム塩一水和物)
で得た。反応終了後のグルタミン酸−N,N−二酢酸四
ナトリウム塩濃度は60重量%に対し、ニトリロトリ酢
酸3ナトリウム塩は1.8重量%、グルタミン酸−N−
モノ酢酸三ナトリウム塩は0.5重量%(収率1%、対
グルタミン酸モノナトリウム塩一水和物)含まれてい
た。反応液に水を加えてグルタミン酸−N,N−二酢酸
四ナトリウム塩濃度40重量%に希釈した。希釈後の液
のAPHAは約600であった。
Example 1 In a reactor equipped with a stirrer, a thermometer, two dropping devices, and a distillation device, monosodium glutamate monohydrate 10 was added.
9.0 g (0.58 mol), sodium hydroxide 26.7
g (0.64 mol), 24.6 g (0.16 mol) of a 32% by weight aqueous solution of sodium cyanide and 100 g of water were charged. This mixed solution was -100 mmHg, boiling point (105
℃). When the distillation of water from the distillation apparatus was started, 119.4 g of a 40% by weight aqueous solution of formaldehyde was added from two series of dropping apparatuses with vigorous stirring.
(1.59 mol, 2.73 times the molar amount of glutamic acid monosodium salt) and 238.8 g of water, and a 32% by weight aqueous solution of sodium cyanide 221.
8 g (1.45 mol, 2.76 times mol of monosodium glutamic acid including that used for preparation)
An aqueous solution diluted by adding 443.6 g of water to the mixture was simultaneously added dropwise over 3 hours. During this time, the pressure was -100 to -200 m
mHg, the reaction temperature is 105 ° C., and the reaction solution is continuously distilled so that the level of the reaction solution is kept at the same level as the charged solution, and the reaction is carried out while removing generated ammonia. After completion of the addition of formaldehyde and sodium cyanide, the mixture was aged at 95 ° C. for 1 hour to complete the reaction. Thereby, glutamic acid-N, N-diacetate tetrasodium salt is obtained in a liquid at a yield of 99% (based on monosodium glutamic acid monohydrate).
I got it. After the completion of the reaction, the concentration of glutamic acid-N, N-diacetate tetrasodium salt was 60% by weight, whereas nitrilotriacetic acid trisodium salt was 1.8% by weight, and glutamic acid-N-
Triacetic acid monosodium salt was contained at 0.5% by weight (1% yield, monosodium glutamate monohydrate). Water was added to the reaction solution to dilute it to a concentration of glutamic acid-N, N-diacetate tetrasodium salt of 40% by weight. The APHA of the diluted solution was about 600.

【0018】実施例2 仕込みに用いた水を100gから200gにした以外、
実施例1と同様の操作実施した。これによりグルタミン
酸−N,N−二酢酸四ナトリウム塩を液中収率95%
(対グルタミン酸モノナトリウム塩一水和物)で得た。
反応終了後のグルタミン酸−N,N−二酢酸四ナトリウ
ム塩濃度は57重量%に対し、ニトリロトリ酢酸3ナト
リウム塩は1.8%、グルタミン酸−N−モノ酢酸三ナ
トリウム塩は2.3重量%(収率5%、対グルタミン酸
モノナトリウム塩一水和物)含まれていた。反応液に水
を加えてグルタミン酸−N,N−二酢酸四ナトリウム塩
濃度40重量%に希釈した。希釈後の液のAPHAは6
00であった。
Example 2 The water used for preparation was changed from 100 g to 200 g.
The same operation as in Example 1 was performed. As a result, glutamic acid-N, N-diacetate tetrasodium salt was obtained in a liquid at a yield of 95%.
(Vs. monosodium glutamate monohydrate).
After the completion of the reaction, the concentration of glutamic acid-N, N-diacetate tetrasodium salt was 57% by weight, whereas nitrilotriacetic acid trisodium salt was 1.8%, and glutamic acid-N-monoacetic acid trisodium salt was 2.3% by weight ( Yield 5%, based on glutamic acid monosodium salt monohydrate). Water was added to the reaction solution to dilute it to a concentration of glutamic acid-N, N-diacetate tetrasodium salt of 40% by weight. The APHA of the diluted solution is 6
00.

