JPH1058139A - Method for welding intersection part of tube - Google Patents

Method for welding intersection part of tube

Info

Publication number
JPH1058139A
JPH1058139A JP21851596A JP21851596A JPH1058139A JP H1058139 A JPH1058139 A JP H1058139A JP 21851596 A JP21851596 A JP 21851596A JP 21851596 A JP21851596 A JP 21851596A JP H1058139 A JPH1058139 A JP H1058139A
Authority
JP
Japan
Prior art keywords
welding
groove
pipe
coordinates
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21851596A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kamo
鴨  和彦
Takeshi Matsushima
健 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21851596A priority Critical patent/JPH1058139A/en
Publication of JPH1058139A publication Critical patent/JPH1058139A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a welding method of tubular intersection to weld the crossing tubes capable of performing the multi-layer welding of connection tubes requiring complicated welding, e.g. in a case where a tubular base is welded to a base tube. SOLUTION: The data on the weld seam are prepared by inputting the outer diameter of a tube 1 to be welded, the diameter of a connection tube 2, the wall thickness and the groove angle. The groove shape is measured by an optical sensor arranged based on the data on the weld seam, and the positional coordinates of the weld seam and the groove width are detected. The data on the weld seam is calibrated to obtain the welding coordinates to provide the groove center line of a welding torch 4 by correcting the data on the weld seam by the positional coordinates of the weld seam, the welding torch is installed at the welding coordinates, and the multi-layer welding is successively performed with one-layer and one-pass welding in the vertical upward position on the tube to be connected with its axis horizontal with the weaving width corresponding to the groove width so as to be connected to the tube to be welded. The multi-layer welding of a three-dimensional saddle-shaped connection tube can be performed without teaching by a versatile articulated robot with excellent precision in an unmanned condition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、火力プラント、及
び原子力プラントの配管用の管台を母管に接続する等、
交差して配置される被接続管と接続管との溶接を行うた
めの管交差部溶接方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, connecting a nozzle for piping of a thermal power plant and a nuclear power plant to a mother pipe.
The present invention relates to a pipe intersection welding method for performing welding between a connected pipe and a connecting pipe that are arranged crossing each other.

【0002】[0002]

【従来の技術】管台を母管に接続する等、相互に交差し
て配置された被接続管と接続管とを接続するために、接
続管の外周に沿って施工される溶接の溶接線は、複雑な
鞍型形状をなし、しかも、接続管の円周方向に形成され
る溶接の開先断面積が、順次変化する。すなわち、図5
(a)に示すように、被接続管としての母管1に取り付
く、接続管としての管台2の外周に沿って施行される溶
接の溶接線は、管台2の外径と母管1の外径の比が、1
に近づくほど、溶接線は3次元性が顕著になる鞍型形状
となる。また、図5(a)の矢視A−Aにおける断面の
拡大図である、図5(b)に示すように、開先断面積S
および開先幅bは、溶接を施工する管台2の円周方向の
角度、すなわち管台角度θによって、図5(c)に示す
ように、その大きさが変化し、管台2の母管1との溶接
には、高度な溶接施工技術を必要とすることから自動溶
接化が遅れているのが現状である。
2. Description of the Related Art Welding lines are formed along the outer periphery of a connecting pipe in order to connect a connecting pipe and a connecting pipe arranged crossing each other, such as connecting a nozzle to a mother pipe. Has a complicated saddle shape, and the groove cross-sectional area of the weld formed in the circumferential direction of the connecting pipe changes sequentially. That is, FIG.
As shown in (a), the welding line of the welding to be attached to the mother pipe 1 as the connection pipe and performed along the outer periphery of the nozzle 2 as the connection pipe is based on the outer diameter of the nozzle 2 and the mother pipe 1. Is 1
, The welding line has a saddle-shaped shape in which the three-dimensionality becomes remarkable. Also, as shown in FIG. 5B, which is an enlarged view of a cross section taken along the line AA in FIG.
The groove width b changes as shown in FIG. 5C according to the circumferential angle of the nozzle 2 to be welded, that is, the nozzle angle θ, and the base of the nozzle 2 is changed. At present, automatic welding is delayed because welding with the pipe 1 requires an advanced welding technique.

【0003】このために、本出願人は、このような管交
差部の自動溶接化を容易にする特開昭63−27867
1号「管交差部の鞍型溶接線方法」を提案した。この提
案は、母管1に枝管(管台)2が交差する管交差部の溶
接において、管台2を開先加工を施すにあたり、管台2
開先面と母管1表面との間に形成される開先断面積S
が、管台角度θ全周にわたって一定となる開先形状にし
て、溶接するようにしたものである。本提案では、開先
断面積Sが一定にされるため、管台2の全周を同一パス
数で溶接でき、手溶接による施工性が向上するのみなら
ず、自動溶接化が容易となる利点が得られるものであ
る。
[0003] For this purpose, the applicant of the present invention has proposed Japanese Patent Application Laid-Open No. 63-27867 to facilitate automatic welding of such a pipe intersection.
No.1 "Saddle-type welding line method at pipe intersection" was proposed. This proposal is based on the fact that, when welding a pipe intersection where a branch pipe (a nozzle) 2 intersects a main pipe 1, a groove 2 is formed on the nozzle 2.
Groove cross-sectional area S formed between groove surface and surface of mother pipe 1
However, the groove is formed to be constant over the entire circumference of the nozzle angle θ, and welding is performed. In this proposal, since the groove cross-sectional area S is fixed, the entire circumference of the nozzle 2 can be welded with the same number of passes, and not only the workability by manual welding is improved, but also automatic welding is facilitated. Is obtained.

