JPH1058019A - Method for detecting joined position between metallic slabs in continuous hot rolling - Google Patents

Method for detecting joined position between metallic slabs in continuous hot rolling

Info

Publication number
JPH1058019A
JPH1058019A JP8217473A JP21747396A JPH1058019A JP H1058019 A JPH1058019 A JP H1058019A JP 8217473 A JP8217473 A JP 8217473A JP 21747396 A JP21747396 A JP 21747396A JP H1058019 A JPH1058019 A JP H1058019A
Authority
JP
Japan
Prior art keywords
rolling
filter
continuous hot
hot rolling
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8217473A
Other languages
Japanese (ja)
Other versions
JP3330027B2 (en
Inventor
Toshibumi Kodama
俊文 児玉
Akira Torao
彰 虎尾
Makoto Okuno
眞 奥野
Junzo Nitta
純三 新田
Kiyoshi Ueda
潔 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21747396A priority Critical patent/JP3330027B2/en
Publication of JPH1058019A publication Critical patent/JPH1058019A/en
Application granted granted Critical
Publication of JP3330027B2 publication Critical patent/JP3330027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B15/0085Joining ends of material to continuous strip, bar or sheet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To always accurately detect the joined position between slabs rolled with a finish rolling equipment and simply execute it. SOLUTION: At the time of joining the rear end part of a preceding rolled stock to the tip part of the succeeding slab and detecting the position of the joined part between the slabs in continuous hot rolling for continuously rolling the slabs with the finish rolling equipment 6, rolling load in the finish rolling equipment 6 is detected. On the signal of rolling load, linear phase filters 15, 16 are acted such as amplitude frequency characteristic is a high-pass type having a preset cut-off frequency and steepness and phase frequency characteristic is only a simple delay component determined by preset delay factor and the min. values in a preset time section in the output signals of these linear phase filters 15, 16 is detected as the joined point between the rear end part of the preceding rolled stock and the tip part of the succeeding rolled stock.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スラブ等の金属片
の連続熱間圧延において、金属片とくに鋼片の接合部の
位置を検出する接合位置検出方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joining position detecting method for detecting a joining position of a metal piece, particularly a steel piece, in continuous hot rolling of a metal piece such as a slab.

【0002】[0002]

【従来の技術】従来、鋼片の熱間圧延ラインでは、被圧
延鋼片を一本ずつ加熱、粗圧延、仕上げ圧延して所望の
厚みの熱延鋼板に仕上げるようにしていた。しかし、こ
のような圧延方式では、仕上げ圧延での圧延材の噛み込
み不良によるライン停止が避けられず、また、圧延材の
先後端部の形状不良に起因した切り捨て部が発生するな
ど、生産効率や歩留りが悪いという不具合があった。
2. Description of the Related Art Conventionally, in a hot rolling line for a slab, a to-be-rolled slab is heated, rough-rolled, and finish-rolled one by one to finish a hot-rolled steel sheet having a desired thickness. However, in such a rolling method, it is inevitable that the line stops due to a biting failure of the rolled material in the finish rolling, and a truncated portion occurs due to a shape defect at the front and rear ends of the rolled material. And the yield was poor.

【0003】そこで、最近では、仕上げ圧延に先立っ
て、圧延すべき先行鋼片の後端部と後行鋼片の先端部と
を接合してつなぎ合わせ、これを仕上げ圧延機に連続的
に供給して圧延する連続熱間圧延方式が採用されるよう
になってきている。
Therefore, recently, prior to finish rolling, the rear end of the preceding steel slab to be rolled and the front end of the succeeding steel slab are joined and joined, and this is continuously supplied to the finish rolling mill. The continuous hot rolling method in which the rolling is performed is being adopted.

【0004】かかる連続熱間圧延方式では、連続圧延し
た鋼片を巻き取り装置の手前で、先行鋼片と後行鋼片と
を切断してコイル状に巻き取るようにしている。その巻
き取りにあたっては、先行鋼片と後行鋼片との接合部
を、先行鋼片の後端部に含ませてコイルの外巻きにする
ことが工程上望ましく、このためには、接合部の位置を
検出して、後行鋼片の先端部で鋼片を切断する必要があ
る。
In such a continuous hot rolling method, a continuously rolled steel slab is cut into a coil by cutting a preceding slab and a following slab before a winding device. At the time of winding, it is desirable in the process that the joining portion between the preceding billet and the succeeding billet is included in the rear end of the preceding billet to form an outer winding of the coil. It is necessary to detect the position of and to cut the billet at the tip of the succeeding billet.