【0019】実施例3 40%ホルムアルデヒド水溶液119.4g(1.59
モル、グルタミン酸モノナトリウム塩に対して2.73
倍モル)に水238.8gを加えて希釈した水溶液と3
2%シアン化ナトリウム水溶液221.8g(1.45
モル、グルタミン酸モノナトリウム塩に対して、仕込み
に使用した分も含めて2.76倍モル)に水443.6
gを加えて希釈した水溶液を2時間で滴下した以外、実
施例1と同様の操作を実施した。これによりグルタミン
酸−N,N−二酢酸四ナトリウム塩を液中収率96%
(対グルタミン酸モノナトリウム塩一水和物)で得た。
反応終了後のグルタミン酸−N,N−二酢酸四ナトリウ
ム塩濃度は58重量%に対し、ニトリロトリ酢酸3ナト
リウム塩は1.9%、グルタミン酸−N−モノ酢酸三ナ
トリウム塩は1.9重量%(収率4%、対グルタミン酸
モノナトリウム塩一水和物)含まれていた。反応液に水
を加えてグルタミン酸−N,N−二酢酸四ナトリウム塩
濃度40重量%に希釈した。希釈後の液のAPHAは8
00であった。
Example 3 119.4 g of a 40% aqueous solution of formaldehyde (1.59 g)
Mole, 2.73 relative to glutamic acid monosodium salt
Aqueous solution diluted by adding 238.8 g of water to
221.8 g of a 2% aqueous solution of sodium cyanide (1.45 g)
Mole, 2.76 times the amount of glutamic acid monosodium salt, including the amount used for the preparation) and 443.6 water.
The same operation as in Example 1 was performed, except that the aqueous solution diluted by adding g was added dropwise over 2 hours. Thereby, glutamic acid-N, N-diacetate tetrasodium salt was obtained in a liquid at a yield of 96%.
(Vs. monosodium glutamate monohydrate).
After the completion of the reaction, the concentration of glutamic acid-N, N-diacetate tetrasodium salt was 58% by weight, whereas that of nitrilotriacetic acid trisodium salt was 1.9% and that of glutamic acid-N-monoacetic acid trisodium salt was 1.9% by weight ( Yield 4%, monosodium glutamate monohydrate). Water was added to the reaction solution to dilute it to a concentration of glutamic acid-N, N-diacetate tetrasodium salt of 40% by weight. The APHA of the diluted solution is 8
00.

【0020】実施例4 アスパラギン酸77.5(0.58モル)、水酸化ナト
リウム50.8g(1.22モル)、32重量%シアン
化ナトリウム水溶液24.6g(0.16モル)及び水
107gを仕込んだ以外、実施例1と同様の操作実施し
た。これによりアスパラギン酸−N,N−二酢酸四ナト
リウム塩を液中収率99%(対アスパラギン酸)で得
た。反応終了後のアスパラギン酸−N,N−二酢酸四ナ
トリウム塩濃度は60重量%に対し、ニトリロトリ酢酸
3ナトリウム塩は1.9重量%、アスパラギン酸−N−
モノ酢酸三ナトリウム塩は0.5重量%(収率1%、対
アスパラギン酸)含まれていた。反応液に水を加えてグ
ルタミン酸−N,N−二酢酸四ナトリウム塩濃度40重
量%に希釈した。希釈後の液のAPHAは約500であ
った。
Example 4 77.5 (0.58 mol) of aspartic acid, 50.8 g (1.22 mol) of sodium hydroxide, 24.6 g (0.16 mol) of a 32% by weight aqueous solution of sodium cyanide and 107 g of water Was carried out in the same manner as in Example 1 except that Thereby, aspartic acid-N, N-diacetate tetrasodium salt was obtained in a liquid at a yield of 99% (based on aspartic acid). After the reaction, the concentration of aspartic acid-N, N-diacetate tetrasodium salt was 60% by weight, whereas nitrilotriacetic acid trisodium salt was 1.9% by weight, and the concentration of aspartic acid-N-
Triacetic acid monosodium salt contained 0.5% by weight (1% yield, aspartic acid). Water was added to the reaction solution to dilute it to a concentration of glutamic acid-N, N-diacetate tetrasodium salt of 40% by weight. The APHA of the diluted solution was about 500.