【0004】また、同様の提案に、特公昭58−280
32号「自動多層溶接法」による提案もある。この提案
は、母管1に管台2が交差する管交差部の溶接におい
て、管台2に設ける開先加工角度KAを、管台2開先止
まりA点から母管1へ垂した法線の高さが、管台角度θ
の何れにおいても一定となるようにし、母管1および管
台2との軸心に、それぞれ同一中心を有する同心円筒で
溶接部を分割し、この分割に基づき溶接トーチ4の位
置、角度、および溶接条件を演算制御し、溶接トーチ4
が管台2の回りを1周することにより、前記分割の1つ
の断面を溶接完了し、これを連続することにより、多層
溶接を行なうようにしたもので、従来、自動的に溶接す
ることのできなかった、母管1と管台2とが交差する管
交差部の多層溶接を、自動的に行えるようにしようとす
るものである。
A similar proposal has been proposed in Japanese Patent Publication No. 58-280.
There is also a proposal based on No. 32 "automatic multilayer welding method". In this proposal, in welding a pipe intersection where the nozzle 2 intersects the base 1, the groove processing angle KA provided on the nozzle 2 is changed to a normal line perpendicular to the base 1 from the point A where the groove 2 stops. Height is the nozzle angle θ
In each case, the welded portion is divided by a concentric cylinder having the same center on the axis of the mother tube 1 and the nozzle 2, and the position, angle, and position of the welding torch 4 are determined based on the division. The welding conditions are calculated and controlled, and the welding torch 4
Makes one round of the circumference of the nozzle 2 to complete the welding of one section of the above-mentioned division, and by continuing this, multi-layer welding is performed. Conventionally, welding is automatically performed. The purpose of the present invention is to automatically perform multi-layer welding at a pipe intersection where a mother pipe 1 and a nozzle 2 intersect, which could not be performed.

【0005】このような提案に見られるように、管台角
度θによって変化する管交差部の開先断面積Sが一定に
なるようにして、自動溶接を可能にする試みはなされて
いるものの、これらの提案においてなされている自動溶
接方法は、何れも図6に示す方法が採用されている。す
なわち、図に示すように、従来の自動溶接方法は、中心
軸が垂直となるようにセットした、接続管である管台2
の上に、可搬式円柱座標系溶接ロボット18を設置し、
水平姿勢の溶接トーチ4で、多層盛溶接を行う方法が採
用されている。
[0005] As can be seen from such proposals, attempts have been made to enable automatic welding by making the groove cross-sectional area S of the pipe intersection that varies with the nozzle angle θ constant. All of the automatic welding methods made in these proposals employ the method shown in FIG. That is, as shown in the figure, the conventional automatic welding method uses a nozzle 2 as a connecting pipe, which is set so that the central axis is vertical.
Above, a portable cylindrical coordinate system welding robot 18 is installed,
A method of performing multi-pass welding with a welding torch 4 in a horizontal position is employed.