【0005】このような圧延ラインにおける鋼片の接合
位置検出方法に関しては、(1) 圧延材接合部周辺に少な
くとも2つ以上の穴を長手方向に形成して、その穴をト
ラッキングする方法(特公平4−69004号公報参
照)、(2) 先行材後端部と後行材先端部とを、それら間
に幅差を設けて接合して、その幅差部分をトラッキング
する方法(特開平4−89136号公報参照)、(3) 接
合方法に起因して生じる温度偏差のパターンを接合後に
温度計で計測して記憶し、その記憶したパターンと、仕
上げ圧延機入り側からコイル巻き取りまでの間に設置し
た少なくとも1台以上の温度計で計測した温度偏差のパ
ターンとを照合する方法、等が従来より提案されてい
る。
[0005] As for such a method of detecting the joining position of the billet in the rolling line, (1) a method of forming at least two or more holes in the longitudinal direction around the joint of the rolled material and tracking the holes (particularly, (See Japanese Patent Publication No. Hei 4-69004), (2) A method of tracking the difference in width by joining the rear end of the preceding material and the front end of the following material with a width difference therebetween. (Refer to JP-A-89136), (3) The pattern of the temperature deviation caused by the joining method is measured and stored by a thermometer after the joining, and the stored pattern and the pattern from the entrance to the finish rolling mill to the coil winding are stored. Conventionally, a method of collating with a temperature deviation pattern measured by at least one or more thermometers installed therebetween has been proposed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記
(1) の方法にあっては、鋼板に穴を形成するため、その
部分は製品として出荷できず、切り捨てることになり、
歩留りの低下や切り捨て処理コストの増大を招くうえ、
穴検出器を新規に必要になるという問題がある。また、
(2) の方法にあっては、互いに異なる幅の鋼片を接合し
なければならないという工程上の制約が生じると共に、
部分的な幅偏差を接合部として誤検出するおそれがある
等の問題がある。さらに、(3) の方法にあっては、鋼板
走行中に接合部分の鋭い温度ピークを検出するには、放
射温度計の時間分解能が不十分であること、接合点付近
の温度偏差は、接合後の時間経過による鋼片内への熱伝
導や自然冷却および仕上げ圧延中の冷却水による冷却等
によって多様に変化するため、これらを全て考慮して温
度パターンを照合するためには、演算コストが増大する
等の問題がある。
SUMMARY OF THE INVENTION
In the method of (1), since a hole is formed in the steel sheet, that part cannot be shipped as a product and will be cut off.
In addition to lowering yield and increasing truncation costs,
There is a problem that a new hole detector is required. Also,
In the method (2), there is a process restriction that steel pieces having different widths must be joined, and
There is a problem that a partial width deviation may be erroneously detected as a joint. Furthermore, in the method of (3), the time resolution of the radiation thermometer is insufficient to detect a sharp temperature peak at the joint while the steel sheet is running. Since it changes variously due to heat conduction into the slab due to the passage of time later, natural cooling, and cooling by cooling water during finish rolling, etc., it is computational cost to collate the temperature pattern taking all these factors into consideration. There is a problem such as increase.

【0007】なお、センサ等による検出を要しない方法
として、(4) トラッキングにより推定した接合点と実際
の接合点との誤差、および切断装置の制御誤差に相当す
るシャー前ピンチロールとコイラマンドレルとの間の距
離の和だけ接合点の下流側を切断する方法も提案されて
いる(特開平7−100506号公報)。しかし、この
方法では、接合点が後行材のコイル内巻きに含まれてし
まうため、上記のような操業の要請には対応できない問
題がある。また、同様な手法で接合点を先行材後端部に
含むようにしても、接合点は最も安全サイドで設定され
るため、実際には接合点がコイルの外から数巻きも内側
に入ってしまうコイルが多数発生し、下工程での切り捨
てコストが増大する等の問題が生じることになる。
[0007] As a method that does not require detection by a sensor or the like, (4) an error between a joint point estimated by tracking and an actual joint point, and a pinch roll and a coiler mandrel before the shear corresponding to a control error of the cutting device. A method of cutting the downstream side of the junction just by the sum of the distances between the two has been proposed (Japanese Patent Laid-Open No. Hei 7-100506). However, this method has a problem that the joint cannot be satisfied with the above operation request because the joining point is included in the coil inner winding of the following material. Even if the joining point is included in the rear end of the preceding material by the same method, the joining point is set on the safest side, so the joining point actually goes inside the coil several turns from the outside of the coil Are generated, and problems such as an increase in the cost of truncation in the lower process are caused.

【0008】また、圧延ラインで鋼板の位置検出を行う
他の方法として、圧延機にロードセルを設置して圧延荷
重を検出し、その圧延荷重信号を微分フィルタに供給し
て、その微分フィルタの出力が予め設定した閾値を越え
た時点を板噛み開始点として検出するようにした板噛み
検出方法が知られている。ここで、微分フィルタは、荷
重信号の定常成分(オフセット成分)を除去する目的で
用いられる高域通過フィルタで、一般的には、コンデン
サや抵抗器およびインダクタ、さらに演算増幅器を組み
合わせたアナログ回路で構成されている。
As another method for detecting the position of a steel sheet in a rolling line, a load cell is installed in a rolling mill to detect a rolling load, a rolling load signal is supplied to a differential filter, and the output of the differential filter is output. A plate bite detection method is known in which a point at which a value exceeds a preset threshold is detected as a plate bite start point. Here, the differential filter is a high-pass filter used for removing a stationary component (offset component) of the load signal, and is generally an analog circuit combining a capacitor, a resistor, an inductor, and an operational amplifier. It is configured.

【0009】この板噛み検出方法は、圧延荷重信号を微
分処理するものであるから、この方法を連続熱間圧延に
適用して鋼片の接合部の位置を検出することも考えられ
る。すなわち、連続熱間圧延において、鋼片の接合部
は、回りの部分に比べて温度が高く、圧下時の変形抵抗
が小さいために、圧延荷重が局所的に小さくなり、板噛
みの場合と同様の信号波形が得られると考えられるから
である。
[0009] Since this plate bite detection method differentiates the rolling load signal, it may be conceivable to apply this method to continuous hot rolling to detect the position of the joint of the billets. In other words, in continuous hot rolling, the joints of the slabs are higher in temperature than the surrounding parts, and the deformation resistance at the time of reduction is small, so that the rolling load is locally reduced, similar to the case of plate biting. This is because it is considered that the following signal waveform is obtained.