【0021】実施例5 仕込みに用いた水を100gから200gにした以外、
実施例4と同様の操作実施した。これにより、アスパラ
ギン酸−N,N−二酢酸四ナトリウム塩を液中収率95
%(対アスパラギン酸)で得た。反応終了後のアスパラ
ギン酸−N,N−二酢酸四ナトリウム塩濃度は57重量
%に対し、ニトリロトリ酢酸3ナトリウム塩は1.7重
量%、アスパラギン酸−N−モノ酢酸三ナトリウム塩は
2.2重量%(収率5%、対アスパラギン酸)含まれて
いた。反応液に水を加えてアスパラギン酸−N,N−二
酢酸四ナトリウム塩濃度40重量%に希釈した。希釈後
の液のAPHAは600であった。
Example 5 The water used for the preparation was changed from 100 g to 200 g.
The same operation as in Example 4 was performed. Thereby, aspartic acid-N, N-diacetate tetrasodium salt was obtained in the liquid at a yield of 95.
% (Vs. aspartic acid). After the completion of the reaction, the concentration of tetrasodium aspartate-N, N-diacetate was 57% by weight, whereas trisodium nitrilotriacetic acid was 1.7% by weight and trisodium aspartate-N-monoacetate was 2.2%. % By weight (yield 5%, relative to aspartic acid). Water was added to the reaction solution to dilute it to a concentration of aspartic acid-N, N-diacetate tetrasodium salt of 40% by weight. The APHA of the diluted solution was 600.

【0022】実施例6 40%ホルムアルデヒド水溶液119.4g(1.59
モル、アスパラギン酸に対して2.73倍モル)に水2
38.8gを加えて希釈した水溶液と32%シアン化ナ
トリウム水溶液221.8g(1.45モル、アスパラ
ギン酸に対して、仕込みに使用した分も含めて2.76
倍モル)に水443.6gを加えて希釈した水溶液を2
時間で滴下した以外、実施例4と同様の操作を実施し
た。これにより、アスパラギン酸−N,N−二酢酸四ナ
トリウム塩を液中収率96%(対アスパラギン酸)で得
た。反応終了後のアスパラギン酸−N,N−二酢酸四ナ
トリウム塩濃度は58重量%に対し、ニトリロトリ酢酸
3ナトリウム塩は2.0重量%、アスパラギン酸−N−
モノ酢酸三ナトリウム塩は1.9重量%(収率4%、対
アスパラギン酸)含まれていた。反応液に水を加えてア
スパラギン酸−N,N−二酢酸四ナトリウム塩濃度40
重量%に希釈した。希釈後の液のAPHAは800であ
った。
Example 6 119.4 g of a 40% aqueous solution of formaldehyde (1.59
Mol, 2.73 times mol of aspartic acid) and water 2
Aqueous solution diluted by adding 38.8 g and 221.8 g of 32% aqueous sodium cyanide solution (1.45 mol, 2.76 mol of aspartic acid, including that used for charging)
Aqueous solution diluted with 443.6 g of water
The same operation as in Example 4 was performed except that the solution was dropped in a time period. Thereby, aspartic acid-N, N-diacetate tetrasodium salt was obtained in a liquid at a yield of 96% (based on aspartic acid). After completion of the reaction, the concentration of tetrasodium aspartate-N, N-diacetate was 58% by weight, whereas the concentration of trisodium nitrilotriacetic acid was 2.0% by weight, and the concentration of aspartic acid-N-
Triacetic acid monosodium salt contained 1.9% by weight (yield 4%, relative to aspartic acid). Water is added to the reaction solution, and the aspartic acid-N, N-diacetate tetrasodium salt concentration is 40.
Diluted to weight%. The APHA of the diluted solution was 800.