【0006】このような、水平姿勢の溶接トーチ4で溶
接を行う方法では、開先断面積Sが大きくなり、これに
伴い層数(パス数)が多くなり、このために、図7に示
すように、開先断面積S部の溶接は、1層多パス積層と
なり、溶接トーチ4は、前ビード19の形状の端を精度
よく狙う必要があり、オペレータが常時溶接トーチ4の
狙い位置を監視し、修正する作業を行うか、又は、前回
積層した前層ビードの形状の端を狙う演算を行い、溶接
トーチ4の位置を、その演算結果に合せて精密に設定す
る複雑な装置を必要とする不具合があった。
In such a method in which welding is performed with the welding torch 4 in a horizontal position, the groove cross-sectional area S is increased, and the number of layers (the number of passes) is accordingly increased. For this reason, as shown in FIG. As described above, the welding of the groove cross-sectional area S becomes a single-layer, multi-pass lamination, and the welding torch 4 needs to accurately aim at the end of the shape of the front bead 19, and the operator always sets the aiming position of the welding torch 4 at all times. A complicated device that monitors and corrects, or performs an operation aiming at the end of the shape of the previous layered bead, and precisely sets the position of the welding torch 4 according to the operation result is required. There was a problem.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上述した従
来の管交差部溶接方法の不具合を解消するため、可搬式
円柱座標系溶接ロボットから、汎用性のある多関節ロボ
ットに変更して、多関節ロボットによって多層盛溶接を
行うために必要となる、膨大な座標データからなる溶接
線データを1点ずつティーチングで教示するのではな
く、自動作成し、自動作成した溶接線データと溶接部の
実際の形状に存在する誤差を計測して、溶接線データを
修正して、溶接トーチの設定を行うための溶接座標に校
正し、各溶接位置を一定の溶接施行条件で施行可能とす
るため、各溶接位置での開先加工角度を求めて、開先断
面積を一定にした接続管の溶接姿勢を、立向上進姿勢に
して、凸状ではなく、平坦な溶接ビード形状とするため
に、1層1パス溶接で各層及び各溶接位置ごとに変化す
る、開先幅に見合ったウィービング幅で溶接トーチの揺
動を行ないながら1層1パス溶接とする単純な施工条件
とした管交差部溶接方法を提供することを課題とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems of the conventional pipe intersection welding method, the present invention has been changed from a portable cylindrical coordinate system welding robot to a versatile articulated robot. Welding line data consisting of huge coordinate data required for multi-layer welding by multi-joint robots is not created by teaching one point at a time, but is automatically created. To measure the error existing in the actual shape, correct the welding line data, calibrate to the welding coordinates for setting the welding torch, and enable each welding position to be performed under certain welding conditions, In order to determine the groove processing angle at each welding position, and to set the welding posture of the connection pipe with a constant groove cross-sectional area to the standing and improving posture, and to make it a flat weld bead shape instead of a convex shape, One-layer one-pass welding To provide a pipe intersection welding method with a simple construction condition of one-layer one-pass welding while oscillating a welding torch with a weaving width corresponding to a groove width, which varies for each layer and each welding position. Make it an issue.

【0008】[0008]

【課題を解決するための手段】このため、本発明の管交
差部溶接方法は、次の手段を採用した。
Therefore, the method for welding a pipe intersection according to the present invention employs the following means.

【0009】(1)母管等の被溶接管の外径、管台等の
接続管の外径、肉厚、及び開先加工角度を入力すること
によって、鞍型形状の溶接部の多層盛りに必要な、溶接
ロボットの溶接トーチの設定を行う座標を演算して、溶
接線データを自動作成するデータ作成工程。
(1) By inputting the outer diameter of a pipe to be welded such as a mother pipe, the outer diameter of a connecting pipe such as a nozzle, a wall thickness, and a groove processing angle, a multi-layered welding of a saddle-shaped welded portion is performed. A data creation process that automatically calculates welding line data by calculating the coordinates required to set the welding torch of the welding robot.

【0010】(2)データ作成工程で作成した溶接線デ
ータの座標位置に、光学センサを持っていき、溶接部に
光学センサのスリット光源から光を照射して、CCDカ
メラにより得られた溶接部の画像により、開先形状を光
学的に計測して、実際の開先形状から決る溶接線位置座
標と開先幅を検出する計測工程。なお、溶接線位置の座
標は、計測工程で得られる、CCDカメラ画像における
開先底部の中心線とすることにより得ることができる。
(2) An optical sensor is brought to the coordinate position of the welding line data created in the data creation step, and the weld is irradiated with light from a slit light source of the optical sensor, and the weld is obtained by a CCD camera. A measurement step of optically measuring the groove shape based on the image of (1) and detecting the welding line position coordinates and the groove width determined from the actual groove shape. The coordinates of the welding line position can be obtained by setting the center line of the groove bottom in the CCD camera image obtained in the measuring step.

【0011】(3)データ作成工程により作成された溶
接線データと、計測工程により計測された溶接線位置座
標とを比較して、両者のずれ量を溶接線データに補正し
て、溶接線データを溶接線位置座標と等しい、溶接トー
チを実際に設定する溶接座標にする校正工程。
(3) The welding line data created in the data creating step is compared with the welding line position coordinates measured in the measuring step, and the deviation between the two is corrected to welding line data. Is a welding step in which the welding torch is actually set to the welding coordinates, which is equal to the welding line position coordinates.

【0012】(4)中心軸が水平状態にされ、円周方向
の各溶接位置での開先断面積が一定となるように開先加
工角度にされた接続管の溶接座標に、溶接トーチを設置
するとともに、計測工程で得られた開先幅に対応するウ
ィービング幅で溶接トーチを揺動させながら、立向上進
姿勢で1層1パスの溶接で順次多層盛にして、溶接断面
積を埋め、接続管を被接続管に接続する溶接工程。
(4) The welding torch is placed at the welding coordinates of the connecting pipe whose groove is machined so that the central axis is horizontal and the groove cross-sectional area at each welding position in the circumferential direction is constant. At the same time, the welding torch is oscillated with the weaving width corresponding to the groove width obtained in the measurement process. And a welding step of connecting the connecting pipe to the connected pipe.