【0010】そこで、本発明者は、連続熱間圧延におけ
る鋼片の接合位置を、上記の板噛み検出方法により検出
する試みを繰り返し行った。その結果、連続熱間圧延で
は、接合位置での圧延荷重信号の変動成分の周波数帯域
が広いために、上記のようなアナログ微分フィルタを用
いたのでは、その位相特性の分散の影響で変動成分の波
形やピーク部分の極性が変化したり、接合時のバリ残り
に起因する凸状ノイズが重畳するなどして、接合位置を
確実に検出することができない場合があることが判明し
た。
Therefore, the present inventor repeatedly performed an attempt to detect the joining position of the billet in the continuous hot rolling by the above-described plate bite detection method. As a result, in the continuous hot rolling, since the frequency band of the fluctuation component of the rolling load signal at the joining position is wide, if the analog differential filter as described above is used, the fluctuation component is affected by the dispersion of the phase characteristic. It has been found that the position of the joint cannot be reliably detected due to the change in the polarity of the waveform or the peak portion, or the superposition of the convex noise caused by the residual burr at the time of joining.

【0011】本発明は、上述した種々の問題点に着目し
てなされたもので、連続熱間圧延において、仕上げ圧延
設備で圧延された鋼片の接合位置を常に精度良く検出で
き、しかも簡単に実施できる鋼片の接合位置検出方法を
提供することを目的とするものである。
The present invention has been made in view of the various problems described above. In continuous hot rolling, the joining position of a slab rolled by a finish rolling facility can always be detected with high accuracy, and it can be easily performed. It is an object of the present invention to provide a method for detecting a joint position of a billet that can be implemented.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、この発明は、先行圧延材の後端部と後行圧延材の先
端部とを接合して、仕上げ圧延設備で連続的に圧延する
連続熱間圧延における鋼片の接合部の位置を検出するに
あたり、前記仕上げ圧延設備における圧延荷重を検出
し、その圧延荷重信号に対して、振幅周波数特性が予め
設定される遮断周波数と急峻度とを有する高域通過型
で、かつ位相周波数特性が予め設定された遅延係数で決
定される単純遅れ成分のみであるような線形位相フィル
タを作用させ、この線形位相フィルタの出力信号中の予
め設定した時間区間における最小値を、前記先行圧延材
の後端部と後行圧延材の先端部との接合点として検出す
ることを特徴とするものである。
In order to achieve the above-mentioned object, the present invention joins a rear end of a preceding rolled material and a front end of a succeeding rolled material and continuously rolls them in a finishing rolling facility. Upon detecting the position of the joint of the slab in continuous hot rolling, detect the rolling load in the finishing rolling equipment, for the rolling load signal, the cut-off frequency and steepness, the amplitude frequency characteristics of which are set in advance. A high-pass type having a linear phase filter having only a simple delay component whose phase frequency characteristic is determined by a preset delay coefficient is applied, and a preset value in an output signal of the linear phase filter is set. The minimum value in the time section is detected as a joining point between the rear end of the preceding rolled material and the front end of the succeeding rolled material.

【0013】前記線形位相フィルタは、その振幅周波数
特性が帯域通過型となるようにするのが、不要な高周波
ノイズをも除去する点で好ましい。
It is preferable that the linear phase filter has an amplitude frequency characteristic of a band pass type in that unnecessary high frequency noise is also removed.

【0014】[0014]

【発明の実施の形態】図1は、本発明を実施するのに適
した連続熱間圧延設備の一例の構成を示すものである。
この連続熱間圧延設備は、順次の被圧延材を粗圧延機1
で粗圧延しながら、各圧延材の先端部および後端部を入
り側切断装置2で切断して接合装置3に供給し、ここで
先行圧延材4の後端部と後行圧延材5の先端部とを接合
したのち、仕上げ圧延機6で仕上げ圧延し、その圧延さ
れた鋼帯を切断装置7で切断して巻き取り装置8により
コイル状に巻き取るものである。ここで、仕上げ圧延機
6は、一般的には、例えば、7スタンド程度の複数段で
構成され、各スタンドには、圧延荷重を制御するため
に、ロードセル等の力検出手段10が設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the configuration of an example of a continuous hot rolling facility suitable for carrying out the present invention.
This continuous hot rolling equipment is used to sequentially roll the material to be rolled.
While rough rolling is performed, the leading end and the trailing end of each rolled material are cut by the entry side cutting device 2 and supplied to the joining device 3, where the rear end of the preceding rolled material 4 and the trailing rolled material 5 After joining with the tip, the rolling is finished by a finishing mill 6, and the rolled steel strip is cut by a cutting device 7 and wound into a coil by a winding device 8. Here, the finishing rolling mill 6 is generally composed of, for example, a plurality of stages of about seven stands, and each stand is provided with a force detecting means 10 such as a load cell in order to control a rolling load. I have.