【0023】比較例1 40%ホルムアルデヒド水溶液95.7g(1.28モ
ル、グルタミン酸モノナトリウム塩に対して2.20倍
モル)と32%シアン化ナトリウム水溶液178.2g
(1.16モル、グルタミン酸モノナトリウム塩に対し
て、仕込みに使用した分0.13モルも含めて2.23
倍モル)を使用した以外、実施例1と同様の操作を実施
した。これによりグルタミン酸−N,N−二酢酸四ナト
リウム塩を液中収率84%(対グルタミン酸モノナトリ
ウム塩一水和物)で得た。反応終了後のグルタミン酸−
N,N−二酢酸四ナトリウム塩濃度は40重量%に対
し、ニトリロトリ酢酸3ナトリウム塩は1.0%、グル
タミン酸−N−モノ酢酸三ナトリウム塩は6.0重量%
(収率16%、対グルタミン酸モノナトリウム塩一水和
物)含まれていた。反応液のAPHAは1500であっ
た。
COMPARATIVE EXAMPLE 1 95.7 g of a 40% aqueous solution of formaldehyde (1.28 mol, 2.20 times the molar amount of glutamic acid monosodium salt) and 178.2 g of a 32% aqueous solution of sodium cyanide
(1.16 mol, 2.23 including 0.13 mol of glutamic acid monosodium salt, including the amount used for preparation)
The same operation as in Example 1 was carried out, except that the compound was used (fold molar). Thus, glutamic acid-N, N-diacetate tetrasodium salt was obtained in a liquid at a yield of 84% (based on glutamic acid monosodium salt monohydrate). Glutamic acid after completion of the reaction
N, N-tetraacetic acid tetrasodium salt concentration is 40% by weight, whereas nitrilotriacetic acid trisodium salt is 1.0% and glutamic acid-N-monoacetic acid trisodium salt is 6.0% by weight.
(16% yield, monosodium glutamate monohydrate). The APHA of the reaction solution was 1500.

【0024】比較例2 反応温度を80℃、圧力を−450〜−550mmH
g、とした以外、実施例1と同様の操作を実施した。こ
れによりグルタミン酸−N,N−二酢酸四ナトリウム塩
を液中収率99%(対グルタミン酸モノナトリウム塩一
水和物)で得た。反応終了後のグルタミン酸−N,N−
二酢酸四ナトリウム塩濃度は60重量%に対し、ニトリ
ロトリ酢酸3ナトリウム塩は2.0重量%、グルタミン
酸−N−モノ酢酸三ナトリウム塩は0.5重量%(収率
1%、対グルタミン酸モノナトリウム塩一水和物)含ま
れていた。反応液に水を加えてグルタミン酸−N,N−
二酢酸四ナトリウム塩濃度40重量%に希釈した。希釈
後の液のAPHAは2000であった。
Comparative Example 2 A reaction temperature of 80 ° C. and a pressure of -450 to -550 mmH
g, and the same operation as in Example 1 was performed. Thereby, glutamic acid-N, N-diacetate tetrasodium salt was obtained in the liquid at a yield of 99% (based on monosodium glutamic acid monohydrate). Glutamic acid-N, N-
The tetrasodium diacetate concentration is 60% by weight, the trisodium nitrilotriacetic acid 2.0% by weight, the trisodium glutamic acid-N-monoacetate 0.5% by weight (yield 1%, monosodium glutamate) Salt monohydrate). Glutamic acid-N, N-
It was diluted to a tetrasodium diacetate concentration of 40% by weight. The APHA of the diluted solution was 2,000.