【0013】本発明の管交差部溶接方法は、上述した手
段の採用により、汎用性のある多関節ロボットが採用で
き、しかも、多関節ロボットには不可欠の座標ティーチ
ングを行うことなく、3次元状の鞍型形状となり複雑な
溶接となる、接続管の多層盛溶接による被接続管への溶
接が、光学式センサの活用により精度良く施工可能とな
り、自動溶接が容易となる。
According to the pipe intersection welding method of the present invention, a versatile articulated robot can be adopted by adopting the above-mentioned means, and a three-dimensional shape can be obtained without performing coordinate teaching which is indispensable for the articulated robot. With the use of an optical sensor, the connection pipe can be welded to the connected pipe by multi-layer welding, which is a saddle-shaped shape and becomes a complicated weld, and the automatic welding is facilitated.

【0014】また、溶接トーチは、図6に示すように配
置して、接続管(管台)の回りに360°回転して溶接
することも可能であるが、この方法の溶接では、水平状
態の溶接となるため、溶接トーチを溶接部まで誘導する
ため、開先幅を大きなものにする必要があり、このため
には開先断面積が大きくなり、またこの開先断面積を埋
めるために溶接の層数(パス数)も多くなるこれに対し
て、本発明の立向上進姿勢で施工する溶接方法では、接
続管の軸心を水平にして、水平にした接続管を、右方か
ら見た状態を時計の文字盤で表せば、溶接トーチを6時
付近から3時を通って12時付近までの半周と、6時付
近から9時を通って12時付近までの半周とにそれぞれ
回転させて、上向→立向→下向の全姿勢で溶接すること
ができるので、各姿勢での制御を十分行う必要はあるも
のの、開先断面積は小さく出来、したがって、水平姿勢
では不可能な1層1パス溶接が可能となる。
Further, the welding torch can be arranged as shown in FIG. 6 and rotated 360 ° around the connecting pipe (stub) to perform welding. In order to guide the welding torch to the weld, it is necessary to increase the groove width, and for this purpose, the groove cross-section becomes large, and in order to fill this groove cross-section, In contrast to this, the number of layers (the number of passes) of welding is increased. In the welding method according to the present invention, which is performed in the vertical position, the connecting pipe is set horizontally from the right by setting the axis of the connecting pipe horizontally. If the watch is shown on a clock face, the welding torch can be moved from around 6 o'clock to 3 o'clock to around 12 o'clock around 12 o'clock, and from around 6 o'clock to 9 o'clock until around 12 o'clock and around 12 o'clock. By rotating, welding can be performed in all positions of upward → vertical → downward. Although there is no need to perform the control in the energized enough, groove cross-sectional area can be reduced, thus, it is possible to layer 1-pass welding not possible in a horizontal position.

【0015】また、本発明の方法で溶接する接続管の開
先形状は、各溶接位置での開先断面積が一定となるよう
に、開先加工角度が加工されているが、接続管とともに
開先を構成するもう一方の被接続管の開先面は、各溶接
位置で変化しているため、各層及び各溶接位置での開先
中心線及び開先幅が変化する。
Further, the groove shape of the connecting pipe to be welded by the method of the present invention is such that the groove processing angle is machined so that the groove cross-sectional area at each welding position is constant. Since the groove surface of the other connected pipe forming the groove changes at each welding position, the groove center line and groove width at each layer and at each welding position change.

【0016】このため、本発明では、溶接トーチのウィ
ービング中心線と開先幅の変化を、光学式センサで計測
した溶接座標と開先幅に対応したウィービング幅とにす
ることにより、各層及び各溶接位置で、開先中心及び開
先幅が変化しても、溶接トーチは溶接座標を中心線とす
るウィービング幅の溶接を行うので、1層1パス溶接を
容易に行うことができる。
For this reason, in the present invention, the weaving center line and the groove width of the welding torch are changed to the welding coordinates measured by the optical sensor and the weaving width corresponding to the groove width, thereby forming each layer and each groove. Even if the groove center and groove width change at the welding position, the welding torch performs welding with a weaving width centering on the welding coordinates, so that one-layer one-pass welding can be easily performed.

【0017】これにより、溶接トーチは、前ビードの形
状の端を精度よく狙う必要もなくなり、オペレータが常
時溶接トーチの狙い位置を監視し、修正する作業が不要
になり、又は、前回積層した前層ビードの形状の端を狙
う演算を行う演算装置、および溶接トーチの位置をその
演算結果の指示する所に精密に合せて設定するための複
雑な装置が不要になる。
This eliminates the need for the welding torch to accurately aim at the end of the shape of the front bead, and eliminates the need for the operator to constantly monitor and correct the aiming position of the welding torch. There is no need for an arithmetic unit for performing an operation aiming at the end of the shape of the layer bead and a complicated device for setting the position of the welding torch precisely at the position indicated by the operation result.

【0018】[0018]

【発明の実施の形態】以下、本発明の管交差部溶接方法
の実施の一形態を図面にもとづき説明する。図1は本発
明の管交差部溶接方法の実施の第1形態に適用する、管
交差部溶接装置を示す全体図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method for welding a pipe intersection according to the present invention will be described below with reference to the drawings. FIG. 1 is an overall view showing a pipe intersection welding apparatus applied to a first embodiment of a pipe intersection welding method according to the present invention.