【0015】この発明の一実施形態では、仕上げ圧延機
6の任意のスタンド、好ましくは最終スタンドの力検出
手段10からの圧延荷重信号を、線形位相フィルタを有
する波形解析装置11に供給して鋼片の接合部を検出す
る。
In one embodiment of the present invention, a rolling load signal from a force detecting means 10 of an optional stand of the finishing mill 6, preferably a final stand, is supplied to a waveform analyzing apparatus 11 having a linear phase filter to produce a steel sheet. Detect the joint of the pieces.

【0016】ここで、力検出手段10で実測される圧延
荷重信号波形は、例えば、図3に示すようになる。すな
わち、接合部分以外の部分では、圧延荷重がほぼ一定と
なり、接合部を含む近傍では、鋼片が重なることから圧
延荷重が設定量よりも増大すると共に、接合部では回り
の部分に比べて温度が高く、圧下時の変形抵抗が小さく
なることから、圧延荷重が局所的に小さくなる。したが
って、図3に示す接合位置に相当する荷重の極小点(時
刻tX )を検出すれば良いことになる。
Here, a rolling load signal waveform actually measured by the force detecting means 10 is as shown in FIG. 3, for example. In other words, in portions other than the joint, the rolling load becomes substantially constant, and in the vicinity including the joint, the billet overlaps with the slab, so that the rolling load increases more than the set amount, and the temperature in the joint is higher than the surrounding portion. And the rolling resistance is locally reduced because the deformation resistance during rolling is low. Therefore, it is sufficient to detect the minimum point of the load corresponding to the joint position shown in FIG. 3 (time t X).

【0017】次に、本発明で使用する線形位相フィルタ
について説明する。波形の微分処理などをアナログ処理
するフィルタは、その段数をNとすると、伝達関数H
(ω)は、
Next, the linear phase filter used in the present invention will be described. When the number of stages is N, the transfer function H
(Ω) is

【数1】 という有理式で表される。(1)式において、ωは周波
数を表す変数であり、またjはj2 =−1なる虚数単位
である。
(Equation 1) It is expressed by a rational expression. In the equation (1), ω is a variable representing a frequency, and j is an imaginary unit of j 2 = −1.

【0018】このようなN次の有理式の伝達関数で表さ
れるフィルタの位相成分(周波数特性の偏角)は、一般
に知られているように、フィルタのカットオフ周波数、
すなわち伝達関数の極の近傍を中心に、(N/2)π(r
ad) 変化する。このため、先に説明したように、単一パ
ルス波形のようなフィルタのカットオフ周波数を越える
波形をフィルタに入力すると、周波数成分毎に時間的な
ズレが生じて、フィルタ通過後の波形が時間的に長いも
のとなってしまう。
As is generally known, the phase component (declination of the frequency characteristic) of the filter represented by the N-th order rational transfer function is, as generally known, the cutoff frequency of the filter,
That is, with the vicinity of the pole of the transfer function as the center, (N / 2) π (r
ad) It changes. For this reason, as described above, when a waveform such as a single pulse waveform that exceeds the cutoff frequency of the filter is input to the filter, a time shift occurs for each frequency component, and the waveform after passing through the filter becomes time-dependent. Will be long.

【0019】このような現象を解消するために、フィル
タの周波数特性を保ったまま、その位相遅れを消去する
には、フィルタの伝達関数H(ω)を実関数にすればよ
いが、一般に知られているように、このような伝達関数
を上記のような有理式で実現するのは困難である。この
ことは、式(1)を離散化した形式の巡回型ディジタル
フィルタにおいても同様である。
In order to eliminate such a phenomenon, in order to eliminate the phase lag while maintaining the frequency characteristics of the filter, the transfer function H (ω) of the filter may be a real function. As described above, it is difficult to realize such a transfer function by the above-mentioned rational formula. This is the same in a recursive digital filter of the form in which equation (1) is discretized.

【0020】そこで、本発明の一実施形態では、線形位
相フィルタを移動平均型のディジタルフィルタをもって
構成して所望の周波数特性を実現する。一般に知られて
いるように、実関数X(ω)の逆フーリエ変換x(t)
は偶関数であるから、位相遅れが全周波数帯域に対し常
に零であるようなフィルタは、そのインパルス応答h
(t)のt<0での成分が非零となり、すなわち非因果
的となって実現不可能である。しかし、このフィルタの
インパルス応答h(t)に、ある遅延時間αを設けて、
Therefore, in one embodiment of the present invention, a desired frequency characteristic is realized by configuring the linear phase filter with a moving average type digital filter. As is generally known, the inverse Fourier transform x (t) of the real function X (ω)
Is an even function, a filter whose phase delay is always zero over the entire frequency band has its impulse response h
The component of (t) at t <0 becomes non-zero, that is, non-causal and unrealizable. However, by providing a certain delay time α to the impulse response h (t) of this filter,

【数2】 とすれば、実現可能となる。つまり、所望の周波数特性
(遮断周波数および急峻度)を逆フーリエ変換すること
で算出したインパルス応答に、一定の遅延定数αを加え
たフィルタを構成すればよい。
(Equation 2) Then, it becomes feasible. That is, a filter in which a constant delay constant α is added to an impulse response calculated by performing inverse Fourier transform on a desired frequency characteristic (cutoff frequency and steepness) may be configured.