【0025】比較例3 40%ホルムアルデヒド水溶液119.4g(1.59
モル、グルタミン酸モノナトリウム塩に対して2.73
倍モル)と32%シアン化ナトリウム水溶液221.8
g(1.45モル、グルタミン酸モノナトリウム塩に対
して、仕込みに使用した分も含めて2.76倍モル)を
水で希釈せずに3時間で滴下した以外、実施例1と同様
の操作を実施した。これによりグルタミン酸−N,N−
二酢酸四ナトリウム塩を液中収率94%(対グルタミン
酸モノナトリウム塩一水和物)で得た。反応終了後のグ
ルタミン酸−N,N−二酢酸四ナトリウム塩濃度は57
重量%に対し、ニトリロトリ酢酸3ナトリウム塩は5.
5重量%、グルタミン酸−N−モノ酢酸三ナトリウム塩
は3.0重量%(収率6%、対グルタミン酸モノナトリ
ウム塩一水和物)含まれていた。反応液に水を加えてグ
ルタミン酸−N,N−二酢酸四ナトリウム塩濃度40重
量%に希釈した。希釈後の液のAPHAは1500であ
った。
Comparative Example 3 119.4 g of a 40% aqueous formaldehyde solution (1.59
Mole, 2.73 relative to glutamic acid monosodium salt
) And a 32% aqueous sodium cyanide solution 221.8.
g (1.45 mol, 2.76 times the mol of glutamic acid monosodium salt including the amount used for charging) was added dropwise over 3 hours without diluting with water, and the same operation as in Example 1 was carried out. Was carried out. Thus, glutamic acid-N, N-
Tetrasodium diacetate was obtained in the liquid at a yield of 94% (vs. monosodium glutamate monohydrate). After the reaction is completed, the concentration of glutamic acid-N, N-diacetate tetrasodium salt is 57%.
% By weight of nitrilotriacetic acid trisodium salt.
It contained 5% by weight and 3.0% by weight of glutamic acid-N-monoacetic acid trisodium salt (yield 6%, based on monosodium glutamic acid monohydrate). Water was added to the reaction solution to dilute it to a concentration of glutamic acid-N, N-diacetate tetrasodium salt of 40% by weight. The APHA of the diluted solution was 1500.

【0026】比較例4 40%ホルムアルデヒド水溶液95.7g(1.28モ
ル、アスパラギン酸に対して2.20倍モル)と32%
シアン化ナトリウム水溶液178.2g(1.16モ
ル、アスパラギン酸に対して、仕込みに使用した分0.
13モルも含めて2.23倍モル)を使用した以外、実
施例2と同様の操作を実施した。これにより、アスパラ
ギン酸−N,N−二酢酸四ナトリウム塩を液中収率85
%(対アスパラギン酸)で得た。反応終了後のアスパラ
ギン酸−N,N−二酢酸四ナトリウム塩濃度は42重量
%に対し、ニトリロトリ酢酸3ナトリウム塩は1.2重
量%、アスパラギン酸−N−モノ酢酸三ナトリウム塩は
5.9重量%(収率15%、対アスパラギン酸)含まれ
ていた。反応液に水を加えてアスパラギン酸−N,N−
二酢酸四ナトリウム塩濃度40重量%に希釈した。希釈
後の液のAPHAは1600であった。
Comparative Example 4 95.7 g of a 40% aqueous formaldehyde solution (1.28 mol, 2.20 times mol of aspartic acid) and 32%
178.2 g of an aqueous sodium cyanide solution (1.16 mol, based on aspartic acid)
The same operation as in Example 2 was performed, except that 2.23 moles (including 13 moles) were used. Thereby, aspartic acid-N, N-diacetate tetrasodium salt was obtained in the liquid at a yield of 85%.
% (Vs. aspartic acid). After completion of the reaction, the concentration of tetrasodium aspartate-N, N-diacetate was 42% by weight, the concentration of trisodium nitrilotriacetic acid was 1.2% by weight, and the concentration of aspartic acid-N-monoacetic acid trisodium salt was 5.9. % (15% yield, aspartic acid). Water is added to the reaction solution, and aspartic acid-N, N-
It was diluted to a tetrasodium diacetate concentration of 40% by weight. The APHA of the diluted solution was 1600.