【0019】図1に示すように、被接続管である母管1
に取付ける、接続管である管台2の中心軸が水平となる
ようにワークを設置する。また、図2に示すように、手
首軸に溶接トーチ4、ウィービングユニット5、スリッ
ト光源10およびCCDカメラ11を設けた光学式セン
サ9を搭載した多関節ロボット3を配置する。
As shown in FIG. 1, a mother pipe 1 as a connected pipe is provided.
The workpiece is installed such that the center axis of the nozzle 2 as a connecting pipe is horizontal. Further, as shown in FIG. 2, an articulated robot 3 having an optical sensor 9 provided with a welding torch 4, a weaving unit 5, a slit light source 10 and a CCD camera 11 is arranged on a wrist axis.

【0020】まず、図3に示すように、ある層数での溶
接線の座標(X,Y,Z)は、母管1の管径DB、並び
に管台2の外径DK、肉厚t、および開先加工角度KA
から数1で求めることができる。
First, as shown in FIG. 3, the coordinates (X, Y, Z) of the welding line at a certain number of layers are determined by the pipe diameter DB of the mother pipe 1, the outer diameter DK of the nozzle 2 and the wall thickness t. , And groove machining angle KA
Can be obtained from Equation 1.

【0021】[0021]

【数1】 (Equation 1)

【0022】図1に示すパソコン6により、この数1に
したがって求めた溶接線の座標(X,Y,Z)データ
を、ロボット制御盤7に送信し、ロボット制御盤7に
て、多関節ロボット3の座標系に変換することで、溶接
線データを自動作成する。
The coordinate (X, Y, Z) data of the welding line obtained according to Equation 1 is transmitted to the robot control panel 7 by the personal computer 6 shown in FIG. The welding line data is automatically created by converting to the coordinate system of No. 3.

【0023】また、溶接前に、この溶接線データの座標
(X,Y,Z)位置の近傍に光学式センサ9をもってき
て、スリット光源10から開先形状13に入射されるス
リット光12を、斜め方向からCCDカメラ11で見る
ことで、図4に示すように、開先形状13を示すスリッ
ト光12からなる画像を得ることができる。この画像に
おける開先底部の中心線が、溶接線位置座標14として
求められ、前に自動作成された溶接線データ15座標と
溶接線位置座標14とのずれ量16から、自動作成され
た溶接線データ15の座標を、現物の溶接線位置座標と
同じ溶接座標に修正する。さらに、CCDカメラ11で
得られた同一画像から算出される開先幅bをもとに、溶
接時のウィービング幅を決め、ウィービングコントロー
ラ8で溶接トーチ4の溶接中ウィービング幅をコントロ
ールする。
Before welding, the optical sensor 9 is brought near the coordinates (X, Y, Z) of the welding line data, and the slit light 12 incident on the groove 13 from the slit light source 10 is transmitted. When viewed from the oblique direction with the CCD camera 11, an image composed of the slit light 12 indicating the groove shape 13 can be obtained as shown in FIG. The center line at the bottom of the groove in this image is obtained as the welding line position coordinates 14, and the welding line automatically created from the displacement 16 between the welding line data 15 coordinates automatically created before and the welding line position coordinates 14. The coordinates of the data 15 are corrected to the same welding coordinates as the actual welding line position coordinates. Further, the weaving width at the time of welding is determined based on the groove width b calculated from the same image obtained by the CCD camera 11, and the weaving controller 8 controls the weaving width during welding of the welding torch 4.

【0024】本実施の形態で溶接する管台2の開先形状
13は、各溶接位置での開先断面積Sが一定となるよ
う、開先加工角度KAに加工されているが、管台2とと
もに開先形状13を構成する、もう一方の母管1の開先
面は、各溶接位置で変化しているため、各層及び各溶接
位置での開先底部の中心線、すなわち溶接座標、及び開
先幅が変化することとなる。しかしながら、溶接座標1
4と開先幅bの変化を、上述したように光学式センサ9
で計測した溶接線位置座標14と光学センサ9で計測し
た開先幅bにすることにより、各層及び各溶接位置で、
溶接座標及び開先幅bが変化しても、溶接トーチ4は溶
接線位置座標14を中心線とし、開先幅bに応じて決ま
るウィービング幅で溶接を行うことにより、1層1パス
の溶接が正確に行える。
The groove shape 13 of the nozzle 2 to be welded in the present embodiment is processed to a groove processing angle KA so that the groove cross-sectional area S at each welding position is constant. Since the groove face of the other mother tube 1, which forms the groove shape 13 together with 2, changes at each welding position, the center line of the groove bottom at each layer and each welding position, that is, the welding coordinates, And the groove width changes. However, welding coordinates 1
4 and the change in the groove width b are determined by the optical sensor 9 as described above.
By setting the welding line position coordinates 14 measured in the above and the groove width b measured by the optical sensor 9, in each layer and each welding position,
Even if the welding coordinates and the groove width b change, the welding torch 4 performs welding with a weaving width determined in accordance with the groove width b with the welding line position coordinates 14 as the center line, thereby performing one-layer one-pass welding. Can be performed accurately.