【0021】このようにして算出したインパルス応答を
もつフィルタは、アナログ素子では構成が複雑となり、
困難であるが、前記のインパルス応答をサンプリング周
期Tで離散化した移動平均型ディジタルフィルタを用い
れば、容易に実現することができる。また、遅延定数α
としては、フィルタのインパルス応答が十分収束する時
間長さ(ディジタル演算の場合は、サンプル数)を用い
ればよく、前記の逆フーリエ解析のデータ長をLとした
場合、1/(2L+1)とすればよいが、本発明の場合
には、好適には、L=128TないしL=256Tで、
α=65Tないしα=129Tとする。
The filter having the impulse response calculated as described above has a complicated configuration with analog elements.
Although difficult, it can be easily realized by using a moving average type digital filter in which the impulse response is discretized at a sampling period T. Also, the delay constant α
It is sufficient to use the time length (the number of samples in the case of digital operation) in which the impulse response of the filter sufficiently converges, and if the data length of the inverse Fourier analysis is L, it is 1 / (2L + 1). In the case of the present invention, preferably, L = 128T to L = 256T,
α = 65T to α = 129T.

【0022】また、以上の手順は、広く知られているフ
ーリエ変換の公式、
The above procedure is based on a widely known Fourier transform formula,

【数3】 から明らかなように、所望の周波数特性に遅延定数αを
係数に持つ直線的な位相成分を与えてから、逆フーリエ
変換によりha (t)を算出し、それを離散化してフィ
ルタ係数列を求めても等価である。
(Equation 3) As is apparent from the above, after giving a linear phase component having a delay constant α as a coefficient to a desired frequency characteristic, h a (t) is calculated by an inverse Fourier transform, and it is discretized to form a filter coefficient sequence. It is equivalent if found.

【0023】また、一般に、微分処理を行う高域フィル
タは、高周波ノイズを強調する副作用が知られているた
め、荷重波形中に微小な高周波ノイズが混入している場
合には、前記のH(ω)として、低周波成分と同時に、
このような不要な高周波帯域もカットする帯域通過特性
を用いればよい。
In general, a high-pass filter that performs a differentiation process is known to have a side effect of enhancing high-frequency noise. Therefore, when minute high-frequency noise is mixed in a load waveform, the H ( ω) at the same time as the low frequency component
A band pass characteristic that also cuts such unnecessary high frequency bands may be used.

【0024】かかるフィルタ演算において、出力波形
は、入力レベルに比べて一定時間、すなわち、
In such a filter operation, the output waveform has a certain period of time compared to the input level, ie,

【数4】 サンプルだけ遅れることになるが、上記の好適例の場
合、たかだか100数十サンプル程度と小さいので、そ
の影響は小さく、補正しなくてもよいが、この遅延時間
は、予め知られている値であるから、その補正をしても
よい。
(Equation 4) Although it is delayed only by a sample, in the case of the above preferred example, the effect is small because it is as small as about 100 or more dozens of samples, and it is not necessary to correct it. However, this delay time is a known value. Therefore, the correction may be made.

【0025】以上説明したように構成される線形位相フ
ィルタを用いれば、図3に示した荷重信号波形は、図4
に示すように処理され、接合位置での荷重変動が、波形
の乱れやバリ部の重畳なく出力されるので、例えば、一
般的に知られている最小値探索法により、その波形の最
小値を与える時刻tx を算出することにより、当該スタ
ンドにおいて鋼片の接合位置を正確かつ確実に検出する
ことが可能となる。
Using the linear phase filter configured as described above, the load signal waveform shown in FIG.
Is processed as shown in the above, and the load fluctuation at the joining position is output without the disturbance of the waveform or the superposition of the burr portion. Therefore, for example, the minimum value of the waveform is obtained by a generally known minimum value search method. by calculating the time t x which gives, it can be detected accurately and reliably joining position of the steel strip in the stand.

【0026】なお、上記のような波形の最小値探索を行
うには、鋼片の接合位置が仕上げ圧延機6の最終段を通
過する時点を含むように、その力検出手段10からの荷
重信号の取り込み開始時点および終了時点を適切に設定
する。例えば、取り込み開始時点は、接合終了時点と
し、取り込み終了時点は、予想される先行圧延材の圧延
終了時刻に最大時間誤差を加えた時点に設定する。
In order to search for the minimum value of the waveform as described above, the load signal from the force detecting means 10 is set so as to include the time when the joining position of the billet passes the final stage of the finishing mill 6. Set the start time and end time of the capture of data appropriately. For example, the take-in start time is set to the joining end time, and the take-in end time is set to a time obtained by adding the maximum time error to the expected rolling end time of the preceding rolled material.

【0027】さらに、板速計やメジャーリングロール等
の鋼帯速度検出手段を用いて、検出された接合点の通過
時刻を起点として速度を積算すれば、仕上げ圧延機6の
出側から切断装置7の入り側までの間で、鋼片中の接合
位置を常時トラッキングすることができる。具体的に
は、力検出手段10からの荷重信号の取り込み開始時刻
をt0 、取り込み時間長をt1 、取り込み開始時刻t0
から最小値検出時点までの時間長をtx 、仕上げ圧延機
6の出側での板速をv(t) とすると、仕上げ圧延機6の
出側を通過後の接合位置の距離D(t) は、
Further, by using a steel strip speed detecting means such as a sheet speed meter or a measuring roll to accumulate the speed starting from the detected passing time of the joining point, the cutting device can be started from the exit side of the finishing mill 6. The joining position in the steel slab can be constantly tracked up to the entry side of 7. Specifically, the load start time of the load signal from the force detection means 10 is t 0 , the load time length is t 1 , and the load start time t 0.
Assuming that the time length from the time t to the minimum value detection time is t x , and the sheet speed at the exit side of the finishing mill 6 is v (t), the distance D (t) of the joining position after passing through the exit side of the finishing mill 6 )

【数5】 で表される。したがって、上記(4)式で表される接合
点の位置情報をもとに、鋼帯の切断位置を設定すれば、
操業上望ましい位置で正確に切断することが可能とな
る。
(Equation 5) It is represented by Therefore, if the cutting position of the steel strip is set based on the position information of the joining point represented by the above equation (4),
It is possible to cut accurately at a position desirable for operation.