【0027】比較例5 反応温度を80℃、圧力を−450〜−550mmH
g、とした以外、実施例4と同様の操作を実施した。こ
れにより、アスパラギン酸−N,N−二酢酸四ナトリウ
ム塩を液中収率99%(対アスパラギン酸)で得た。反
応終了後のアスパラギン酸−N,N−二酢酸四ナトリウ
ム塩濃度は60重量%に対し、ニトリロトリ酢酸3ナト
リウム塩は2.0重量%、アスパラギン酸−N−モノ酢
酸三ナトリウム塩は0.5重量%(収率1%、対アスパ
ラギン酸)含まれていた。反応液に水を加えてアスパラ
ギン酸−N,N−二酢酸四ナトリウム塩濃度40重量%
に希釈した。希釈後の液のAPHAは2200であっ
た。
Comparative Example 5 A reaction temperature of 80 ° C. and a pressure of -450 to -550 mmH
g, and the same operation as in Example 4 was performed. Thereby, aspartic acid-N, N-diacetate tetrasodium salt was obtained in the liquid at a yield of 99% (based on aspartic acid). After the completion of the reaction, the concentration of tetrasodium aspartate-N, N-diacetate was 60% by weight, whereas the concentration of trisodium nitrilotriacetic acid was 2.0% by weight, and the concentration of aspartic acid-N-monoacetic acid trisodium salt was 0.5%. % (1% yield, aspartic acid). Water was added to the reaction solution, and aspartic acid-N, N-diacetate tetrasodium salt concentration was 40% by weight.
Diluted. The APHA of the diluted solution was 2,200.

【0028】比較例6 40%ホルムアルデヒド水溶液119.4g(1.59
モル、アスパラギン酸に対して2.73倍モル)と32
%シアン化ナトリウム水溶液221.8g(1.45モ
ル、アスパラギン酸に対して、仕込みに使用した分も含
めて2.76倍モル)を水で希釈せずに3時間で滴下し
た以外、実施例4と同様の操作を実施した。これによ
り、アスパラギン酸−N,N−二酢酸四ナトリウム塩を
液中収率93%(対アスパラギン酸)で得た。反応終了
後のアスパラギン酸−N,N−二酢酸四ナトリウム塩濃
度は56重量%に対し、ニトリロトリ酢酸3ナトリウム
塩は5.6重量%、アスパラギン酸−N−モノ酢酸三ナ
トリウム塩は3.2重量%(収率7%、対アスパラギン
酸)含まれていた。反応液に水を加えてアスパラギン酸
−N,N−二酢酸四ナトリウム塩濃度40重量%に希釈
した。希釈後の液のAPHAは1400であった。
Comparative Example 6 119.4 g of a 40% aqueous formaldehyde solution (1.59
Mol, 2.73 times the mol of aspartic acid) and 32
Example 22 except that 221.8 g (1.45 mol, 2.76 times the amount of aspartic acid, including the amount used for preparation, of aspartic acid) were added dropwise over 3 hours without diluting with water. The same operation as in Example 4 was performed. Thereby, aspartic acid-N, N-diacetate tetrasodium salt was obtained in the liquid at a yield of 93% (based on aspartic acid). After completion of the reaction, the concentration of tetrasodium aspartate-N, N-diacetate was 56% by weight, the concentration of trisodium nitrilotriacetic acid 5.6% by weight, and the concentration of aspartic acid-N-monoacetic acid trisodium 3.2%. % (7% yield, aspartic acid). Water was added to the reaction solution to dilute it to a concentration of aspartic acid-N, N-diacetate tetrasodium salt of 40% by weight. The APHA of the diluted solution was 1,400.