【0025】また、溶接トーチ4は、図6に示すよう
に、管台2の回りに360°回転して溶接するのではな
く、水平にした管台2を右方から見た状態を時計の文字
盤で表せば、トーチを6時付近から3時を通って12時
付近までの半周と、6時付近から9時を通って12時付
近までの半周とに、それぞれ回転させて、上向→立向→
下向の全姿勢で溶接する立向上進姿勢の溶接を行う。こ
れにより、溶接を施工する開先断面積Sは、小さくで
き、水平姿勢では不可能であった1層1パス溶接が可能
となる。
As shown in FIG. 6, the welding torch 4 is not rotated 360 ° around the nozzle 2 and welded. In the dial, the torch is turned up and down from around 6 o'clock to 3 o'clock to around 12 o'clock, and from around 6 o'clock to 9 o'clock until 9 o'clock around 12 o'clock. → Standing →
Welding is performed in a vertical position where welding is performed in all downward positions. Thereby, the groove cross-sectional area S for performing welding can be reduced, and one-layer one-pass welding, which was impossible in a horizontal posture, can be performed.

【0026】以上の手順を、各層ごとに行って多層盛溶
接の施工が完了する。なお、管台2の開先については、
前述したように各溶接位置での開先断面積Sが、管台角
度0°の開先断面積S0 と等しくなるように、管台角度
(θ°)での開先加工角度(KA)を、数2で求めた数
値として加工されている。
The above procedure is performed for each layer to complete the construction of multi-layer welding. In addition, about the groove of the nozzle 2,
As described above, the groove machining angle (KA) at the nozzle angle (θ °) so that the groove sectional area S at each welding position is equal to the groove sectional area S 0 at the nozzle angle of 0 °. Is processed as a numerical value obtained by Expression 2.

【0027】[0027]

【数2】 (Equation 2)

【0028】以上、本実施の形態では、母管1に管台2
を接合する管交差部溶接方法について述べたが、本発明
は母管1に枝管を接合する場合等、交差して配置される
一般の接続管と被接続管との接合についても、同様の方
法で溶接することができるものである。
As described above, in the present embodiment, the nozzle 2
Although the present invention has been described with respect to a pipe intersection welding method for joining pipes, the present invention is also applicable to the joining of a general connecting pipe and a connected pipe which are arranged crosswise, such as when a branch pipe is joined to the mother pipe 1. It can be welded by a method.

【0029】[0029]

【発明の効果】以上説明したように、本発明の管交差部
溶接方法によれば、特許請求の範囲に示す構成により、
汎用性のある多関節ロボットを採用し、しかも多関節ロ
ボットには不可欠の座標ティーチングを行うことなく、
3次元形状の鞍型形状となる、複雑な溶接になる接続管
の多層盛溶接による被接続管への溶接が可能となる。ま
た、溶接が接続管の軸心を水平にして溶接する、いわゆ
る立向上進姿勢の溶接としたので、開先断面積は小さく
でき、したがって、従来水平姿勢の溶接では不可能な1
層1パス溶接が可能となる。
As described above, according to the pipe intersection welding method of the present invention, the structure shown in the claims is
Uses a versatile articulated robot, and without performing coordinate teaching, which is indispensable for an articulated robot,
It becomes possible to weld to a connected pipe by multi-layer welding of a connection pipe that has a three-dimensional saddle shape and is a complicated weld. In addition, since welding is performed in a so-called upright advance posture in which welding is performed by setting the axis of the connecting pipe to be horizontal, the groove cross-sectional area can be reduced.
Layer 1 pass welding becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の管交差部溶接方法の実施の第1形態に
適用する管交差部溶接装置の全体を示す概要図,
FIG. 1 is a schematic diagram showing an entire pipe intersection welding apparatus applied to a first embodiment of a pipe intersection welding method according to the present invention;

【図2】図1に示す多関節ロボットの手首軸まわりの側
面図,
FIG. 2 is a side view around the wrist axis of the articulated robot shown in FIG. 1,

【図3】溶接を行う接続管としての管台と、被接続管と
しての母管との座標定義図,
FIG. 3 is a coordinate definition diagram of a nozzle as a connecting pipe to be welded and a mother pipe as a connected pipe;

【図4】図2に示す光学式センサにより得られる画像の
一例を示す図,
FIG. 4 is a diagram showing an example of an image obtained by the optical sensor shown in FIG. 2,

【図5】従来の管交差部溶接状況を示す図で、図5
(a)は全体斜視図,図5(b)は図5(a)の矢視A
−Aにおける詳細断面図,図5(c)は管台角度θと開
先断面積および開先幅の関係を示す図,
FIG. 5 is a view showing a conventional pipe intersection welding situation;
5A is an overall perspective view, and FIG. 5B is an arrow view A in FIG.
5A is a detailed cross-sectional view of FIG. 5A, and FIG.