【0028】[0028]

【実施例】以下、本発明の一実施例について、図1〜4
を参照して説明する。本発明の一実施例では、図1に示
したように、連続熱間圧延設備の仕上げ圧延機6の最終
スタンドに設けられた力検出手段10で、圧延荷重を電
圧信号として検出し、この圧延荷重信号を線形位相フィ
ルタを有する波形解析装置11に供給する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.
This will be described with reference to FIG. In one embodiment of the present invention, as shown in FIG. 1, the rolling load is detected as a voltage signal by a force detecting means 10 provided in the final stand of the finishing mill 6 of the continuous hot rolling equipment, and this rolling is performed. The load signal is supplied to a waveform analyzer 11 having a linear phase filter.

【0029】波形解析装置11は、図2に示すように、
増幅器12、アナログフィルタ13、A/D変換器1
4、線形位相フィルタ(ディジタルフィルタ)を構成す
るフィルタ演算回路15および記憶装置16、波形演算
回路17を有する。力検出手段10で検出した圧延荷重
信号は、増幅器12で0〜10ボルト程度の適切な範囲
の電圧に増幅した後、必要に応じてアナログフィルタ1
3に供給し、ここで工場中で飛来する電磁ノイズ等の不
要な帯域の信号を除去した後、A/D変換器14で電圧
波形を一定のサンプリング周期Tでサンプリングしてデ
ィジタルの離散データx(i)に変換し、フィルタ演算
回路15に供給する。
As shown in FIG. 2, the waveform analyzer 11
Amplifier 12, analog filter 13, A / D converter 1
4. It has a filter operation circuit 15, a storage device 16, and a waveform operation circuit 17 which constitute a linear phase filter (digital filter). The rolling load signal detected by the force detecting means 10 is amplified by an amplifier 12 to a voltage in an appropriate range of about 0 to 10 volts, and then the analog filter 1
After removing unnecessary band signals such as electromagnetic noise flying in the factory, the A / D converter 14 samples the voltage waveform at a constant sampling period T and outputs digital discrete data x. (I) and supplies it to the filter operation circuit 15.

【0030】フィルタ演算回路15では、離散データx
(i)と記憶装置16からのフィルタ係数列h(n)と
の線形畳み込み演算式、
In the filter operation circuit 15, discrete data x
(I) and a linear convolution operation expression of the filter coefficient sequence h (n) from the storage device 16,

【数6】 に基づくフィルタ演算を行って、その演算結果を波形演
算回路17に供給する。なお、フィルタ係数列h(n)
は、上述したように設定して予め記憶装置16に格納し
ておく。
(Equation 6) , And supplies the calculation result to the waveform calculation circuit 17. Note that the filter coefficient sequence h (n)
Are set as described above and stored in the storage device 16 in advance.

【0031】波形演算回路17では、フィルタ演算回路
15の出力から、上述したように予め設定した適切な時
間長さτにおける最小値を探索して時刻tx を算出し、
その算出時刻tx を図示しない表示装置に表示させる
か、上位のプロセス計算機に供給する。
The waveform calculation circuit 17 searches the output of the filter calculation circuit 15 for a minimum value at an appropriate predetermined time length τ as described above, and calculates a time t x .
It should be displayed on a display device (not shown) the calculated time t x, and supplies to a higher process computer.

【0032】次に、上記の構成において、連続熱間圧延
操業時の接合位置検出を行った具体例について説明す
る。まず、波形解析装置11における諸元を下表のよう
に設定した。
Next, a description will be given of a specific example of detecting the joining position during the continuous hot rolling operation in the above configuration. First, the specifications of the waveform analyzer 11 were set as shown in the table below.

【表1】 [Table 1]

【0033】かかる諸元を有する波形解析装置11に、
力検出手段10で検出された図3に示す荷重信号波形を
供給したところ、フィルタ演算回路15から図4に示す
出力波形が得られ、鋼片の接合位置を正しく検出でき
た。なお、従来提案されている上述した圧延荷重信号を
微分処理する板噛み検出方法を適用して接合位置の検出
を行ったところ、検出ミスが発生したり、検出位置誤差
も6m程度あった。これに対し、上記の具体例では、検
出ミスが0で、検出位置誤差も1m以内とすることがで
きた。
The waveform analyzer 11 having the above specifications includes:
When the load signal waveform shown in FIG. 3 detected by the force detecting means 10 was supplied, the output waveform shown in FIG. 4 was obtained from the filter operation circuit 15, and the joint position of the billet could be correctly detected. In addition, when the joining position was detected by applying the above-described plate bite detection method of differentiating the rolling load signal, a detection error occurred and a detection position error was about 6 m. On the other hand, in the above specific example, the detection error was 0 and the detection position error could be kept within 1 m.