【0029】[0029]

【発明の効果】本発明は、アミノジカルボン酸塩類にホ
ルムアルデヒドとアルカリ金属シアン化物を反応させる
際に反応モル比を、さらには反応を減圧条件で、またさ
らには反応温度、水、原料の供給速度その他反応条件を
適宜選択することにより、反応液の着色を抑制し、かつ
高収率で、工業的プロセスとして適用可能なアミノジカ
ルボン酸−N,Nー二酢酸塩類を製造する方法である。
According to the present invention, the reaction molar ratio when reacting formaldehyde and an alkali metal cyanide with an aminodicarboxylate, the reaction is carried out under reduced pressure, and furthermore, the reaction temperature, the supply rate of water and raw materials In addition, by appropriately selecting other reaction conditions, the method is a method for producing aminodicarboxylic acid-N, N-diacetates that can be applied as an industrial process in a high yield while suppressing coloring of the reaction solution.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アミノジカルボン酸塩類、ホルムアルデ
ヒド及びアルカリ金属シアン化物を、アミノジカルボン
酸塩類に対するホルムアルデヒド及びアルカリ金属シア
ン化物のモル比を各々2.6〜3.0の範囲で反応させ
ることを特徴とするアミノジカルボン酸−N,N−二酢
酸塩類の製造法。
An aminodicarboxylate, formaldehyde and an alkali metal cyanide are reacted at a molar ratio of formaldehyde and alkali metal cyanide to aminodicarboxylate in the range of 2.6 to 3.0, respectively. For producing aminodicarboxylic acid-N, N-diacetates.
【請求項2】 減圧条件で反応させる請求項1記載のア
ミノジカルボン酸−N,N−二酢酸塩類の製造法。
2. The process for producing aminodicarboxylic acid-N, N-diacetates according to claim 1, wherein the reaction is carried out under reduced pressure.
【請求項3】 アミノジカルボン酸塩類に、ホルムアル
デヒド及びアルカリ金属シアン化物を供給し反応させる
際、反応温度85〜110℃、かつ、水を7(g/mi
n)/アミノジカルボン酸塩類(モル)以上で供給し、
連続的に蒸留しながら反応させる請求項2記載のアミノ
ジカルボン酸−N,N−二酢酸塩類の製造法。
3. When supplying formaldehyde and alkali metal cyanide to aminodicarboxylates and reacting them, the reaction temperature is 85 to 110 ° C. and water is 7 (g / mi).
n) / aminodicarboxylic acid salts (mol) or more,
The method for producing aminodicarboxylic acid-N, N-diacetates according to claim 2, wherein the reaction is carried out while continuously distilling.
【請求項4】 アミノジカルボン酸塩類にホルムアルデ
ヒド及びアルカリ金属シアン化物を供給し反応させる
際、反応器に仕込むアミノジカルボン酸塩類の濃度を
2.0モル/kg以上とし、供給速度をアミノジカルボ
ン酸塩類に2.0×10-2(モル/min)/アミノジ
カルボン酸塩類(モル)以下とする請求項3記載のアミ
ノジカルボン酸−N,N−二酢酸塩類の製造法。
4. When supplying formaldehyde and an alkali metal cyanide to an aminodicarboxylate and reacting the same, the concentration of the aminodicarboxylate charged into the reactor is 2.0 mol / kg or more, and the supply rate is set to the aminodicarboxylate. The method for producing aminodicarboxylic acid-N, N-diacetates according to claim 3, wherein the concentration is 2.0 × 10 -2 (mol / min) / aminodicarboxylic acid salts (mol) or less.
JP21371596A 1996-08-13 1996-08-13 Process for producing aminodicarboxylic acid-N, N-diacetates Expired - Lifetime JP3870448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21371596A JP3870448B2 (en) 1996-08-13 1996-08-13 Process for producing aminodicarboxylic acid-N, N-diacetates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21371596A JP3870448B2 (en) 1996-08-13 1996-08-13 Process for producing aminodicarboxylic acid-N, N-diacetates

Publications (2)

Publication Number Publication Date
JPH1059910A true JPH1059910A (en) 1998-03-03
JP3870448B2 JP3870448B2 (en) 2007-01-17