【図6】従来の管交差部溶接装置を示す概要図,FIG. 6 is a schematic view showing a conventional pipe intersection welding device,

【図7】図6の管交差部溶接装置による溶接における、
成層状況を示す断面図である。
FIG. 7 is a view showing welding performed by the pipe intersection welding device shown in FIG. 6;
It is sectional drawing which shows a stratification situation.

【符号の説明】[Explanation of symbols]

1 被接続管としての母管 2 接続管としての管台 3 多関節ロボット 4 溶接トーチ 5 ウィービングユニット 6 パソコン 7 ロボット制御盤 8 ウィービングコントローラ 9 光学式センサ 10 スリット光源 11 CCDカメラ 12 スリット光 13 開先形状 14 溶接線位置座標(溶接座標) 15 溶接線データ 16 ずれ量 18 可搬式円柱座標系溶接ロボット 19 前ビード θ 管台角度 S 開先断面積 KA 開先加工角度 A 開先止まり DB 母管管径 DK 管台管径 D 溶接線径 b 開先幅 s 開先断面積 Reference Signs List 1 mother pipe as connected pipe 2 nozzle as connection pipe 3 articulated robot 4 welding torch 5 weaving unit 6 personal computer 7 robot control panel 8 weaving controller 9 optical sensor 10 slit light source 11 CCD camera 12 slit light 13 groove Shape 14 Welding line position coordinates (welding coordinates) 15 Welding line data 16 Misalignment 18 Portable cylindrical coordinate system welding robot 19 Front bead θ Head angle S Groove cross-sectional area KA Groove machining angle A Groove stop DB Mother pipe Diameter DK nozzle diameter D Welding wire diameter b Groove width s Groove cross-sectional area

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶接を行う周方向各位置における開先断
面積が、略一定になるような開先加工角度にされた接続
管を、交差して配置される被接続管に、多層盛溶接して
行う管交差部溶接方法において、前記被接続管の外径、
並びに前記接続管の外径、肉厚、および前記開先加工角
度のデータを入力して、鞍型形状になる溶接部の座標を
演算して、溶接線データを作成するデータ作成工程と、
前記溶接線データにもとづき、溶接部の近傍に設置した
光学センサで開先形状を計測して、溶接線位置座標、お
よび開先幅を検出する計測工程と、前記溶接線位置座標
により前記溶接データを修正して、溶接座標にする校正
工程と、前記溶接座標に設定されるとともに、前記開先
幅に対応するウィービング幅に設定された溶接トーチ
で、中心軸を水平にした前記接続管を、前記被接続管に
立向上進姿勢の1層1パスの溶接で、順次多層盛にして
溶接する溶接工程とからなることを特徴とする管交差部
溶接方法。
1. A multi-pass welding of a connecting pipe having a groove processing angle such that a groove cross-sectional area at each circumferential position where welding is performed is substantially constant, to a pipe to be connected intersecting. In the pipe intersection welding method performed by performing, the outer diameter of the connected pipe,
And data of the outer diameter of the connection pipe, the thickness, and the data of the groove machining angle, and calculate the coordinates of the welded portion to be saddle-shaped, to create welding line data,
Based on the welding line data, measuring the groove shape with an optical sensor installed near the weld, welding line position coordinates, and a measuring step of detecting the groove width, the welding line position coordinates the welding data Correcting, the calibration step to the welding coordinates, and the welding pipe set to the welding coordinates, the welding torch set to the weaving width corresponding to the groove width, the connection pipe with the central axis horizontal, A step of welding the connected pipes in a one-layer, one-pass manner in a standing and advancing posture, and sequentially welding them in a multi-layered form.
JP21851596A 1996-08-20 1996-08-20 Method for welding intersection part of tube Pending JPH1058139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21851596A JPH1058139A (en) 1996-08-20 1996-08-20 Method for welding intersection part of tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21851596A JPH1058139A (en) 1996-08-20 1996-08-20 Method for welding intersection part of tube

Publications (1)

Publication Number Publication Date
JPH1058139A true JPH1058139A (en) 1998-03-03

Family

ID=16721144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21851596A Pending JPH1058139A (en) 1996-08-20 1996-08-20 Method for welding intersection part of tube

Country Status (1)

Country Link
JP (1) JPH1058139A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290921A (en) * 2002-03-27 2003-10-14 Hitachi Ltd Multi-layer welding method, and multi-layer automatic welding equipment
JP2011016165A (en) * 2009-07-10 2011-01-27 Fanuc Ltd Method for arranging branch pipe on main pipe and welding the branch pipe to the main pipe, and method for arranging the branch pipe on the main pipe
CN106624262A (en) * 2016-12-31 2017-05-10 山东大学 Method and device for intelligent welding of intersection curve of round pipes
WO2017078528A1 (en) * 2015-11-05 2017-05-11 Heerema Fabrication Group Se Welding system and method for filling a welding groove of a branch connection between a first pipe section and a second pipe section
JP2017217659A (en) * 2016-06-06 2017-12-14 三菱日立パワーシステムズ株式会社 Control device of groove welding apparatus and groove welding method
CN108132017A (en) * 2018-01-12 2018-06-08 中国计量大学 A kind of plane welded seam Feature Points Extraction based on laser vision system
CN109145524A (en) * 2018-10-31 2019-01-04 哈尔滨阿尔特机器人技术有限公司 The multilayer multiple tracks acquisition methods of arrangement groove welding bead
JP2021013928A (en) * 2019-07-10 2021-02-12 日立造船株式会社 Automatic build-up welding method of bent pipe
CN113199112A (en) * 2021-05-17 2021-08-03 深圳泰德激光科技有限公司 Method for welding intersecting lines of pipes
CN114260630A (en) * 2022-01-20 2022-04-01 中广核工程有限公司 Welding system and welding control method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290921A (en) * 2002-03-27 2003-10-14 Hitachi Ltd Multi-layer welding method, and multi-layer automatic welding equipment
JP2011016165A (en) * 2009-07-10 2011-01-27 Fanuc Ltd Method for arranging branch pipe on main pipe and welding the branch pipe to the main pipe, and method for arranging the branch pipe on the main pipe
WO2017078528A1 (en) * 2015-11-05 2017-05-11 Heerema Fabrication Group Se Welding system and method for filling a welding groove of a branch connection between a first pipe section and a second pipe section
NL2015726B1 (en) * 2015-11-05 2017-05-24 Heerema Fabrication Group Se Welding system.
JP2017217659A (en) * 2016-06-06 2017-12-14 三菱日立パワーシステムズ株式会社 Control device of groove welding apparatus and groove welding method
CN106624262A (en) * 2016-12-31 2017-05-10 山东大学 Method and device for intelligent welding of intersection curve of round pipes
CN108132017A (en) * 2018-01-12 2018-06-08 中国计量大学 A kind of plane welded seam Feature Points Extraction based on laser vision system
CN109145524A (en) * 2018-10-31 2019-01-04 哈尔滨阿尔特机器人技术有限公司 The multilayer multiple tracks acquisition methods of arrangement groove welding bead
CN109145524B (en) * 2018-10-31 2023-04-18 哈尔滨阿尔特机器人技术有限公司 Multilayer and multichannel acquisition method for arranging groove weld beads
JP2021013928A (en) * 2019-07-10 2021-02-12 日立造船株式会社 Automatic build-up welding method of bent pipe
CN113199112A (en) * 2021-05-17 2021-08-03 深圳泰德激光科技有限公司 Method for welding intersecting lines of pipes
CN114260630A (en) * 2022-01-20 2022-04-01 中广核工程有限公司 Welding system and welding control method
CN114260630B (en) * 2022-01-20 2022-11-11 中广核工程有限公司 Welding system and welding control method
WO2023137817A1 (en) * 2022-01-20 2023-07-27 中广核工程有限公司 Welding systems and welding control methods

Similar Documents

Publication Publication Date Title
EP1486283B1 (en) Method of controlling the welding of a three-dimensional construction by taking a two-dimensional image of the construction and adjusting in real time in the third dimension
KR101051863B1 (en) Method and apparatus for controlling welding robot
US10835981B2 (en) Method for circumferential welding and a robotic welding system for circumferential welding
CN109623206B (en) Method for optimizing off-line planning welding gun pose in robot pipeline welding
JPS6037273A (en) Manipulator type welding apparatus
JPH1058139A (en) Method for welding intersection part of tube
CN112518072A (en) Spatial intersecting curve weld joint structure modeling method based on line structure light vision
CN112975190B (en) Multilayer multi-pass welding method, device, equipment and system based on visual sensing
CN107414248A (en) Towards the automatic welding system and method for the medium-and-large-sized bend pipe girth joint of ship
US6998569B2 (en) Apparatus and method for regulating the weld seam position during laser welding of a butt-jointed workpiece
WO2023137817A1 (en) Welding systems and welding control methods
JPH1094874A (en) Automatic welding method for tube joint
CN114309930B (en) Symmetrical double-station spray pipe laser welding equipment
CN110076501B (en) Method and system for obtaining multi-layer and multi-pass welding deformation angle of thick plate
CN114571154A (en) Tube plate welding method and device
JP2003154456A (en) Automatic welding equipment
JP5573315B2 (en) Automatic welding method and apparatus
JPS59215273A (en) Method for controlling welding position of spiral steel pipe
JPH08197254A (en) Automatic welding method and equipment therefor
CN114346485B (en) Close-packed pipe space curve laser welding track planning method under weld joint tracking
CN217180710U (en) Simulation test block for ultrasonic phased array detection of steel pipe arch bridge intersecting line welding seam
JPH11320092A (en) Nozzle automatic welding method
JPH0270384A (en) Automatic multilayer sequence arc welding process
JPS61226179A (en) Multilayer straddling automatic welding method
CN114346485A (en) Laser welding trajectory planning method for dense-arrangement pipe space curve under weld joint tracking

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020910