【0034】また、他の具体例として、上記表における
ディジタルフィルタ(線形位相フィルタ)の周波数特性
を、通過域が20Hz〜100Hzの帯域通過特性を持
つものに変更して、同様な検出を行ったところ、この場
合も接合位置を正しく検出することができた。
As another specific example, the same detection was performed by changing the frequency characteristics of the digital filter (linear phase filter) in the above table to those having a band-pass characteristic of 20 Hz to 100 Hz. However, also in this case, the joining position could be correctly detected.

【0035】[0035]

【発明の効果】本発明によれば、連続熱間圧延におい
て、鋼片の接合位置を、検出漏れや過検出を生じること
なく、常に精度良く検出することができる。したがっ
て、連続熱間圧延材の巻き取り時のコイル切断位置を最
適に設定することができるので、材料の切り捨て等を低
減でき、製品歩留りを向上できると共に、接合位置の検
出漏れや過検出を防止できることから、巻き取り異常に
よる不良コイルの発生や工程トラブルの発生を有効に防
止でき、生産性を向上することができる。さらに、仕上
げ圧延設備における圧延荷重信号は、圧延機に通常設置
されているロードセル等の力検出手段から得ることがで
きるので、簡単かつ安価に実施することができる。
According to the present invention, in continuous hot rolling, the joining position of a billet can always be detected with high accuracy without causing detection omission or overdetection. Therefore, it is possible to optimally set the coil cutting position when winding the continuous hot-rolled material, which can reduce material truncation and the like, improve the product yield, and prevent detection omission and overdetection of the bonding position. As a result, it is possible to effectively prevent the occurrence of defective coils and the occurrence of process troubles due to abnormal winding, thereby improving the productivity. Further, since the rolling load signal in the finishing rolling equipment can be obtained from a force detecting means such as a load cell usually installed in a rolling mill, it can be implemented simply and inexpensively.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する連続熱間圧延設備の一例の構
成を示す図である。
FIG. 1 is a diagram showing a configuration of an example of a continuous hot rolling facility for implementing the present invention.

【図2】図1に示す波形解析装置の一例の構成を示すブ
ロック図である。
FIG. 2 is a block diagram showing a configuration of an example of a waveform analyzer shown in FIG.

【図3】図1、図2に示す仕上げ圧延機の力検出手段か
ら得られる荷重信号波形の一例を示す図である。
FIG. 3 is a diagram showing an example of a load signal waveform obtained from a force detecting means of the finishing mill shown in FIGS. 1 and 2;

【図4】本発明に従って、図3に示す荷重信号波形をフ
ィルタリング処理して得られる出力波形を示す図であ
る。
4 is a diagram showing an output waveform obtained by performing a filtering process on the load signal waveform shown in FIG. 3 according to the present invention.

【符号の説明】[Explanation of symbols]

1 粗圧延機 2 入り側切断装置 3 接合装置 4 先行圧延材 5 後行圧延材 6 仕上げ圧延機 7 切断装置 8 巻き取り装置 10 力検出手段 11 波形解析装置 12 増幅器 13 アナログフィルタ 14 A/D変換器 15 フィルタ演算回路 16 記憶装置 17 波形演算回路 DESCRIPTION OF SYMBOLS 1 Rough rolling machine 2 Entry side cutting device 3 Joining device 4 Lead rolling material 5 Trailing rolling material 6 Finishing rolling machine 7 Cutting device 8 Winding device 10 Force detecting means 11 Waveform analyzer 12 Amplifier 13 Analog filter 14 A / D conversion 15 Filter operation circuit 16 Storage device 17 Waveform operation circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥野 眞 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 新田 純三 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 植田 潔 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Makoto Okuno 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Inside the Technical Research Institute of Kawasaki Steel (72) Inventor Junzo Nitta 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Address: Kawasaki Steel Corporation Chiba Works (72) Inventor Kiyoshi Ueda 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Corporation Chiba Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 先行圧延材の後端部と後行圧延材の先端
部とを接合して、仕上げ圧延設備で連続的に圧延する連
続熱間圧延における金属片の接合部の位置を検出するに
あたり、 前記仕上げ圧延設備における圧延荷重を検出し、 その圧延荷重信号に対して、振幅周波数特性が予め設定
される遮断周波数と急峻度とを有する高域通過型で、か
つ位相周波数特性が予め設定された遅延係数で決定され
る単純遅れ成分のみであるような線形位相フィルタを作
用させ、 この線形位相フィルタの出力信号中の予め設定した時間
区間における最小値をとる時間を、前記先行圧延材の後
端部と後行圧延材の先端部との接合点として検出するこ
とを特徴とする連続熱間圧延における金属片の接合位置
検出方法。
1. A joining position of a metal piece in continuous hot rolling in which a rear end portion of a preceding rolled material is joined to a leading end portion of a succeeding rolled material to continuously roll in a finishing rolling facility. In detecting the rolling load in the finishing rolling equipment, a high-pass type having a cutoff frequency and a steepness whose amplitude frequency characteristics are set in advance with respect to the rolling load signal, and the phase frequency characteristics are set in advance. A linear phase filter that is only a simple delay component determined by the determined delay coefficient is actuated, and the time to take the minimum value in a preset time section in the output signal of the linear phase filter is determined as the time of the preceding rolled material. A method for detecting a joint position of a metal piece in continuous hot rolling, wherein the method detects the joint position between a rear end portion and a front end portion of a succeeding rolled material.
【請求項2】 請求項1記載の接合位置検出方法におい
て、 前記線形位相フィルタの振幅周波数特性が、帯域通過型
となるようにしたことを特徴とする連続熱間圧延におけ
る金属片の接合位置検出方法。
2. The joining position detecting method according to claim 1, wherein the amplitude frequency characteristic of the linear phase filter is of a band-pass type. Method.
JP21747396A 1996-08-19 1996-08-19 Detecting method of joining position of metal pieces in continuous hot rolling Expired - Fee Related JP3330027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21747396A JP3330027B2 (en) 1996-08-19 1996-08-19 Detecting method of joining position of metal pieces in continuous hot rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21747396A JP3330027B2 (en) 1996-08-19 1996-08-19 Detecting method of joining position of metal pieces in continuous hot rolling