Family

ID=16643800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21371596A Expired - Lifetime JP3870448B2 (en) 1996-08-13 1996-08-13 Process for producing aminodicarboxylic acid-N, N-diacetates

Country Status (1)

Country Link
JP (1) JP3870448B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827016A (en) * 2012-03-20 2012-12-19 石家庄杰克化工有限公司 Preparation of novel green chelating agent glutamic diacetate tetracetic acid metal salt
JP2017125079A (en) * 2015-12-28 2017-07-20 昭和電工株式会社 Detergent composition, detergent, and method for producing detergent composition
CN113735724A (en) * 2021-09-08 2021-12-03 合肥艾普拉斯环保科技有限公司 Aspartic acid sodium diacetate and preparation method thereof
CN113773850A (en) * 2021-10-28 2021-12-10 东雪飞 Heavy metal contaminated soil remediation agent and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827016A (en) * 2012-03-20 2012-12-19 石家庄杰克化工有限公司 Preparation of novel green chelating agent glutamic diacetate tetracetic acid metal salt
JP2017125079A (en) * 2015-12-28 2017-07-20 昭和電工株式会社 Detergent composition, detergent, and method for producing detergent composition
CN113735724A (en) * 2021-09-08 2021-12-03 合肥艾普拉斯环保科技有限公司 Aspartic acid sodium diacetate and preparation method thereof
CN113773850A (en) * 2021-10-28 2021-12-10 东雪飞 Heavy metal contaminated soil remediation agent and preparation method thereof

Also Published As

Publication number Publication date
JP3870448B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
AU2006245816B2 (en) Method for producing methylglycine-N,N-diethanoic acid-trialkali metal salts with a low by-product content
JP2992428B2 (en) Aminopolycarboxylic acids and method for producing the same
JPH1077253A (en) Production of aminodicarboxylic-n,n-diacetic acids
JP3870448B2 (en) Process for producing aminodicarboxylic acid-N, N-diacetates
JP5613162B2 (en) Method for producing 2-aminobutyramide inorganic acid salt
US6492549B2 (en) Process for preparing alkylene diamine triacetic acid
JP3806999B2 (en) Method for producing glutamic acid-N, N-diacetate
US20210403413A1 (en) Production of nitrogen-containing chelators
US20210403412A1 (en) Production of nitrogen-containing chelators
JP3174138B2 (en) Method for producing metal salt of iminodisuccinic acid
JPH09194448A (en) Production of diamine-type polyamino acid by connection of bimolecular amino acid and biodegradable chelating agent containing the same
JP3011493B2 (en) Method for producing 4-alkyl-3-thiosemicarbazide
JP3597223B2 (en) Method for producing aminosulfonic acid-N, N-diacetic acid and alkali metal salt thereof and biodegradable chelating agent containing them
JP3326867B2 (en) Method for producing metal salt of iminodisuccinic acid
JP3623809B2 (en) Process for producing β-alanine-N, N-diacetic acid and its salt
JPH08165271A (en) Production of 2-hydroxy-1,3-propanediaminepolycarboxylic acid, its alkali salt and biodegradable chelate reagent containing the same
JPH08268986A (en) Production of aspartic acid-n,n-diacetic acid or its salts
JP4073179B2 (en) Process for producing N-carboxyalkyl-amino acids
JPH10504827A (en) Novel synthesis method of pentasubstituted guanidine
JP4399972B2 (en) Process for producing β-alanine-N, N-diacetic acid trialkali metal salt
US20230008538A1 (en) Process for preparing nitrile intermediates for nitrogen-containing chelators
TW201245113A (en) Process for the preparation of aqueous solutions of methylglycine-N,N-diacetic acid trialkali metal salts
JP4745581B2 (en) Method for producing alkylenediaminetriacetic acid
JPH11246497A (en) Production of acidic amino acid derivative
JPH07506581A (en) Method for producing β-alanine diacetic acid or its alkali metal salt or ammonium salt

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151027

Year of fee payment: 9

EXPY Cancellation because of completion of term