Publications (2)

Publication Number Publication Date
JPH1058019A true JPH1058019A (en) 1998-03-03
JP3330027B2 JP3330027B2 (en) 2002-09-30

Family

ID=16704794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21747396A Expired - Fee Related JP3330027B2 (en) 1996-08-19 1996-08-19 Detecting method of joining position of metal pieces in continuous hot rolling

Country Status (1)

Country Link
JP (1) JP3330027B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142899A (en) * 2009-03-27 2009-07-02 Mitsubishi-Hitachi Metals Machinery Inc Equipment and method for hot-rolling continued steel strip
JP2015134374A (en) * 2013-12-20 2015-07-27 株式会社神戸製鋼所 Plate thickness control method for rolling machine
CN105537284A (en) * 2016-01-25 2016-05-04 东北大学 Temperature forecasting method for finish rolling inlet during hot continuous rolling
JP2020104171A (en) * 2018-12-27 2020-07-09 Jfeスチール株式会社 Welding point tracking correction method and welding point tracking correction device
WO2020152868A1 (en) * 2019-01-25 2020-07-30 Primetals Technologies Japan, Ltd. Rolling equipment and rolling method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142899A (en) * 2009-03-27 2009-07-02 Mitsubishi-Hitachi Metals Machinery Inc Equipment and method for hot-rolling continued steel strip
JP2015134374A (en) * 2013-12-20 2015-07-27 株式会社神戸製鋼所 Plate thickness control method for rolling machine
CN105537284A (en) * 2016-01-25 2016-05-04 东北大学 Temperature forecasting method for finish rolling inlet during hot continuous rolling
JP2020104171A (en) * 2018-12-27 2020-07-09 Jfeスチール株式会社 Welding point tracking correction method and welding point tracking correction device
WO2020152868A1 (en) * 2019-01-25 2020-07-30 Primetals Technologies Japan, Ltd. Rolling equipment and rolling method
CN113056337A (en) * 2019-01-25 2021-06-29 普锐特冶金技术日本有限公司 Rolling equipment and rolling method
JP2022510464A (en) * 2019-01-25 2022-01-26 Primetals Technologies Japan株式会社 Rolling equipment and rolling method
CN113056337B (en) * 2019-01-25 2023-11-28 普锐特冶金技术日本有限公司 Rolling equipment and rolling method

Also Published As

Publication number Publication date
JP3330027B2 (en) 2002-09-30

Similar Documents

Publication Publication Date Title
CN104307892B (en) The method of band head correction in tandem rolling crossing process
CN105834225A (en) Thickness controlling method for flying gauge changing rolling of cold tandem mill and controlling system for cold tandem mill
JP3330027B2 (en) Detecting method of joining position of metal pieces in continuous hot rolling
JP4878485B2 (en) Cold continuous rolling equipment
US6216503B1 (en) Method for setting operating conditions for continuous hot rolling facilities
WO2022230230A1 (en) Method for manufacturing cold-rolled steel sheet, and manufacturing facility
EP1491268B1 (en) Method for cold rolling metal strip
JP3689967B2 (en) Method for measuring plate edge shape of rolled material in continuous hot rolling
JPH09295020A (en) Flying thickness changing method of metal plate in continuous type tandem rolling mill
JP3826762B2 (en) Thickness control method
JP3292564B2 (en) Hot rolled steel strip rolling method
JP3331041B2 (en) Tracking method of slab joint in continuous hot rolling.
CN114178321B (en) Method for reducing cold rolling force
JPS63235022A (en) Method for detecting lap flaw on strip coil
TWI814254B (en) Data collection device
KR20040056279A (en) Continuous cold rolling method of sheet steel
WO2022230229A1 (en) Cold-rolled steel sheet manufacturing method and cold-rolled steel sheet manufacturing facility
JP4477269B2 (en) Method and system for removing defective front and rear end portions of coil material
JPS60206505A (en) Continuous cold rolling method
JP3359566B2 (en) Method for preventing coil winding deviation, band, and steel strip
JP2941553B2 (en) Diagnosis method for avoiding plate steps of coiler
JP2019051534A (en) Abnormality detection method and abnormality detection device
JP3328503B2 (en) Joining method of materials to be rolled in continuous hot rolling
JP3164339B2 (en) Rolling method of joint
SU908452A1 (en) Strip rolling method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees