JPH1057065A - Primer set for amplifying sarcoglycan gene product and amplification of the same gene prodect - Google Patents

Primer set for amplifying sarcoglycan gene product and amplification of the same gene prodect

Info

Publication number
JPH1057065A
JPH1057065A JP8216508A JP21650896A JPH1057065A JP H1057065 A JPH1057065 A JP H1057065A JP 8216508 A JP8216508 A JP 8216508A JP 21650896 A JP21650896 A JP 21650896A JP H1057065 A JPH1057065 A JP H1057065A
Authority
JP
Japan
Prior art keywords
leu
val
gly
thr
pro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8216508A
Other languages
Japanese (ja)
Inventor
Eiji Sakamoto
英二 阪本
Fumio Hanaoka
文雄 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP8216508A priority Critical patent/JPH1057065A/en
Publication of JPH1057065A publication Critical patent/JPH1057065A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the subject primer set, capable of screening a base mutation readily causing diseases and useful for amplification, etc., by hybridizing thereof with a part of an upstream region, etc., adjacent to a translated region of a specific sarcoglycan gene product. SOLUTION: This primer set is capable of respcrctively hybridizing with at least a part of an upstream and a downstream regions adjacent to a translated region of a sarcoglycan gene product containing a base sequence, etc., represented by the formula. Furthermore, the oligonucleotide primer set comprises at least one set of CCCCTGTCTC TGTCACTCAC C, GGCTGGACCT GGAACCACTG G, etc., and the primer set and a polymerase are used to provide 21 kit for amplifying a sarcoglycan gene product. The resultant kit is preferably used to carry out a polymerase chain reaction and amplify the sarcoglycan gene product.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、サルコグリカン遺
伝子産物増幅用プライマーセット及び該遺伝子産物の増
幅方法に関する。
The present invention relates to a primer set for amplifying a sarcoglycan gene product and a method for amplifying the gene product.

【0002】[0002]

【従来の技術】筋ジストロフィー症とは、骨格筋に一次
的な変性をきたす進行性遺伝性疾患群の総称である。発
病年齢、罹患筋分析、臨床経過などによりデュシャンヌ
(Duchenne) 型筋ジストロフィー、肢帯型筋ジストロフ
ィー、筋緊張性ジストロフィーのほか、顔面肩甲上腕
型、先天性、遠位型、眼筋型などの病型に分類される。
また、加齢と共に症状が悪化するものを進行性であると
いう。
2. Description of the Related Art Muscular dystrophy is a general term for a group of progressive hereditary diseases that cause primary degeneration of skeletal muscle. Disease types such as Duchenne muscular dystrophy, limb girdle muscular dystrophy, myotonic dystrophy, facial scapulohumeral type, congenital, distal type, ocular muscle type, etc. according to the age of onset, affected muscle analysis, clinical course, etc. are categorized.
Those whose symptoms worsen with age are called progressive.

【0003】これら筋ジストロフィー症は、臨床症状が
酷似していても異なる原因遺伝子により引き起こされる
ことがあるので(遺伝的多型)、特に将来的な遺伝子治
療を可能にするためには、分子生物学的、遺伝学的な解
析が必要とされる。進行性筋ジストロフィー症のうち、
原因遺伝子が同定されていたのは、以前は、性(X)染
色体に連鎖したデュシャンヌ型筋ジストロフィー症のみ
であった(Koenig,M. et al., Cell 53, 219-228 (198
8))。
[0003] Since these muscular dystrophy diseases can be caused by different causative genes even though clinical symptoms are very similar (genetic polymorphism), especially in order to enable future gene therapy, molecular biology is required. And genetic analysis is required. Of progressive muscular dystrophy,
Previously, the causative gene was identified only in Duchenne muscular dystrophy linked to the sex (X) chromosome (Koenig, M. et al., Cell 53, 219-228 (198
8)).

【0004】しかし、最近、常染色体に連鎖した肢帯型
筋ジストロフィー症の原因遺伝子が同定された(Roberd
s,S.L. et al.,Cell 78(4) 625-633 (1994); Bonnenman
n,C.G. et al.,Nature Genet. 11(3) 266-273 (1995);
Noguchi,S. et al.,Science270, 819-822 (1995))。そ
して、デュシャンヌ型筋ジストロフィー症はジストロフ
ィンと呼ばれる細胞膜の裏打ちタンパク質の異常が原因
であるのに対し、肢帯型筋ジストロフィー症はサルコグ
リカンと呼ばれるジストロフィンに結合するタンパク質
の異常が原因であることが判明した。
However, recently, a causative gene of limb-girdle muscular dystrophy linked to an autosome was identified (Roberd
s, SL et al., Cell 78 (4) 625-633 (1994); Bonnenman
n, CG et al., Nature Genet. 11 (3) 266-273 (1995);
Noguchi, S. et al., Science 270, 819-822 (1995)). It has been found that Duchenne muscular dystrophy is caused by an abnormality in a cell membrane lining protein called dystrophin, whereas limb-girdle muscular dystrophy is caused by an abnormality in a protein that binds to dystrophin called sarcoglycan.

【0005】サルコグリカンには、α−サルコグリカ
ン、β−サルコグリカン及びγ−サルコグリカンの3種
類があり、そのいずれのサルコグリカンをコードする遺
伝子に変異(塩基配列の置換、欠失、挿入等)が生じて
も肢帯型筋ジストロフィー症になる。したがって、上記
3種類のサルコグリカンをコードするいずれかの遺伝子
又はその遺伝子に相当するcDNA(遺伝子産物)を検
出することができれば、遺伝子の変異の有無を指標とし
てその検出手法を肢帯型筋ジストロフィー症の診断等に
利用し得る。そのためには、検出し得る程度にまで上記
遺伝子等を増幅する必要がある。
There are three types of sarcoglycans, α-sarcoglycan, β-sarcoglycan, and γ-sarcoglycan, and any of the sarcoglycan-encoding genes is mutated (substitution, deletion, insertion, etc. of the base sequence). ) Will result in limb girdle muscular dystrophy. Therefore, if any of the three sarcoglycan-encoding genes or a cDNA (gene product) corresponding to the gene can be detected, the detection method can be performed using limb-girdle muscular dystrophy using the presence or absence of gene mutation as an index. It can be used for diagnosis and the like. For that purpose, it is necessary to amplify the above genes and the like to such an extent that they can be detected.

【0006】従来では、原因候補遺伝子産物を、数百ベ
ース程度で相互に重複するいくつかの断片に分け、PC
Rで増幅していた。しかし、PCRの反応条件は、一般
に各PCR毎に異なるため何度もPCRを行う必要があ
った。このため、分子診断に手間と時間を必要とした。
特に、筋ジストロフィー症のように原因候補遺伝子が複
数ある場合は、それぞれに対応した重複遺伝子断片を増
幅しなければならないので解析が面倒である。
[0006] Conventionally, a candidate gene product is divided into several mutually overlapping fragments on the order of several hundred bases,
It was amplified by R. However, the reaction conditions of PCR generally differ for each PCR, so that it was necessary to perform the PCR many times. Therefore, labor and time were required for molecular diagnosis.
In particular, when there are a plurality of candidate genes, such as muscular dystrophy, the analysis is troublesome because the corresponding overlapping gene fragments must be amplified.

【0007】[0007]

【発明が解決しようとする課題】本発明は、ヒトの遺伝
性疾患の原因候補遺伝子産物、特にサルコグリカン遺伝
子産物を一度で特異的に増幅する遺伝子産物増幅用プラ
イマーセット及び該遺伝子産物の増幅方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention provides a primer set for amplifying a gene product which specifically amplifies a candidate gene product of a human genetic disease, particularly a sarcoglycan gene product at once, and a method for amplifying the gene product. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記課題に
基づいて鋭意研究を行った結果、特定の配列を有するオ
リゴヌクレオチドプライマーを用いてポリメラーゼ連鎖
反応を行うことにより原因候補遺伝子産物を特異的に増
幅し得ることを見出し、本発明を完成するに至った。す
なわち、本発明は、配列番号7、8、9又は10で表され
る塩基配列を含むサルコグリカン遺伝子産物の翻訳領域
に隣接する上流及び下流領域の少なくとも一部とそれぞ
れハイブリダイズすることができるオリゴヌクレオチド
プライマーセットである。オリゴヌクレオチドプライマ
ーセットとしては、例えば配列番号1及び2、配列番号
3及び4、又は配列番号5及び6で表されるもののうち
少なくとも一組を含むものが挙げられる。
Means for Solving the Problems As a result of intensive studies based on the above-mentioned problems, the present inventors have identified a causal candidate gene product by performing a polymerase chain reaction using an oligonucleotide primer having a specific sequence. The present inventors have found that the present invention can be amplified, and have completed the present invention. That is, the present invention provides an oligo that can hybridize with at least a part of the upstream and downstream regions adjacent to the translation region of the sarcoglycan gene product containing the nucleotide sequence represented by SEQ ID NO: 7, 8, 9, or 10, respectively. It is a nucleotide primer set. Examples of the oligonucleotide primer set include those containing at least one set of those represented by SEQ ID NOS: 1 and 2, SEQ ID NOs: 3 and 4, or SEQ ID NOs: 5 and 6.

【0009】さらに、本発明は、前記オリゴヌクレオチ
ドプライマーセット及びポリメラーゼを含むサルコグリ
カン遺伝子産物増幅用キットである。さらに、本発明
は、前記サルコグリカン遺伝子産物増幅用キットを用い
てポリメラーゼ連鎖反応を行うことを特徴とするサルコ
グリカン遺伝子産物の増幅方法である。ポリメラーゼ連
鎖反応は、例えば94℃で1分、45〜65℃で45秒及び72℃
で1〜5分の反応を1サイクルとしてこれを25〜35サイ
クル行い、さらに72℃で10分の反応を1サイクル行う。
以下、本発明を詳細に説明する。
Further, the present invention is a kit for amplifying a sarcoglycan gene product comprising the oligonucleotide primer set and a polymerase. Further, the present invention is a method for amplifying a sarcoglycan gene product, comprising performing a polymerase chain reaction using the kit for amplifying a sarcoglycan gene product. The polymerase chain reaction is performed, for example, at 94 ° C for 1 minute, at 45 to 65 ° C for 45 seconds and at 72 ° C.
The reaction is performed for 25 to 35 cycles, with the reaction being performed for 1 to 5 minutes as one cycle, and the reaction is further performed at 72 ° C. for 10 minutes.
Hereinafter, the present invention will be described in detail.

【0010】[0010]

【発明の実施の形態】本発明は、ヒトの遺伝性疾患の原
因となる遺伝子、特にサルコグリカン遺伝子産物の特異
的増幅を可能にするオリゴヌクレオチドプライマーセッ
トである。本発明において「遺伝子産物」とは、ゲノム
DNAの転写産物からスプライシングを受けて得られた
mRNAから、逆転写酵素により合成されたcDNAを
いう(以下、遺伝子産物をcDNAと呼ぶこともあ
る)。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a set of oligonucleotide primers that enables specific amplification of a gene causing a human genetic disease, particularly a sarcoglycan gene product. In the present invention, the “gene product” refers to cDNA synthesized by reverse transcriptase from mRNA obtained by splicing a transcript of genomic DNA (hereinafter, the gene product may be referred to as cDNA).

【0011】本発明のプライマーセットを用いて増幅し
得るcDNAは、そのcDNAに変異(欠失、置換、挿
入等)が生じたときに、進行性筋ジストロフィー症の発
症をもたらすようなものである。このようなcDNAと
しては、サルコグリカンをコードするcDNA(以下、
「サルコグリカンcDNA」という)、例えば、配列番
号7又は8で表されるα−サルコグリカンcDNA、配
列番号9で表されるβ−サルコグリカンcDNA、そし
て配列番号10で表されるγ−サルコグリカンcDNAの
3種類が挙げられる。したがって、本発明では、α−、
β−及び/又はγ−サルコグリカンcDNAを増幅の対
象となる遺伝子産物としてプライマーを設計する。
[0011] The cDNA that can be amplified using the primer set of the present invention is one that causes the development of progressive muscular dystrophy when a mutation (deletion, substitution, insertion, etc.) occurs in the cDNA. Examples of such cDNA include cDNA encoding sarcoglycan (hereinafter, referred to as cDNA).
“Sarcoglycan cDNA”), for example, α-sarcoglycan cDNA represented by SEQ ID NO: 7 or 8, β-sarcoglycan cDNA represented by SEQ ID NO: 9, and γ-sarcoglycan represented by SEQ ID NO: 10 There are three types of cDNA. Therefore, in the present invention, α-,
Primers are designed using β- and / or γ-sarcoglycan cDNA as a gene product to be amplified.

【0012】本発明のプライマーは、上記それぞれのc
DNAのタンパク質翻訳領域に隣接する上流及び下流領
域の少なくとも一部とそれぞれハイブリダイズすること
ができるようにデザインされる。ここで、「隣接する」
とは、サルコグリカンcDNAの翻訳領域の上流側
(5’側)プライマー及び下流側(3’側)プライマー
が、タンパク質翻訳領域からそれぞれ1塩基上流、1塩
基下流に位置することはもちろん、プライマーの一部が
翻訳領域と重なってもよく、300 塩基程度まで離れても
よいことを意味する。例えば、あるcDNA断片が300
個の塩基配列を有し、このうち翻訳領域が101 〜200 番
目にあるとすると、5’側プライマーは、例えば、76〜
100 番目(翻訳領域の5’末端からみて1塩基上流)、
あるいは41〜75番目(翻訳領域の5’末端からみて25塩
基上流)の領域とハイブリダイズするようにし、そして
3’側用プライマーは、201 〜220 番目(翻訳領域の
3’末端からみて1塩基下流)、あるいは211 〜235 番
目(翻訳領域の3’末端からみて10塩基下流)の領域と
ハイブリダイズすることができるように設計する(図
1)。また、「少なくとも一部」とは、後述するポリメ
ラーゼ連鎖反応を開始することができるものであれば、
特に長さに限定されないが、本発明では20〜35個、好ま
しくは21〜24個のヌクレオチド長である。
[0012] The primer of the present invention comprises
It is designed so that it can hybridize with at least a part of the upstream and downstream regions adjacent to the protein translation region of DNA, respectively. Where "adjacent"
This means that the upstream (5 'side) and downstream (3' side) primers of the sarcoglycan cDNA translation region are located one base upstream and one base downstream from the protein translation region, respectively. It means that a part may overlap with the translation region and may be separated by about 300 bases. For example, if a certain cDNA fragment is 300
Assuming that the translation region is located at positions 101 to 200, the 5′-side primer is, for example, 76 to
100th (one base upstream from the 5 'end of the translation region),
Alternatively, the primer should be hybridized to the 41st to 75th region (25 bases upstream from the 5 'end of the translation region), and the 3' primer should be hybridized to the 201st to 220th region (1 base from the 3 'end of the translation region). It is designed to be able to hybridize to the region downstream (downstream) or to the region 211 to 235 (downstream from the 3 'end of the translation region by 10 bases) (FIG. 1). In addition, "at least a part" means that the polymerase chain reaction described below can be started,
The length is not particularly limited, but is 20 to 35, preferably 21 to 24 nucleotides in the present invention.

【0013】このようにして設計された本発明のプライ
マーセットは、例えば、配列番号1及び2で表される2
種類のオリゴヌクレオチドプライマーのセット、配列番
号3及び4で表される2種類のオリゴヌクレオチドプラ
イマーのセット、並びに配列番号5及び配列番号6で表
される2種類のオリゴヌクレオチドプライマーのセット
をそれぞれ一組としている。
[0013] The primer set of the present invention designed as described above includes, for example, 2 primers represented by SEQ ID NOS: 1 and 2.
A set of two types of oligonucleotide primers, a set of two types of oligonucleotide primers represented by SEQ ID NOS: 3 and 4, and a set of two types of oligonucleotide primers represented by SEQ ID NOS: 5 and 6 And

【0014】配列番号1及び2で表される2種類のオリ
ゴヌクレオチドのセットは、α−サルコグリカンcDN
A(配列番号7及び8)に特有であり、配列番号1で表
される塩基配列を有するオリゴヌクレオチド(以下「プ
ライマー1」という)は、配列番号7及び8で表される
塩基配列ともに第1〜21番目の配列(タンパク質翻訳領
域の5’末端からみて23塩基上流に位置する)とハイブ
リダイズし、配列番号2で表される塩基配列を有するオ
リゴヌクレオチド(以下「プライマー2」という)は、
配列番号7で表される塩基配列では第1216〜1236番目の
配列(タンパク質翻訳領域の3’末端からみて12塩基下
流に位置する)、配列番号8で表される塩基配列では第
844 〜864 番目の配列(タンパク質翻訳領域の3’末端
からみて12塩基下流に位置する)とハイブリダイズす
る。
The set of two types of oligonucleotides represented by SEQ ID NOs: 1 and 2 is α-sarcoglycan cDN
A (SEQ ID NOS: 7 and 8) and an oligonucleotide having the nucleotide sequence represented by SEQ ID NO: 1 (hereinafter referred to as "primer 1") An oligonucleotide (hereinafter, referred to as “primer 2”) that hybridizes to the 21st sequence (located 23 bases upstream when viewed from the 5 ′ end of the protein translation region) and has the base sequence represented by SEQ ID NO: 2
In the base sequence represented by SEQ ID NO: 7, the sequence at positions 1216 to 1236 (located 12 bases downstream when viewed from the 3 ′ end of the protein translation region), and in the base sequence represented by SEQ ID NO: 8
Hybridizes with the 844th to 864th sequence (located 12 bases downstream from the 3 'end of the protein translation region).

【0015】配列番号3及び4で表される2種類のオリ
ゴヌクレオチドのセットは、β−サルコグリカンcDN
A(配列番号9)に特有であり、配列番号9で表される
塩基配列のうち、配列番号3で表される塩基配列を有す
るオリゴヌクレオチド(以下「プライマー3」という)
は第26〜46番目の配列とハイブリダイズし(タンパク質
翻訳領域の5’側の4塩基分が重なって位置する)、配
列番号4で表される塩基配列を有するオリゴヌクレオチ
ド(以下「プライマー4」という)は第1001〜1021番目
の配列(タンパク質翻訳領域の3’末端からみて5塩基
下流に位置する)とハイブリダイズする。
A set of two kinds of oligonucleotides represented by SEQ ID NOs: 3 and 4 is β-sarcoglycan cDN
A (SEQ ID NO: 9), an oligonucleotide having a nucleotide sequence represented by SEQ ID NO: 3 among the nucleotide sequences represented by SEQ ID NO: 9 (hereinafter, referred to as “primer 3”)
Is an oligonucleotide having a base sequence represented by SEQ ID NO: 4 (hereinafter referred to as “primer 4”) hybridizes with the 26th to 46th sequences (four bases on the 5 ′ side of the protein translation region overlap). ) Hybridizes with the 1001-1021 sequence (located 5 bases downstream from the 3 'end of the protein translation region).

【0016】配列番号5及び6で表される2種類のオリ
ゴヌクレオチドのセットは、γ−サルコグリカンcDN
A(配列番号10)に特有であり、配列番号10で表される
塩基配列のうち、配列番号5で表される塩基配列を有す
るオリゴヌクレオチド(以下「プライマー5」という)
は第92〜115 番目の配列(タンパク質翻訳領域の5’末
端からみて10塩基上流に位置する)とハイブリダイズ
し、配列番号6で表される塩基配列を有するオリゴヌク
レオチド(以下「プライマー6」という)は第1068〜10
91番目の配列(タンパク質翻訳領域の3’末端からみて
71塩基下流に位置する)とハイブリダイズする。
The set of two types of oligonucleotides represented by SEQ ID NOS: 5 and 6 is γ-sarcoglycan cDN
A (SEQ ID NO: 10), an oligonucleotide having the nucleotide sequence represented by SEQ ID NO: 5 among the nucleotide sequences represented by SEQ ID NO: 10 (hereinafter referred to as “primer 5”)
Hybridizes with the 92nd to 115th sequence (located 10 bases upstream from the 5 'end of the protein translation region) and has an oligonucleotide having the base sequence represented by SEQ ID NO: 6 (hereinafter referred to as "primer 6") ) Is 1068-10
Sequence 91 (from the 3 'end of the protein translation region
(Located 71 bases downstream).

【0017】上記各プライマーは、通常の化学合成、例
えばApplied Biosystems社製のDNA自動合成装置を用
いた化学合成を行うことにより得ることができる。上記
各組のプライマーセットは、ポリメラーゼとともに、少
なくとも一組がcDNA増幅用キットとして使用される
ものである。従って、一組単独で使用しても、二組以上
を組み合わせて使用してもよい。例えば、α−サルコグ
リカンcDNAのみの検出を目的とする場合はプライマ
ー1及び2のセットを使用し、α−、β−及びγ−サル
コグリカンcDNAのすべてを検出する場合はプライマ
ー1及び2のセット、プライマー3及び4のセット並び
にプライマー5及び6のセットを使用する。そして、上
記のようにして調製されたプライマーセット及びポリメ
ラーゼを用いて遺伝子を増幅する。
Each of the above primers can be obtained by ordinary chemical synthesis, for example, chemical synthesis using an automatic DNA synthesizer manufactured by Applied Biosystems. At least one of the above-mentioned primer sets is used together with a polymerase as a kit for cDNA amplification. Therefore, one set may be used alone, or two or more sets may be used in combination. For example, a set of primers 1 and 2 is used for the purpose of detecting only α-sarcoglycan cDNA, and a set of primers 1 and 2 for detecting all of α-, β- and γ-sarcoglycan cDNA. , A set of primers 3 and 4 and a set of primers 5 and 6 are used. Then, the gene is amplified using the primer set and the polymerase prepared as described above.

【0018】鋳型となるcDNAは、α−、β−又はγ
−サルコグリカンcDNAである。cDNAの調製は、
公知の手法により行うことができる。例えば、心筋、骨
格筋、肝臓等の組織を酸性グアニジン・フェノールクロ
ロホルム法(Isogen (NipponGene 社) を用いる)によ
り処理し、全RNAを調製する。なお、mRNAは、市
販のもの(例えばClonetech 社のPoly(A)+ RNA)を用い
ることもできる。
The cDNA serving as a template is α-, β- or γ
-Sarcoglycan cDNA. Preparation of cDNA
It can be performed by a known method. For example, tissues such as myocardium, skeletal muscle, and liver are treated by acidic guanidine-phenol-chloroform method (using Isogen (NipponGene)) to prepare total RNA. As the mRNA, commercially available mRNA (for example, Poly (A) + RNA from Clonetech) can also be used.

【0019】次に、逆転写酵素(例えばSuperScriptII;
GIBCO BRL)を用いて全RNAからcDNAを合成す
る。合成されたcDNAには上記各サルコグリカンcD
NAが含まれているので、使用するプライマーに応じて
いずれかのcDNAが増幅される。
Next, a reverse transcriptase (eg, SuperScript II;
CDNA is synthesized from total RNA using GIBCO BRL). Each of the above-mentioned sarcoglycan cDs is contained in the synthesized cDNA.
Since NA is included, any cDNA is amplified depending on the primer used.

【0020】増幅は、ポリメラーゼ連鎖反応(PCR)
により行う。ポリメラーゼとしてはLATaq ポリメラーゼ
(Takara)、AmpliTaq (Perkin Elmer) 、Expand High Fi
delity (Boehringer Mannheim ) 等が挙げられるが、LA
Taq ポリメラーゼ(Takara)が好ましい。LATaq ポリメラ
ーゼ(Takara)を用いるポリメラーゼ連鎖反応は、いわ
ゆる「Long PCR」と呼ばれる。このポリメラーゼを使用
することにより、1回で候補遺伝子産物を増幅すること
が可能になる。
The amplification is performed by the polymerase chain reaction (PCR).
Performed by LATaq polymerase as polymerase
(Takara), AmpliTaq (Perkin Elmer), Expand High Fi
delity (Boehringer Mannheim), etc.
Taq polymerase (Takara) is preferred. The polymerase chain reaction using LATaq polymerase (Takara) is called “Long PCR”. The use of this polymerase makes it possible to amplify a candidate gene product at one time.

【0021】増幅の条件は、94℃で1分、X℃で45秒及
び72℃でY分の反応を1サイクルとしてこれをZサイク
ル行い、さらに72℃で10分の反応を1サイクル行う。こ
こで、X、Y及びZは、増幅の対象となるサルコグリカ
ンcDNAにより適宜変更することができる。本発明で
は、例えば、Xは45〜65℃、Yは1〜5分、Zは25〜35
サイクルが適当であるが、Xが55〜62℃、Yが1〜1.5
分、Zが30サイクルの条件がより好ましい。
The amplification conditions are as follows: a reaction at 94 ° C. for 1 minute, a reaction at X ° C. for 45 seconds, and a reaction at Y at 72 ° C. are performed as one cycle, and the Z cycle is performed. Here, X, Y and Z can be appropriately changed depending on the sarcoglycan cDNA to be amplified. In the present invention, for example, X is 45-65 ° C., Y is 1-5 minutes, and Z is 25-35.
The cycle is appropriate, but X is 55-62 ° C, Y is 1-1.5
More preferably, Z is 30 cycles.

【0022】このようにして、本発明のプライマーセッ
トを用いて、サルコグリカンcDNAを一回のPCRに
より効率良く増幅することができる。なお、本発明のプ
ライマーセットを用いてサルコグリカンcDNAを増幅
することは、三種のサルコグリカンcDNAの生理的な
発現産物を単離していることをも示すものである。「生
理的な」とは、これらの遺伝子が本来的に発現してお
り、漏れ出た遺伝子(Illegitimate Transcription) で
はないことを意味する。「漏れ出た」とは、ある特定の
組織(例えば脳)のみで本来生理的に発現すべきmRN
Aが、その組織外(例えば血液中)に漏れ出てしまうこ
とをいう。
As described above, the sarcoglycan cDNA can be efficiently amplified by a single PCR using the primer set of the present invention. Amplifying sarcoglycan cDNA using the primer set of the present invention also indicates that physiologically expressed products of three types of sarcoglycan cDNA have been isolated. “Physiological” means that these genes are naturally expressed and not leaked genes (Illegitimate Transcription). “Leaked” means mRN that should be expressed physiologically only in a specific tissue (eg, brain).
A means that A leaks out of the tissue (for example, in blood).

【0023】そして、増幅産物についてアガロースゲル
電気泳動を行い、生体内で本来的に発現しているmRN
Aの検出を行うRNAブロット解析で得られるバンドに
対応するバンドを得ることができれば、増幅した遺伝子
産物は生理的に発現しているものであると判断すること
ができる。なお、既に行われたRNAブロット解析の結
果から、三種のサルコグリカン分子の発現組織はかなり
特徴的であることが分かっている。すなわち、α−及び
γ−サルコグリカンは心臓と骨格筋に限られるが、β−
サルコグリカンは全身に幅広く発現している。また、α
−サルコグリカンの場合、1.4kbのバンドと、タンパク
質翻訳領域の一部が短くなった1.1kbのバンドが存在す
ることも確認されている。
The amplified product is subjected to agarose gel electrophoresis, and mRNN originally expressed in vivo is expressed.
If a band corresponding to the band obtained by RNA blot analysis for detecting A can be obtained, it can be determined that the amplified gene product is a physiologically expressed gene product. From the results of the RNA blot analysis already performed, it is known that the tissues expressing the three sarcoglycan molecules are quite characteristic. That is, α- and γ-sarcoglycans are restricted to heart and skeletal muscle,
Sarcoglycans are widely expressed throughout the body. Also, α
-In the case of sarcoglycan, it has also been confirmed that there is a 1.4 kb band and a 1.1 kb band in which a part of the protein translation region is shortened.

【0024】したがって、骨格筋及び心筋由来のcDN
Aから、α−サルコグリカンcDNAについては2本、
β−及びγ−サルコグリカンcDNAについては各1本
のバンドが増幅され、その他の組織(例えば肝臓)由来
のcDNAからはβ−サルコグリカンcDNAのみ1本
のバンドが増幅されることが期待される。
Therefore, cDN derived from skeletal muscle and cardiac muscle
From A, two for α-sarcoglycan cDNA,
One band is expected to be amplified for β- and γ-sarcoglycan cDNA, and one band is expected to be amplified for β-sarcoglycan cDNA only from cDNA derived from other tissues (for example, liver). .

【0025】[0025]

【実施例】以下、本発明を実施例によりさらに具体的に
説明する。ただし、本発明はこれら実施例にその技術的
範囲を限定するものではない。 〔実施例1〕ヒト心臓由来のpoly(A)+ RNA 1μg(Clone
tech 社) から、cDNA合成用プライマーとしてRando
m Hexamer(Pharmacia社) 、及びSuperScriptII(GIBCO B
RL社) 逆転写酵素を用いてcDNAを合成した(37℃で
60分反応)。反応混合物は以下の通りである。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention does not limit the technical scope to these examples. Example 1 1 μg of human heart-derived poly (A) + RNA (Clone
tech) from Rando as a primer for cDNA synthesis.
m Hexamer (Pharmacia) and SuperScript II (GIBCO B
(RL) cDNA was synthesized using reverse transcriptase (at 37 ° C).
60 minutes reaction). The reaction mixture is as follows.

【0026】 H2O 9.5 μl 10xLAPCR Buffer (Takara) 1.25 μl dNTP(2.5 mM, each) (Takara) 1.25 μl cDNA合成用の5'側プライマー(10 mM) 0.125 μl cDNA合成用の3'側プライマー(10 mM) 0.125 μl cDNA水溶液 1.0 μl PerfectMach (Stratagene) 0.125 μl 全量 12.375 μl H 2 O 9.5 μl 10 × LA PCR Buffer (Takara) 1.25 μl dNTP (2.5 mM, each) (Takara) 1.25 μl 5 ′ primer for cDNA synthesis (10 mM) 0.125 μl 3 ′ primer for cDNA synthesis ( (10 mM) 0.125 μl cDNA aqueous solution 1.0 μl PerfectMach (Stratagene) 0.125 μl Total volume 12.375 μl

【0027】次に、上記反応混合物に0.125 μl のLA T
aqポリメラーゼ(Takara)を添加し(全量12.5μl )、Th
ermal Cycler 480(Perkin Elmer Cetus)を用いてLong P
CRを行った。 (1) α−サルコグリカンcDNAの増幅 5’側プライマー:プライマー1(配列番号1) 3’側プライマー:プライマー2(配列番号2) 反応は、94℃で1分、55℃で45秒、72℃で1.5 分の反応
を1サイクルとしてこれを30サイクル行い、さらに72℃
で10分の反応を1サイクル行った。反応終了後、増幅産
物について1%アガロースゲル電気泳動を行った。
Next, 0.125 μl of LAT was added to the above reaction mixture.
Add aq polymerase (Takara) (total volume 12.5 μl) and add Th
Long P using ermal Cycler 480 (Perkin Elmer Cetus)
Performed CR. (1) Amplification of α-sarcoglycan cDNA 5 ′ primer: Primer 1 (SEQ ID NO: 1) 3 ′ primer: Primer 2 (SEQ ID NO: 2) The reaction was carried out at 94 ° C. for 1 minute, at 55 ° C. for 45 seconds, and at 72 ° C. The reaction is repeated 30 times, with the reaction at 1.5 ° C for 1.5 minutes as one cycle.
For 10 minutes and one cycle. After completion of the reaction, the amplification product was subjected to 1% agarose gel electrophoresis.

【0028】その結果、α−サルコグリカンをコードす
るcDNAが増幅されていることがわかった(図2(1)
)。図2中、「M」は分子量マーカー(kbp)を示す。
この増幅されたcDNAは、配列番号7において1〜12
36番目の配列に対応する1236bpの塩基配列を有するも
の、及び配列番号8において1〜864 番目の配列に対応
する864 bpの塩基配列を有するものであった。
As a result, it was found that the cDNA encoding α-sarcoglycan was amplified (FIG. 2 (1)).
). In FIG. 2, "M" indicates a molecular weight marker (kbp).
This amplified cDNA is 1 to 12 in SEQ ID NO: 7.
It had a base sequence of 1236 bp corresponding to the 36th sequence, and had a base sequence of 864 bp corresponding to the 1st to 864th sequence in SEQ ID NO: 8.

【0029】ところで、α−サルコグリカンをコードす
るゲノムDNAは、転写過程でいわゆる「選択的スプラ
イシング(alternative splicing)」を受け、2つの遺
伝子産物を生じることが知られている(E.M.McNally, P
roc.Natl.Acad.Sci.USA.91,9690-9694 (1994) )。選択
的スプライシングとは、一つの遺伝子から多数のイソ型
mRNAを生じる機構をいい、遺伝子転写産物を加工す
る過程において、あるエクソンを欠いた成熟転写産物が
生じることをいう。上記1236bp及び864bp の二種類cD
NAが生じたのは、この選択的スプライシングが起こっ
たためである。なお、配列番号8で表される塩基配列
は、配列番号7で表される塩基配列の623〜994 番目の
配列が選択的スプライシングを受けることにより短くな
った配列である。
It is known that genomic DNA encoding α-sarcoglycan undergoes so-called “alternative splicing” during the transcription process to produce two gene products (EMMcNally, P
roc.Natl.Acad.Sci.USA.91,9690-9694 (1994)). Alternative splicing refers to the mechanism by which multiple isoform mRNAs are generated from one gene, and refers to the generation of a mature transcript lacking a certain exon in the process of processing a gene transcript. 1236bp and 864bp two types of cD
NA occurred because this alternative splicing occurred. The base sequence represented by SEQ ID NO: 8 is a sequence shortened by subjecting the 623th to 994th sequences of the base sequence represented by SEQ ID NO: 7 to alternative splicing.

【0030】(2) β−サルコグリカンcDNAの増幅 5’側プライマー:プライマー3(配列番号3) 3’側プライマー:プライマー4(配列番号4) 反応は、94℃で1分、62℃で45秒、72℃で1分の反応を
1サイクルとしてこれを30サイクル行い、さらに72℃で
10分の反応を1サイクル行った。反応終了後、増幅産物
について1%アガロースゲル電気泳動を行った。その結
果、配列番号9の第26〜1021番目の配列に対応する996
bpの増幅産物が得られた(図2(2) )。
(2) Amplification of β-sarcoglycan cDNA 5 ′ primer: Primer 3 (SEQ ID NO: 3) 3 ′ primer: Primer 4 (SEQ ID NO: 4) The reaction was performed at 94 ° C. for 1 minute and at 62 ° C. for 45 minutes. The reaction was repeated 30 times at 72 ° C for 1 minute as one cycle.
One cycle of a 10 minute reaction was performed. After completion of the reaction, the amplification product was subjected to 1% agarose gel electrophoresis. As a result, 996 corresponding to the 26th to 1021st sequence of SEQ ID NO: 9
A bp amplification product was obtained (FIG. 2 (2)).

【0031】(3) γ−サルコグリカンcDNAの増幅 5’側プライマー:プライマー5(配列番号5) 3’側プライマー:プライマー6(配列番号6) 反応は、94℃で1分、62℃で45秒、72℃で1分の反応を
1サイクルとしてこれを30サイクル行い、さらに72℃で
10分の反応を1サイクル行った。反応終了後、増幅産物
について1%アガロースゲル電気泳動を行った。その結
果、配列番号10の第92〜1091番目の配列に対応する1000
bpの増幅産物が得られた(図2(3) )。上記(1) 〜(3)
で得られた各バンドをゲルから切り出し、増幅に用いた
プライマーで直接、あるいはプラスミドベクターpBlues
criptSK(-)(Stratagene社) にクローニングしてシーク
エンスした(Applied Biosystems社の373Aを使用)。そ
の結果、増幅したDNAが確かにα−、β−及びγ−サ
ルコグリカンcDNAであることを確認した。
(3) Amplification of γ-sarcoglycan cDNA 5 ′ primer: Primer 5 (SEQ ID NO: 5) 3 ′ primer: Primer 6 (SEQ ID NO: 6) The reaction was carried out at 94 ° C. for 1 minute and at 62 ° C. for 45 minutes. The reaction was repeated 30 times at 72 ° C for 1 minute as one cycle.
One cycle of a 10 minute reaction was performed. After completion of the reaction, the amplification product was subjected to 1% agarose gel electrophoresis. As a result, 1000 corresponding to the 92nd to 1091st sequence of SEQ ID NO: 10
A bp amplification product was obtained (FIG. 2 (3)). (1) to (3) above
The bands obtained in Step 1 were excised from the gel, and directly with the primers used for amplification, or the plasmid vector pBlues
It was cloned into criptSK (-) (Stratagene) and sequenced (using 373A from Applied Biosystems). As a result, it was confirmed that the amplified DNA was indeed α-, β- and γ-sarcoglycan cDNA.

【0032】なお、α−サルコグリカンcDNAにおけ
る1236 bpと864 bpの産物は、RNAブロット解析にお
ける1.4kbと1.1kbのバンドに対応することも確認され
た。従って、本発明により、タンパク質をコードする領
域(オープンリーディングフレーム)を全て含む全長c
DNAを一度のPCRで増幅することができるのみなら
ず、生理的に発現する遺伝子産物の増幅を行うこともで
きた。
It was also confirmed that the 1236 bp and 864 bp products of the α-sarcoglycan cDNA corresponded to the 1.4 kb and 1.1 kb bands in the RNA blot analysis. Therefore, according to the present invention, the full-length c including all the regions (open reading frames)
Not only could DNA be amplified by a single PCR, but also a physiologically expressed gene product could be amplified.

【0033】〔実施例2〕実施例1と同様の手法によ
り、cDNAをヒト肝臓由来のpoly(A)+ RNA 1μg(Clo
netech 社) から調製し、実施例1と同一の条件でPC
Rを行った。また、心筋及び骨格筋由来のpoly(A)+ RNA
1μg(Clonetech 社) についても同様にcDNAを調
製し、PCRを行った。結果を図3に示す。図3におい
て、レーン1は分子量マーカー(kbp)、レーン2〜5は
α−サルコグリカンcDNAを増幅したもの、レーン6
〜9はβ−サルコグリカンcDNAを増幅したもの、レ
ーン10〜13はγ−サルコグリカンcDNAを増幅したも
のである。
[Example 2] In the same manner as in Example 1, cDNA was replaced with 1 µg of human liver-derived poly (A) + RNA (Clo
netech) and PC under the same conditions as in Example 1.
R was performed. In addition, poly (A) + RNA derived from cardiac muscle and skeletal muscle
Similarly, cDNA was prepared for 1 μg (Clonetech) and PCR was performed. The results are shown in FIG. In FIG. 3, lane 1 is a molecular weight marker (kbp), lanes 2 to 5 are those obtained by amplifying α-sarcoglycan cDNA, lane 6
Nos. 9 are amplifications of β-sarcoglycan cDNA, and lanes 10 to 13 are amplifications of γ-sarcoglycan cDNA.

【0034】図3より、肝臓ではβ−サルコグリカンc
DNAのみが増幅され(レーン8)、α−及びγ−サル
コグリカンcDNAは増幅されなかった(レーン4及び
12)。このことから、本実施例の結果はRNAブロット
解析の結果に一致した。そして、本発明のPCR条件に
より、cDNAを一度で増幅することができるのみなら
ず、生理的に発現している遺伝子産物をも増幅すること
ができることが確認された。換言すると、非生理的に極
微量発現している遺伝子産物をPCRで非特異的に増幅
したものではないことが確認された。
FIG. 3 shows that β-sarcoglycan c
Only DNA was amplified (lane 8) and α- and γ-sarcoglycan cDNA was not amplified (lanes 4 and
12). From this, the result of this example was consistent with the result of RNA blot analysis. Then, it was confirmed that, under the PCR conditions of the present invention, not only cDNA can be amplified at one time, but also a gene product which is physiologically expressed can be amplified. In other words, it was confirmed that a non-physiologically minimally expressed gene product was not non-specifically amplified by PCR.

【0035】[0035]

【発明の効果】本発明により、cDNA増幅用キット及
びcDNAの増幅方法が提供される。本発明のキットを
用いることにより、上記三種類のヒト・サルコグリカン
分子のタンパク質翻訳領域全域をカバーするcDNAの
増幅を可能にする。しかも、5’側及び3’側タンパク
質非翻訳領域は数10ベースのみであるため、標的cDN
Aの増幅後、翻訳領域以外の領域について不必要な解析
をする必要がなく、容易に疾患の原因となりうる塩基変
異のスクリーニングをすることができる。このことか
ら、本発明のキットは、非デユシャンヌ型筋ジストロフ
ィー症の原因遺伝子の迅速な変異検出に有用である。
According to the present invention, a kit for cDNA amplification and a method for amplifying cDNA are provided. By using the kit of the present invention, it is possible to amplify a cDNA covering the entire protein translation region of the above three types of human sarcoglycan molecules. In addition, since the 5 ′ and 3 ′ protein untranslated regions are only several tens of bases, the target cDN
After amplification of A, there is no need to perform unnecessary analysis on regions other than the translation region, and it is possible to easily screen for a base mutation that can cause a disease. For this reason, the kit of the present invention is useful for rapid mutation detection of the causative gene of non-Duchenne muscular dystrophy.

【0036】[0036]

【配列表】[Sequence list]

配列番号:1 配列の長さ:21 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: CCCCTGTCTC TGTCACTCAC C 21 SEQ ID NO: 1 Sequence length: 21 Sequence type: nucleic acid Number of strands: single-stranded Topology: linear Sequence type: other nucleic acid (synthetic DNA) Sequence: CCCCTGTCTC TGTCACTCAC C 21

【0037】配列番号:2 配列の長さ:21 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GGCTGGACCT GGAACCACTG G 21SEQ ID NO: 2 Sequence length: 21 Sequence type: Number of nucleic acid strands: Single strand Topology: Linear Sequence type: Other nucleic acid (synthetic DNA) Sequence: GGCTGGACCT GGAACCACTG G 21

【0038】配列番号:3 配列の長さ:21 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GCGGCGGGCG CGGGAAGATG G 21SEQ ID NO: 3 Sequence length: 21 Sequence type: number of nucleic acid chains: single-stranded Topology: linear Sequence type: other nucleic acid (synthetic DNA) Sequence: GCGGCGGGCG CGGGAAGATG G 21

【0039】配列番号:4 配列の長さ:21 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GTTGGTGACC TCTGGGGTTC T 21SEQ ID NO: 4 Sequence length: 21 Sequence type: number of nucleic acid strands: single strand Topology: linear Sequence type: other nucleic acid (synthetic DNA) Sequence: GTTGGTGACC TCTGGGGTTC T 21

【0040】配列番号:5 配列の長さ:24 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: TCATTCGCCA GTGTGCTTTT CTTA 24SEQ ID NO: 5 Sequence length: 24 Sequence type: number of nucleic acid chains: single-stranded Topology: linear Sequence type: other nucleic acid (synthetic DNA) Sequence: TCATTCGCCA GTGTGCTTTT CTTA 24

【0041】配列番号:6 配列の長さ:24 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列: GCTGCCTCAG TCTTTCACGA TGTG 24SEQ ID NO: 6 Sequence length: 24 Sequence type: number of nucleic acid chains: single-stranded Topology: linear Sequence type: other nucleic acid (synthetic DNA) Sequence: GCTGCCTCAG TCTTTCACGA TGTG 24

【0042】配列番号:7 配列の長さ:1436 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 配列: CCCCTGTCTC TGTCACTCAC CGGGCGGGCC AGGCCGGGCA GCC ATG GCT GAG ACA 55 Met Ala Glu Thr 1 CTC TTC TGG ACT CCT CTC CTC GTG GTT CTC CTG GCA GGG CTG GGG GAC 103 Leu Phe Trp Thr Pro Leu Leu Val Val Leu Leu Ala Gly Leu Gly Asp 5 10 15 20 ACC GAG GCC CAG CAG ACC ACG CTA CAC CCA CTT GTG GGC CGT GTC TTT 151 Thr Glu Ala Gln Gln Thr Thr Leu His Pro Leu Val Gly Arg Val Phe 25 30 35 GTG CAC ACC TTG GAC CAT GAG ACG TTT CTG AGC CTT CCT GAG CAT GTC 199 Val His Thr Leu Asp His Glu Thr Phe Leu Ser Leu Pro Glu His Val 40 45 50 GCT GTC CCA CCC GCT GTC CAC ATC ACC TAC CAC GCC CAC CTC CAG GGA 247 Ala Val Pro Pro Ala Val His Ile Thr Tyr His Ala His Leu Gln Gly 55 60 65 CAC CCA GAC CTG CCC CGG TGG CTC CGC TAC ACC CAG CGC AGC CCC CAC 295 His Pro Asp Leu Pro Arg Trp Leu Arg Tyr Thr Gln Arg Ser Pro His 70 75 80 CAC CCT GGC TTC CTC TAC GGC TCT GCC ACC CCA GAA GAT CGT GGG CTC 343 His Pro Gly Phe Leu Tyr Gly Ser Ala Thr Pro Glu Asp Arg Gly Leu 85 90 95 100 CAG GTC ATT GAG GTC ACA GCC TAC AAT CGG GAC AGC TTT GAT ACC ACT 391 Gln Val Ile Glu Val Thr Ala Tyr Asn Arg Asp Ser Phe Asp Thr Thr 105 110 115 CGG CAG AGG CTG GTG CTG GAG ATT GGG GAC CCA GAA GGC CCC CTG CTG 439 Arg Gln Arg Leu Val Leu Glu Ile Gly Asp Pro Glu Gly Pro Leu Leu 120 125 130 CCA TAC CAA GCC GAG TTC CTG GTG CGC AGC CAC GAT GCG GAG GAG GTG 487 Pro Tyr Gln Ala Glu Phe Leu Val Arg Ser His Asp Ala Glu Glu Val 135 140 145 CTG CCC TCA ACA CCT GCC AGC CGC TTC CTC TCA GCC TTG GGG GGA CTC 535 Leu Pro Ser Thr Pro Ala Ser Arg Phe Leu Ser Ala Leu Gly Gly Leu 150 155 160 TGG GAG CCC GGA GAG CTT CAG CTG CTC AAC GTC ACC TCT GCC TTG GAC 583 Trp Glu Pro Gly Glu Leu Gln Leu Leu Asn Val Thr Ser Ala Leu Asp 165 170 175 180 CGT GGG GGC CGT GTC CCC CTT CCC ATT GAG GGC CGA AAA GAA GGG GTA 631 Arg Gly Gly Arg Val Pro Leu Pro Ile Glu Gly Arg Lys Glu Gly Val 185 190 195 TAC ATT AAG GTG GGT TCT GCC TCA CCT TTT TCT ACT TGC CTG AAG ATG 679 Tyr Ile Lys Val Gly Ser Ala Ser Pro Phe Ser Thr Cys Leu Lys Met 200 205 210 GTG GCA TCC CCC GAT AGC CAC GCC CGC TGT GCC CAG GGC CAG CCT CCA 727 Val Ala Ser Pro Asp Ser His Ala Arg Cys Ala Gln Gly Gln Pro Pro 215 220 225 CTT CTG TCT TGC TAC GAC ACC TTG GCA CCC CAC TTC CGC GTT GAC TGG 775 Leu Leu Ser Cys Tyr Asp Thr Leu Ala Pro His Phe Arg Val Asp Trp 230 235 240 TGC AAT GTG ACC CTG GTG GAT AAG TCA GTG CCG GAG CCT GCA GAT GAG 823 Cys Asn Val Thr Leu Val Asp Lys Ser Val Pro Glu Pro Ala Asp Glu 245 250 255 260 GTG CCC ACC CCA GGT GAT GGG ATC CTG GAG CAT GAC CCG TTC TTC TGC 871 Val Pro Thr Pro Gly Asp Gly Ile Leu Glu His Asp Pro Phe Phe Cys 265 270 275 CCA CCC ACT GAG GCC CCA GAC CGT GAC TTC TTG GTG GAT GCT CTG GTC 919 Pro Pro Thr Glu Ala Pro Asp Arg Asp Phe Leu Val Asp Ala Leu Val 280 285 290 ACC CTC CTG GTG CCC CTG CTG GTG GCC CTG CTT CTC ACC TTG CTG CTG 967 Thr Leu Leu Val Pro Leu Leu Val Ala Leu Leu Leu Thr Leu Leu Leu 295 300 305 GCC TAT GTC ATG TGC TGC CGG CGG GAG GGA AGG CTG AAG AGA GAC CTG 1015 Ala Tyr Val Met Cys Cys Arg Arg Glu Gly Arg Leu Lys Arg Asp Leu 310 315 320 GCT ACC TCC GAC ATC CAG ATG GTC CAC CAC TGC ACC ATC CAC GGG AAC 1063 Ala Thr Ser Asp Ile Gln Met Val His His Cys Thr Ile His Gly Asn 325 330 335 340 ACA GAG GAG CTG CGG CAG ATG GCG GCC AGC CGC GAG GTG CCC CGG CCA 1111 Thr Glu Glu Leu Arg Gln Met Ala Ala Ser Arg Glu Val Pro Arg Pro 345 350 355 CTC TCC ACC CTG CCC ATG TTC AAT GTG CAC ACA GGT GAG CGG CTG CCT 1159 Leu Ser Thr Leu Pro Met Phe Asn Val His Thr Gly Glu Arg Leu Pro 360 365 370 CCC CGC GTG GAC AGC GCC CAG GTG CCC CTC ATT CTG GAC CAG CAC TGA 1207 Pro Arg Val Asp Ser Ala Gln Val Pro Leu Ile Leu Asp Gln His 375 380 385 CAGCCCAGCC AGTGGTTCCA GGTCCAGCCC TGACTTCATC CTCCCTTCTC TGTCCACACC 1267 ACGAGTGGCA CATCCCACCT GCTGATTCCA GCTCCTGGCC CTCCTGGAAC CCAGGCTCTA 1327 AACAAGCAGG GAGAGGGGGT GGGGTGGGGT GAGAGTGTGT GGAGTAAGGA CATTCAGAAT 1387 AAATATCTGC TGCTCTGCTC ACCAATTGCT GCTGGCAGCC TCTCCCGTC 143
SEQ ID NO: 7 Sequence length: 1436 Sequence type: Nucleic acid number of strands: Double strand Topology: Linear Sequence type: cDNA to mRNA Sequence: CCCCTGTCTC TGTCACTCAC CGGGCGGGCC AGGCCGGGCA GCC ATG GCT GAG ACA 55 Met Ala Glu Thr 1 CTC TTC TGG ACT CCT CTC CTC GTG GTT CTC CTG GCA GGG CTG GGG GAC 103 Leu Phe Trp Thr Pro Leu Leu Val Val Leu Leu Ala Gly Leu Gly Asp 5 10 15 20 ACC GAG GCC CAG CAG ACC ACG CTA CAC CCA CTT GTG GGC CGT GTC TTT 151 Thr Glu Ala Gln Gln Thr Thr Leu His Pro Leu Val Gly Arg Val Phe 25 30 35 GTG CAC ACC TTG GAC CAT GAG ACG TTT CTG AGC CTT CCT GAG CAT GTC 199 Val His Thr Leu Asp His Glu Thr Phe Leu Ser Leu Pro Glu His Val 40 45 50 GCT GTC CCA CCC GCT GTC CAC ATC ACC TAC CAC GCC CAC CTC CAG GGA 247 Ala Val Pro Pro Ala Val His Ile Thr Tyr His Ala His Leu Gln Gly 55 60 65 CAC CCA GAC CTG CCC CGG TGG CTC CGC TAC ACC CAG CGC AGC CCC CAC 295 His Pro Asp Leu Pro Arg Trp Leu Arg Tyr Thr Gln Arg Ser Pro His 70 75 80 CAC CCT GGC TTC CTC TAC GGC TCT GCC ACC CCA GAA GAT CGT GGG CTC 343 His Pro Gly Phe Leu Tyr Gly Ser Ala Thr Pro Glu Asp Arg Gly Leu 85 90 95 100 CAG GTC ATT GAG GTC ACA GCC TAC AAT CGG GAC AGC TTT GAT ACC ACT 391 Gln Val Ile Glu Val Thr Ala Tyr Asn Arg Asp Ser Phe Asp Thr Thr 105 110 115 CGG CAG AGG CTG GTG CTG GAG ATT GGG GAC CCA GAA GGC CCC CTG CTG 439 Arg Gln Arg Leu Val Leu Glu Ile Gly Asp Pro Glu Gly Pro Leu Leu 120 125 130 CCA TAC CAA GCC GAG TTC CTG GTG CGC AGC CAC GAT GCG GAG GAG GTG 487 Pro Tyr Gln Ala Glu Phe Leu Val Arg Ser His Asp Ala Glu Glu Val 135 140 145 CTG CCC TCA ACA CCT GCC AGC CGC TTC CTC TCA GCC TTG GGG GGA CTC 535 Leu Pro Ser Thr Pro Ala Ser Arg Phe Leu Ser Ala Leu Gly Gly Leu 150 155 160 TGG GAG CCC GGA GAG CTT CAG CTG CTC AAC GTC ACC TCT GCC TTG GAC 583 Trp Glu Pro Gly Glu Leu Gln Leu Leu Leu Asn Val Thr Ser Ala Leu Asp 165 170 175 180 CGT GGG GGC CGT GTC CCC CTT CCC ATT GAG GGC CGA AAA GAA GGG GTA 631 Arg Gly Gly Arg Val Pro Leu Pro Ile Glu Gly Arg Lys Glu Gly Val 185 190 195 TAC ATT AAG GT G GGT TCT GCC TCA CCT TTT TCT ACT TGC CTG AAG ATG 679 Tyr Ile Lys Val Gly Ser Ala Ser Pro Phe Ser Thr Cys Leu Lys Met 200 205 210 GTG GCA TCC CCC GAT AGC CAC GCC CGC TGT GCC CAG GGC CAG CCT CCA 727 Val Ala Ser Pro Asp Ser His Ala Arg Cys Ala Gln Gly Gln Pro Pro 215 220 225 CTT CTG TCT TGC TAC GAC ACC TTG GCA CCC CAC TTC CGC GTT GAC TGG 775 Leu Leu Ser Cys Tyr Asp Thr Leu Ala Pro His Phe Arg Val Asp Trp 230 235 240 TGC AAT GTG ACC CTG GTG GAT AAG TCA GTG CCG GAG CCT GCA GAT GAG 823 Cys Asn Val Thr Leu Val Asp Lys Ser Val Pro Glu Pro Ala Asp Glu 245 250 255 260 GTG CCC ACC CCA GGT GAT GGG ATC CTG GAG CAT GAC CCG TTC TTC TGC 871 Val Pro Thr Pro Gly Asp Gly Ile Leu Glu His Asp Pro Phe Phe Cys 265 270 275 CCA CCC ACT GAG GCC CCA GAC CGT GAC TTC TTG GTG GAT GCT CTG GTC 919 Pro Pro Thr Glu Ala Pro Asp Arg Asp Phe Leu Val Asp Ala Leu Val 280 285 290 ACC CTC CTG GTG CCC CTG CTG GTG GCC CTG CTT CTC ACC TTG CTG CTG 967 Thr Leu Leu Val Pro Leu Leu Val Ala Leu Leu Leu Thr Leu Leu Leu 295 300 305 GC C TAT GTC ATG TGC TGC CGG CGG GAG GGA AGG CTG AAG AGA GAC CTG 1015 Ala Tyr Val Met Cys Cys Arg Arg Glu Gly Arg Leu Lys Arg Asp Leu 310 315 320 GCT ACC TCC GAC ATC CAG ATG GTC CAC CAC TGC ACC ATC CAC GGG AAC 1063 Ala Thr Ser Asp Ile Gln Met Val His His Cys Thr Ile His Gly Asn 325 330 335 340 ACA GAG GAG CTG CGG CAG ATG GCG GCC AGC CGC GAG GTG CCC CGG CCA 1111 Thr Glu Glu Leu Arg Gln Met Ala Ala Ser Arg Glu Val Pro Arg Pro 345 350 355 CTC TCC ACC CTG CCC ATG TTC AAT GTG CAC ACA GGT GAG CGG CTG CCT 1159 Leu Ser Thr Leu Pro Met Phe Asn Val His Thr Gly Glu Arg Leu Pro 360 365 370 CCC CGC GTG GAC AGC GCC CAG GTG CCC CTC ATT CTG GAC CAG CAC TGA 1207 Pro Arg Val Asp Ser Ala Gln Val Pro Leu Ile Leu Asp Gln His 375 380 385 CAGCCCAGCC AGTGGTTCCA GGTCCAGCCC TGACTTCATC CTCCCTTCTC TGTCCACACC 1267 ACGAGTGGCA CATCCCACCT GCTGATTCCA GCTCCTGGCC CTCCTGGAAC CCAGGCTCTA 1327 AACAAGCAGG GAGAGGGGGT GGGGTGGGGT GAGAGTGTGT GGAGTAAGGA CATTCAGAAT 1387 AAATATCTGC TGCTCTGCTC ACCAATTGCT GCTGGCAGCC TCTCCCGTC 143
6

【0043】配列番号:8 配列の長さ:1064 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 配列: CCCCTGTCTC TGTCACTCAC CGGGCGGGCC AGGCCGGGCA GCC ATG GCT GAG ACA 55 Met Ala Glu Thr 1 CTC TTC TGG ACT CCT CTC CTC GTG GTT CTC CTG GCA GGG CTG GGG GAC 103 Leu Phe Trp Thr Pro Leu Leu Val Val Leu Leu Ala Gly Leu Gly Asp 5 10 15 20 ACC GAG GCC CAG CAG ACC ACG CTA CAC CCA CTT GTG GGC CGT GTC TTT 151 Thr Glu Ala Gln Gln Thr Thr Leu His Pro Leu Val Gly Arg Val Phe 25 30 35 GTG CAC ACC TTG GAC CAT GAG ACG TTT CTG AGC CTT CCT GAG CAT GTC 199 Val His Thr Leu Asp His Glu Thr Phe Leu Ser Leu Pro Glu His Val 40 45 50 GCT GTC CCA CCC GCT GTC CAC ATC ACC TAC CAC GCC CAC CTC CAG GGA 247 Ala Val Pro Pro Ala Val His Ile Thr Tyr His Ala His Leu Gln Gly 55 60 65 CAC CCA GAC CTG CCC CGG TGG CTC CGC TAC ACC CAG CGC AGC CCC CAC 295 His Pro Asp Leu Pro Arg Trp Leu Arg Tyr Thr Gln Arg Ser Pro His 70 75 80 CAC CCT GGC TTC CTC TAC GGC TCT GCC ACC CCA GAA GAT CGT GGG CTC 343 His Pro Gly Phe Leu Tyr Gly Ser Ala Thr Pro Glu Asp Arg Gly Leu 85 90 95 100 CAG GTC ATT GAG GTC ACA GCC TAC AAT CGG GAC AGC TTT GAT ACC ACT 391 Gln Val Ile Glu Val Thr Ala Tyr Asn Arg Asp Ser Phe Asp Thr Thr 105 110 115 CGG CAG AGG CTG GTG CTG GAG ATT GGG GAC CCA GAA GGC CCC CTG CTG 439 Arg Gln Arg Leu Val Leu Glu Ile Gly Asp Pro Glu Gly Pro Leu Leu 120 125 130 CCA TAC CAA GCC GAG TTC CTG GTG CGC AGC CAC GAT GCG GAG GAG GTG 487 Pro Tyr Gln Ala Glu Phe Leu Val Arg Ser His Asp Ala Glu Glu Val 135 140 145 CTG CCC TCA ACA CCT GCC AGC CGC TTC CTC TCA GCC TTG GGG GGA CTC 535 Leu Pro Ser Thr Pro Ala Ser Arg Phe Leu Ser Ala Leu Gly Gly Leu 150 155 160 TGG GAG CCC GGA GAG CTT CAG CTG CTC AAC GTC ACC TCT GCC TTG GAC 583 Trp Glu Pro Gly Glu Leu Gln Leu Leu Asn Val Thr Ser Ala Leu Asp 165 170 175 180 CGT GGG GGC CGT GTC CCC CTT CCC ATT GAG GGC CGA AAA GGA AGG CTG 631 Arg Gly Gly Arg Val Pro Leu Pro Ile Glu Gly Arg Lys Gly Arg Leu 185 190 195 AAG AGA GAC CTG GCT ACC TCC GAC ATC CAG ATG GTC CAC CAC TGC ACC 679 Lys Arg Asp Leu Ala Thr Ser Asp Ile Gln Met Val His His Cys Thr 200 205 210 ATC CAC GGG AAC ACA GAG GAG CTG CGG CAG ATG GCG GCC AGC CGC GAG 727 Ile His Gly Asn Thr Glu Glu Leu Arg Gln Met Ala Ala Ser Arg Glu 215 220 225 GTG CCC CGG CCA CTC TCC ACC CTG CCC ATG TTC AAT GTG CAC ACA GGT 775 Val Pro Arg Pro Leu Ser Thr Leu Pro Met Phe Asn Val His Thr Gly 230 235 240 GAG CGG CTG CCT CCC CGC GTG GAC AGC GCC CAG GTG CCC CTC ATT CTG 823 245 250 255 260 GAC CAG CAC TGA 835 Asp Gln His CAGCCCAGCC AGTGGTTCCA GGTCCAGCCC TGACTTCATC CTCCCTTCTC TGTCCACACC 895 ACGAGTGGCA CATCCCACCT GCTGATTCCA GCTCCTGGCC CTCCTGGAAC CCAGGCTCTA 955 AACAAGCAGG GAGAGGGGGT GGGGTGGGGT GAGAGTGTGT GGAGTAAGGA CATTCAGAAT 1015 AAATATCTGC TGCTCTGCTC ACCAATTGCT GCTGGCAGCC TCTCCCGTC 1064SEQ ID NO: 8 Sequence length: 1064 Sequence type: nucleic acid Number of strands: double-stranded Topology: linear Sequence type: cDNA to mRNA sequence: CCCCTGTCTC TGTCACTCAC CGGGCGGGCC AGGCCGGGCA GCC ATG GCT GAG ACA 55 Met Ala Glu Thr 1 CTC TTC TGG ACT CCT CTC CTC GTG GTT CTC CTG GCA GGG CTG GGG GAC 103 Leu Phe Trp Thr Pro Leu Leu Val Val Leu Leu Ala Gly Leu Gly Asp 5 10 15 20 ACC GAG GCC CAG CAG ACC ACG CTA CAC CCA CTT GTG GGC CGT GTC TTT 151 Thr Glu Ala Gln Gln Thr Thr Leu His Pro Leu Val Gly Arg Val Phe 25 30 35 GTG CAC ACC TTG GAC CAT GAG ACG TTT CTG AGC CTT CCT GAG CAT GTC 199 Val His Thr Leu Asp His Glu Thr Phe Leu Ser Leu Pro Glu His Val 40 45 50 GCT GTC CCA CCC GCT GTC CAC ATC ACC TAC CAC GCC CAC CTC CAG GGA 247 Ala Val Pro Pro Ala Val His Ile Thr Tyr His Ala His Leu Gln Gly 55 60 65 CAC CCA GAC CTG CCC CGG TGG CTC CGC TAC ACC CAG CGC AGC CCC CAC 295 His Pro Asp Leu Pro Arg Trp Leu Arg Tyr Thr Gln Arg Ser Pro His 70 75 80 CAC CCT GGC TTC CTC TAC GGC TCT GCC ACC CCA GAA GAT CGT GGG CTC 343 His Pro Gly Phe Leu Tyr Gly Ser Ala Thr Pro Glu Asp Arg Gly Leu 85 90 95 100 CAG GTC ATT GAG GTC ACA GCC TAC AAT CGG GAC AGC TTT GAT ACC ACT 391 Gln Val Ile Glu Val Thr Ala Tyr Asn Arg Asp Ser Phe Asp Thr Thr 105 110 115 CGG CAG AGG CTG GTG CTG GAG ATT GGG GAC CCA GAA GGC CCC CTG CTG 439 Arg Gln Arg Leu Val Leu Glu Ile Gly Asp Pro Glu Gly Pro Leu Leu 120 125 130 CCA TAC CAA GCC GAG TTC CTG GTG CGC AGC CAC GAT GCG GAG GAG GTG 487 Pro Tyr Gln Ala Glu Phe Leu Val Arg Ser His Asp Ala Glu Glu Val 135 140 145 CTG CCC TCA ACA CCT GCC AGC CGC TTC CTC TCA GCC TTG GGG GGA CTC 535 Leu Pro Ser Thr Pro Ala Ser Arg Phe Leu Ser Ala Leu Gly Gly Leu 150 155 160 TGG GAG CCC GGA GAG CTT CAG CTG CTC AAC GTC ACC TCT GCC TTG GAC 583 Trp Glu Pro Gly Glu Leu Gln Leu Leu Leu Asn Val Thr Ser Ala Leu Asp 165 170 175 180 CGT GGG GGC CGT GTC CCC CTT CCC ATT GAG GGC CGA AAA GGA AGG CTG 631 Arg Gly Gly Arg Val Pro Leu Pro Ile Glu Gly Arg Lys Gly Arg Leu 185 190 195 AAG AGA GAC C TG GCT ACC TCC GAC ATC CAG ATG GTC CAC CAC TGC ACC 679 Lys Arg Asp Leu Ala Thr Ser Asp Ile Gln Met Val His His Cys Thr 200 205 210 ATC CAC GGG AAC ACA GAG GAG CTG CGG CAG ATG GCG GCC AGC CGC GAG 727 Ile His Gly Asn Thr Glu Glu Leu Arg Gln Met Ala Ala Ser Arg Glu 215 220 225 GTG CCC CGG CCA CTC TCC ACC CTG CCC ATG TTC AAT GTG CAC ACA GGT 775 Val Pro Arg Pro Leu Ser Thr Leu Pro Met Phe Asn Val His thr Gly 230 235 240 GAG CGG CTG CCT CCC CGC GTG GAC AGC GCC CAG GTG CCC CTC ATT CTG 823 245 250 255 260 GAC CAG CAC TGA 835 Asp Gln His CAGCCCAGCC AGTGGTTCCA GGTCCAGCCC TGACTTCATC CTCCCTTCTC TGTCCACACC 895 ACGAGTGGCA CATCCCACCT GCTGATTCCA GCTCCTGGCC CTCCTGGAAC CCAGGCTCTA 955 AACAAGCAGG GAGAGGGGGT GGGGTGGGGT GAGAGTGTGT GGAGTAAGGA CATTCAGAAT 1015 AAATATCTGC TGCTCTGCTC ACCAATTGCT GCTGGCAGCC TCTCCCGTC 1064

【0044】配列番号:9 配列の長さ:2037 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 配列: GGACAGTCGG GCGGGGAGCT CGGCGGCGGC GGGCGCGGGA AG ATG GCG GCA 51 Met Ala Ala 1 GCG GCG GCG GCG GCT GCA GAA CAG CAA AGT TCC AAT GGT CCT GTA AAG 99 Ala Ala Ala Ala Ala Ala Glu Gln Gln Ser Ser Asn Gly Pro Val Lys 5 10 15 AAG TCC ATG CGT GAG AAG GCT GTT GAG AGA AGG AGT GTC AAT AAA GAG 147 Lys Ser Met Arg Glu Lys Ala Val Glu Arg Arg Ser Val Asn Lys Glu 20 25 30 CAC AAC AGT AAC TTT AAA GCT GGA TAC ATT CCG ATT GAT GAA GAT CGT 195 His Asn Ser Asn Phe Lys Ala Gly Tyr Ile Pro Ile Asp Glu Asp Arg 35 40 45 CTC CAC AAA ACA GGG TTG AGA GGA AGA AAG GGC AAT TTA GCC ATC TGT 243 Leu His Lys Thr Gly Leu Arg Gly Arg Lys Gly Asn Leu Ala Ile Cys 50 55 60 65 GTG ATT ATC CTC TTG TTT ATC CTG GCT GTC ATC AAT TTA ATA ATA ACA 291 Val Ile Ile Leu Leu Phe Ile Leu Ala Val Ile Asn Leu Ile Ile Thr 70 75 80 CTT GTT ATT TGG GCC GTG ATT CGC ATT GGA CCA AAT GGC TGT GAT AGT 339 Leu Val Ile Trp Ala Val Ile Arg Ile Gly Pro Asn Gly Cys Asp Ser 85 90 95 ATG GAG TTT CAT GAA AGT GGC CTG CTT CGA TTT AAG CAA GTA TCT GAC 387 Met Glu Phe His Glu Ser Gly Leu Leu Arg Phe Lys Gln Val Ser Asp 100 105 110 ATG GGA GTG ATC CAC CCT CTT TAT AAA AGC ACA GTA GGA GGA AGG CGA 435 Met Gly Val Ile His Pro Leu Tyr Lys Ser Thr Val Gly Gly Arg Arg 115 120 125 AAT GAA AAT TTG GTC ATC ACT GGC AAC AAC CAG CCT ATT GTT TTT CAG 483 Asn Glu Asn Leu Val Ile Thr Gly Asn Asn Gln Pro Ile Val Phe Gln 130 135 140 145 CAA GGG ACA ACA AAG CTC AGT GTA GAA AAC AAC AAA ACT TCT ATT ACA 531 Gln Gly Thr Thr Lys Leu Ser Val Glu Asn Asn Lys Thr Ser Ile Thr 150 155 160 AGT GAC ATC GGC ATG CAG TTT TTT GAC CCG AGG ACT CAA AAT ATC TTA 579 Ser Asp Ile Gly Met Gln Phe Phe Asp Pro Arg Thr Gln Asn Ile Leu 165 170 175 TTC AGC ACA GAC TAT GAA ACT CAT GAG TTT CAT TTG CCA AGT GGA GTG 627 Phe Ser Thr Asp Tyr Glu Thr His Glu Phe His Leu Pro Ser Gly Val 180 185 190 AAA AGT TTG AAT GTT CAA AAG GCA TCT ACT GAA AGG ATT ACC AGC AAT 675 Lys Ser Leu Asn Val Gln Lys Ala Ser Thr Glu Arg Ile Thr Ser Asn 195 200 205 GCT ACC AGT GAT TTA AAT ATA AAA GTT GAT GGG CGT GCT ATT GTG CGT 723 Ala Thr Ser Asp Leu Asn Ile Lys Val Asp Gly Arg Ala Ile Val Arg 210 215 220 225 GGA AAT GAA GGT GTA TTC ATT ATG GGC AAA ACC ATT GAA TTT CAC ATG 771 Gly Asn Glu Gly Val Phe Ile Met Gly Lys Thr Ile Glu Phe His Met 230 235 240 GGT GGT AAT ATG GAG TTA AAG GCG GAA AAC AGT ATC ATC CTA AAT GGA 819 Gly Gly Asn Met Glu Leu Lys Ala Glu Asn Ser Ile Ile Leu Asn Gly 245 250 255 TCT GTG ATG GTC AGC ACC ACC CGC CTA CCC AGT TCC TCC AGT GGA GAC 867 Ser Val Met Val Ser Thr Thr Arg Leu Pro Ser Ser Ser Ser Gly Asp 260 265 270 CAG TTG GGT AGT GGT GAC TGG GTA CGC TAC AAG CTC TGC ATG TGT GCT 915 Gln Leu Gly Ser Gly Asp Trp Val Arg Tyr Lys Leu Cys Met Cys Ala 275 280 285 GAT GGG ACG CTC TTC AAG GTG CAA GTA ACC AGC CAG AAC ATG GGC TGC 963 Asp Gly Thr Leu Phe Lys Val Gln Val Thr Ser Gln Asn Met Gly Cys 290 295 300 305 CAA ATC TCA GAC AAC CCC TGT GGA AAC ACT CAT TAA 999 Gln Ile Ser Asp Asn Pro Cys Gly Asn Thr His 310 315 AAGAACCCCA GAGGTCACCA ACATGTTTAT ATCTTGACTT GACTTTTTTA TGCATGCAAA 1059 TCATTGTTTT TACAGAGTTT GTGATAACTC ATAATTATTT TAATGGCAGA GCACTGCTGT 1119 ATCTGTTTTA TGGTCTACAT AGTTAAAATC TTCTCAGAGA GCCTAAATTC TAATACATTT 1179 TATTAATTTA TACTAATCTT CATATTTACT GTTCTCTAAA ATAATTATGA GAAGCAAATA 1239 AAATCCAAAG TCATGTTTAA AGACGTGTTT TTAAAATTCC ACTATCCCTT TTCTAAAGGT 1299 TAAAGGTCTG AAGCAGCTGT TTAGATTCAC TGTAAGTAAA CTTTGGTAAC TCTAATGGGG 1359 ATAGACCCAC TTAAGATATT TAAAAAGGTA TGGCATCAGC GTTTCATGCT CTGCCTTTTA 1419 GCTTCTAAAA GGAAAGATGC AGATTTCTAG TGCATTAAGC CTGAGCCATA TTCTCACATG 1479 CAAGTGAAGT CATTAAAGAA CTTTACATAT GTGAGATAGA AACAATGGTT CCTTAGTTTT 1539 GCACTGGGAA GAAAATATTT TGTAAAAGAA TGTTTATTTG AAATAATGAT AACTATCAAT 1599 TGTTCACAAT GTGGTGGAAA TTAAAACACC ATCTCAGCTT TAACTTTTAA ATAATAATGA 1659 TAACTATCTT TATTGAGCAT CTTCTACATC CTAGGCATTG TCCTAGGCAT TGCATGTTTA 1719 TATCCCCAAT TCTCACCACA ACCCTGCAAG TAGGTGGTAT TATCCAAGTT TTACCCATTA 1779 AGAAACTGAA GATCAGAGAA GTTAAGAAAC TTGCTCAACA TCATATAGTA AGTAGCAGAG 1839 TTGGGATTGG AATTCCTTTT TTTTTTTTTT TAACTAGAGT AAGCATATCT GTTTTGTTTG 1899 ATTCTCATCT TCTTAGGTAA GTTTAAATTA ACCTTTGTTC ATCTTTCTAG AGTTTTAAAT 1959 AATTAAAAAG TCAGTGCAGA GAGTGAAAAC AACATGGCAT TTGGAATCAA GTACATCCAG 2019 GTTTGAGTCA TGCCTGAA 2037SEQ ID NO: 9 Sequence length: 2037 Sequence type: nucleic acid Number of strands: double-stranded Topology: linear Sequence type: cDNA to mRNA sequence: GGACAGTCGG GCGGGGAGAGCT CGGCGGCGGC GGGCGCGGGA AG ATG GCG GCA 51 Met Ala Ala 1 GCG GCG GCG GCG GCT GCA GAA CAG CAA AGT TCC AAT GGT CCT GTA AAG 99 Ala Ala Ala Ala Ala Ala Glu Gln Gln Ser Ser Asn Gly Pro Val Lys 5 10 15 AAG TCC ATG CGT GAG AAG GCT GTT GAG AGA AGG AGT GTC AAT AAA GAG 147 Lys Ser Met Arg Glu Lys Ala Val Glu Arg Arg Ser Val Asn Lys Glu 20 25 30 CAC AAC AGT AAC TTT AAA GCT GGA TAC ATT CCG ATT GAT GAA GAT CGT 195 His Asn Ser Asn Phe Lys Ala Gly Tyr Ile Pro Ile Asp Glu Asp Arg 35 40 45 CTC CAC AAA ACA GGG TTG AGA GGA AGA AAG GGC AAT TTA GCC ATC TGT 243 Leu His Lys Thr Gly Leu Arg Gly Arg Lys Gly Asn Leu Ala Ile Cys 50 55 60 65 GTG ATT ATC CTC TTG TTT ATC CTG GCT GTC ATC AAT TTA ATA ATA ACA 291 Val Ile Ile Leu Leu Phe Ile Leu Ala Val Ile Asn Leu Ile Ile Thr 70 75 80 CTT GTT ATT TGG GCC GTG ATT CGC ATT G GA CCA AAT GGC TGT GAT AGT 339 Leu Val Ile Trp Ala Val Ile Arg Ile Gly Pro Asn Gly Cys Asp Ser 85 90 95 ATG GAG TTT CAT GAA AGT GGC CTG CTT CGA TTT AAG CAA GTA TCT GAC 387 Met Glu Phe His Glu Ser Gly Leu Leu Arg Phe Lys Gln Val Ser Asp 100 105 110 ATG GGA GTG ATC CAC CCT CTT TAT AAA AGC ACA GTA GGA GGA AGG CGA 435 Met Gly Val Ile His Pro Leu Tyr Lys Ser Thr Val Gly Gly Arg Arg 115 120 125 AAT GAA AAT TTG GTC ATC ACT GGC AAC AAC CAG CCT ATT GTT TTT CAG 483 Asn Glu Asn Leu Val Ile Thr Gly Asn Asn Gln Pro Ile Val Phe Gln 130 135 140 145 CAA GGG ACA ACA AAG CTC AGT GTA GAA AAC AAC AAA ACT TCT ATT ACA 531 Gln Gly Thr Thr Lys Leu Ser Val Glu Asn Asn Lys Thr Ser Ile Thr 150 155 160 AGT GAC ATC GGC ATG CAG TTT TTT GAC CCG AGG ACT CAA AAT ATC TTA 579 Ser Asp Ile Gly Met Gln Phe Phe Asp Pro Arg Thr Gln Asn Ile Leu 165 170 175 TTC AGC ACA GAC TAT GAA ACT CAT GAG TTT CAT TTG CCA AGT GGA GTG 627 Phe Ser Thr Asp Tyr Glu Thr His Glu Phe His Leu Pro Ser Gly Val 180 185 190 AAA AGT TTG AAT GTT CAA AAG GCA TCT ACT GAA AGG ATT ACC AGC AAT 675 Lys Ser Leu Asn Val Gln Lys Ala Ser Thr Glu Arg Ile Thr Ser Asn 195 200 205 GCT ACC AGT GAT TTA AAT ATA AAA GTT GAT GGG CGT GCT ATT GTG CGT 723 Ala Thr Ser Asp Leu Asn Ile Lys Val Asp Gly Arg Ala Ile Val Arg 210 215 220 225 GGA AAT GAA GGT GTA TTC ATT ATG GGC AAA ACC ATT GAA TTT CAC ATG 771 Gly Asn Glu Gly Val Phe Ile Met Gly Lys Thr Ile Glu Plu His Met 230 235 240 GGT GGT AAT ATG GAG TTA AAG GCG GAA AAC AGT ATC ATC CTA AAT GGA 819 Gly Gly Asn Met Glu Leu Lys Ala Glu Asn Ser Ile Ile Lele Asu Gly 245 250 255 TCT GTG ATG GTC AGC ACC ACC CGC CTA CCC AGT TCC TCC AGT GGA GAC 867 Ser Val Met Val Ser Thr Thr Arg Leu Pro Ser Ser Ser Ser Gly Asp 260 265 270 CAG TTG GGT AGT GGT GAC TGG GTA CGC TAC AAG CTC TGC ATG TGT GCT 915 Gln Leu Gly Ser Gly Asp Trp Val Arg Tyr Lys Leu Cys Met Cys Ala 275 280 285 GAT GGG ACG CTC TTC AAG GTG CAA GTA ACC AGC CAG AAC ATG GGC TGC 963 Asp Gly Thr Leu Phe Lys Val Gln Val Thr Ser Gln Asn Met Gly Cys 290 295 300 305 CAA ATC TCA GAC AAC CCC TGT GGA AAC ACT CAT TAA 999 Gln Ile Ser Asp Asn Pro Cys Gly Asn Thr His 310 315 AAGAACCCCA GAGGTCACCA ACATGTTTAT ATCTTGACTT GACTTTTTTA TGCATGCAAA 1059 TCATTGTTTT TACAGAGTTT GTGATAACTC ATAATTATTT TAATGGCAGA GCACTGCTGT 1119 ATCTGTTTTA TGGTCTACAT AGTTAAAATC TTCTCAGAGA GCCTAAATTC TAATACATTT 1179 TATTAATTTA TACTAATCTT CATATTTACT GTTCTCTAAA ATAATTATGA GAAGCAAATA 1239 AAATCCAAAG TCATGTTTAA AGACGTGTTT TTAAAATTCC ACTATCCCTT TTCTAAAGGT 1299 TAAAGGTCTG AAGCAGCTGT TTAGATTCAC TGTAAGTAAA CTTTGGTAAC TCTAATGGGG 1359 ATAGACCCAC TTAAGATATT TAAAAAGGTA TGGCATCAGC GTTTCATGCT CTGCCTTTTA 1419 GCTTCTAAAA GGAAAGATGC AGATTTCTAG TGCATTAAGC CTGAGCCATA TTCTCACATG 1479 CAAGTGAAGT CATTAAAGAA CTTTACATAT GTGAGATAGA AACAATGGTT CCTTAGTTTT 1539 GCACTGGGAA GAAAATATTT TGTAAAAGAA TGTTTATTTG AAATAATGAT AACTATCAAT 1599 TGTTCACAAT GTGGTGGAAA TTAAAACACC ATCTCAGCTT TAACTTTTAA ATAATAATGA 1659 TAACTATCTT TATTGAGCAT CTTCTACATC CTAGGCATTG TCCTAGGCAT TGCATGTTTA 1719 TATCCCCAAT TCTCACCACA ACCCTGCAAG TAGGTGGTAT TATCCAAGTT TTACCCATTA 1779 AGAAACTGAA GATCAGAGAA GTTAAGAAAC TTGCTCAACA TCATATAGTA AGTAGCAGAG 1839 TTGGGATTGG AATTCCTTTT TTTTTTTTTT TAACTAGAGT AAGCATATCT GTTTTGTTTG 1899 ATTCTCATTC GTTCATTGATCAG AGTTAGTTGATCAGTTAGTTGATCTAGTATTGATC AG

【0045】配列番号:10 配列の長さ:1631 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 配列: GTTGCTGAAG CTTCATCCTT TGCTCTCATT CTGTAAGTCA TAGAAAAGTT TGAAACATTC 60 TGTCTGTGGT AGAGCTCGGG CCAGCTGTAG TTCATTCGCC AGTGTGCTTT TCTTAATATC 120 TAAG ATG GTG CGT GAG CAG TAC ACT ACA GCC ACA GAA GGC ATC TGC ATA 169 Met Val Arg Glu Gln Tyr Thr Thr Ala Thr Glu Gly Ile Cys Ile 1 5 10 15 GAG AGG CCA GAG AAT CAG TAT GTC TAC AAA ATT GGC ATT TAT GGC TGG 217 Glu Arg Pro Glu Asn Gln Tyr Val Tyr Lys Ile Gly Ile Tyr Gly Trp 20 25 30 AGA AAG CGC TGT CTC TAC TTG TTT GTT CTT CTT TTA CTC ATC ATC CTC 265 Arg Lys Arg Cys Leu Tyr Leu Phe Val Leu Leu Leu Leu Ile Ile Leu 35 40 45 GTT GTG AAT TTA GCT CTT ACA ATT TGG ATT CTT AAA GTG ATG TGG TTT 313 Val Val Asn Leu Ala Leu Thr Ile Trp Ile Leu Lys Val Met Trp Phe 50 55 60 TCT CCA GCA GGA ATG GGC CAC TTG TGT GTA ACA AAA GAT GGA CTG CGC 361 Ser Pro Ala Gly Met Gly His Leu Cys Val Thr Lys Asp Gly Leu Arg 65 70 75 TTG GAA GGG GAA TCA GAA TTT TTA TTC CCA TTG TAT GCC AAA GAA ATA 409 Leu Glu Gly Glu Ser Glu Phe Leu Phe Pro Leu Tyr Ala Lys Glu Ile 80 85 90 95 CAC TCC AGA GTG GAC TCA TCT CTG CTG CTA CAA TCA ACC CAG AAT GTG 457 His Ser Arg Val Asp Ser Ser Leu Leu Leu Gln Ser Thr Gln Asn Val 100 105 110 ACT GTA AAT GCG CGC AAC TCA GAA GGG GAG GTC ACA GGC AGG TTA AAA 505 Thr Val Asn Ala Arg Asn Ser Glu Gly Glu Val Thr Gly Arg Leu Lys 115 120 125 GTC GGT CCC AAA ATG GTA GAA GTC CAG AAT CAA CAG TTT CAG ATC AAC 553 Val Gly Pro Lys Met Val Glu Val Gln Asn Gln Gln Phe Gln Ile Asn 130 135 140 TCC AAC GAC GGC AAG CCA CTA TTT ACT GTA GAT GAG AAG GAA GTT GTG 601 Ser Asn Asp Gly Lys Pro Leu Phe Thr Val Asp Glu Lys Glu Val Val 145 150 155 GTT GGT ACA GAT AAA CTT CGA GTA ACT GGG CCT GAA GGG GCT CTT TTT 649 Val Gly Thr Asp Lys Leu Arg Val Thr Gly Pro Glu Gly Ala Leu Phe 160 165 170 175 GAA CAT TCA GTG GAG ACA CCC CTT GTC AGA GCC GAC CCG TTT CAA GAC 697 Glu His Ser Val Glu Thr Pro Leu Val Arg Ala Asp Pro Phe Gln Asp 180 185 190 CTT AGA TTA GAA TCC CCC ACT CGG AGT CTA AGC ATG GAT GCC CCA AGG 745 Leu Arg Leu Glu Ser Pro Thr Arg Ser Leu Ser Met Asp Ala Pro Arg 195 200 205 GGT GTG CAT ATT CAA GCT CAC GCT GGG AAA ATT GAG GCG CTT TCT CAA 793 Gly Val His Ile Gln Ala His Ala Gly Lys Ile Glu Ala Leu Ser Gln 210 215 220 ATG GAT ATT CTT TTT CAT AGT AGT GAT GGA ATG CTT GTG CTT GAT GCT 841 Met Asp Ile Leu Phe His Ser Ser Asp Gly Met Leu Val Leu Asp Ala 225 230 235 GAA ACT GTG TGC TTA CCC AAG CTG GTG CAG GGG ACG TGG GGT CCC TCT 889 Glu Thr Val Cys Leu Pro Lys Leu Val Gln Gly Thr Trp Gly Pro Ser 240 245 250 255 GGC AGC TCA CAG AGC CTC TAC GAA ATC TGT GTG TGT CCA GAT GGG AAG 937 Gly Ser Ser Gln Ser Leu Tyr Glu Ile Cys Val Cys Pro Asp Gly Lys 260 265 270 CTG TAC CTG TCT GTG GCC GGT GTG AGC ACC ACG TGC CAG GAG CAC AGC 985 Leu Tyr Leu Ser Val Ala Gly Val Ser Thr Thr Cys Gln Glu His Ser 275 280 285 CAC ATC TGC CTC TGA 1000 His Ile Cys Leu 290 GCTGCCTGCG TCCTCTCGGT GAGCTGTGCA GTGCCGGCCC CAGATCCTCA CACCCAGGGA 1060 GCAGCTGCAC ATCGTGAAAG ACTGAGGCAG CGTGGATGGG AAGTAAACGC TTCCAGAGGA 1120 ACTCAGAAAA AATTATGTGC CAGTGAAAGT GTTTGGACAA AAACTACATG ATCTCAAAAT 1180 GCACGTGGAT GTGAGACACA AAAGTTGACA AAATGGAAAA GCAATGTGTT TTTCCACTGG 1240 ATTAATTTTC ACCGGAACAA TTGCGAATTC TCTCTGCCTC GCCTCCCCCT ATCTTGTCCG 1300 TGTGGGCACA CACTGAGTGT TGAGTTGCCG TGTGGAGTTA ATGTATGACG CTCCACTGTG 1360 GATATCTAAT GCCCTGTTGA GAGTAGCCTT GCTCAGTACT AAAATGCCCC AAAGTTCTAT 1420 ACAGCATTTC CTTTATAGCA TTCAAACCTC ACATCCTCCC TTCAGTTTAA TGCAAGTAAG 1480 TCAGGTTTCA CAAGAAAATT TTCAAGTTTT GAAGGGAATT TGAGGTTGAT CTGGTTTTCA 1540 AGATGTAGTT AAAGGAATAA ATCACTCAAA ATTAAACTTT CTGTATATAG TCAATAAGCA 1600 ATAAAAACCT CATTTTTCAG AGTTAAAAAA C 1631SEQ ID NO: 10 Sequence length: 1631 Sequence type: nucleic acid Number of strands: double-stranded Topology: linear Sequence type: cDNA to mRNA sequence: GTTGCTGAAG CTTCATCCTT TGCTCTCATT CTGTAAGTCA TAGAAAAGTT TGAAACATTC 60 TGTCTGTGGT AGAGCTCGGG CCAGCTGTAG TTCATTCC AGTGTGCTTT TCTTAATATC 120 TAAG ATG GTG CGT GAG CAG TAC ACT ACA GCC ACA GAA GGC ATC TGC ATA 169 Met Val Arg Glu Gln Tyr Thr Thr Ala Thr Glu Gly Ile Cys Ile 1 5 10 15 GAG AGG CCA GAG AAT CAG TAT GTC TAC AAA ATT GGC ATT TAT GGC TGG 217 Glu Arg Pro Glu Asn Gln Tyr Val Tyr Lys Ile Gly Ile Tyr Gly Trp 20 25 30 AGA AAG CGC TGT CTC TAC TTG TTT GTT CTT CTT TTA CTC ATC ATC CTC 265 Arg Lys Arg Cys Leu Tyr Leu Phe Val Leu Leu Leu Leu Ile Ile Leu 35 40 45 GTT GTG AAT TTA GCT CTT ACA ATT TGG ATT CTT AAA GTG ATG TGG TTT 313 Val Val Asn Leu Ala Leu Thr Ile Trp Ile Leu Lys Val Met Trp Phe 50 55 60 TCT CCA GCA GGA ATG GGC CAC TTG TGT GTA ACA AAA GAT GGA CTG CGC 361 Ser Pro Ala Gly Met Gly His Leu Cys Val Thr Lys Asp Gly Leu Arg 65 70 75 TTG GAA GGG GAA TCA GAA TTT TTA TTC CCA TTG TAT GCC AAA GAA ATA 409 Leu Glu Gly Glu Ser Glu Phe Leu Phe Pro Leu Tyr Ala Lys Glu Ile 80 85 90 95 CAC TCC AGA GTG GAC TCA TCT CTG CTG CTA CAA TCA ACC CAG AAT GTG 457 His Ser Arg Val Asp Ser Ser Leu Leu Leu Gln Ser Thr Gln Asn Val 100 105 110 ACT GTA AAT GCG CGC AAC TCA GAA GGG GAG GTC ACA GGC AGG TTA AAA 505 Thr Val Asn Ala Arg Asn Ser Glu Gly Glu Val Thr Gly Arg Leu Lys 115 120 125 GTC GGT CCC AAA ATG GTA GAA GTC CAG AAT CAA CAG TTT CAG ATC AAC 553 Val Gly Pro Lys Met Val Glu Val Gln Asn Gln Gln Phe Gln Ile Asn 130 135 140 TCC AAC GAC GGC AAG CCA CTA TTT ACT GTA GAT GAG AAG GAA GTT GTG 601 Ser Asn Asp Gly Lys Pro Leu Phe Thr Val Asp Glu Lys Glu Val Val 145 150 155 GTT GGT ACA GAT AAA CTT CGA GTA ACT GGG CCT GAA GGG GCT CTT TTT 649 Val Gly Thr Asp Lys Leu Arg Val Thr Gly Pro Glu Gly Ala Leu Phe 160 165 170 175 GAA CAT TCA GTG GAG ACA CCC CTT GTC AGA GCC GAC CCG TTT CAA GAC 697 Glu His Ser Val Glu Thr Pro Leu Val Ar g Ala Asp Pro Phe Gln Asp 180 185 190 CTT AGA TTA GAA TCC CCC ACT CGG AGT CTA AGC ATG GAT GCC CCA AGG 745 Leu Arg Leu Glu Ser Pro Thr Arg Ser Leu Ser Met Asp Ala Pro Arg 195 200 205 GGT GTG CAT ATT CAA GCT CAC GCT GGG AAA ATT GAG GCG CTT TCT CAA 793 Gly Val His Ile Gln Ala His Ala Gly Lys Ile Glu Ala Leu Ser Gln 210 215 220 ATG GAT ATT CTT TTT CAT AGT AGT GAT GGA ATG CTT GTG CTT GAT GCT 841 Met Asp Ile Leu Phe His Ser Ser Asp Gly Met Leu Val Leu Asp Ala 225 230 235 GAA ACT GTG TGC TTA CCC AAG CTG GTG CAG GGG ACG TGG GGT CCC TCT 889 Glu Thr Val Cys Leu Pro Lys Leu Val Gln Gly Thr Trp Gly Pro Ser 240 245 250 255 GGC AGC TCA CAG AGC CTC TAC GAA ATC TGT GTG TGT CCA GAT GGG AAG 937 Gly Ser Ser Gln Ser Leu Tyr Glu Ile Cys Val Cys Pro Asp Gly Lys 260 265 270 CTG TAC TAC CTG TCT GTG GCC GGT GTG AGC ACC ACG TGC CAG GAG CAC AGC 985 Leu Tyr Leu Ser Val Ala Gly Val Ser Thr Thr Cys Gln Glu His Ser 275 280 285 CAC ATC TGC CTC TGA 1000 His Ile Cys Leu 290 GCTGCCTGCG TCCTCTCGGT GAGCTGTGCA GTGCCGGCCC CAGA TCCTCA CACCCAGGGA 1060 GCAGCTGCAC ATCGTGAAAG ACTGAGGCAG CGTGGATGGG AAGTAAACGC TTCCAGAGGA 1120 ACTCAGAAAA AATTATGTGC CAGTGAAAGT GTTTGGACAA AAACTACATG ATCTCAAAAT 1180 GCACGTGGAT GTGAGACACA AAAGTTGACA AAATGGAAAA GCAATGTGTT TTTCCACTGG 1240 ATTAATTTTC ACCGGAACAA TTGCGAATTC TCTCTGCCTC GCCTCCCCCT ATCTTGTCCG 1300 TGTGGGCACA CACTGAGTGT TGAGTTGCCG TGTGGAGTTA ATGTATGACG CTCCACTGTG 1360 GATATCTAAT GCCCTGTTGA GAGTAGCCTT GCTCAGTACT AAAATGCCCC AAAGTTCTAT 1420 ACAGCATTTC CTTTATAGCA TTCAAACCTC ACATCCTCCC TTCAGTTTAA TGCAAGTAAG 1480 TCAGGTTTCA CAAGAAAATT TTCAAGTTTT GAAGGGAATT TGAGGTTGAT CTGGTTTTCA 1540 AGATGTAGTT AAAGGAATAA ATCACTCAAA ATTAAACTTT CTGTATATAG TCAATAAGCA 1600 ATAAAAACCT CATTTTTCAG AGTTAAAAAA C 1631

【図面の簡単な説明】[Brief description of the drawings]

【図1】プライマー設計の概略図である。FIG. 1 is a schematic diagram of primer design.

【図2】アガロースゲル電気泳動の結果を示す写真であ
る。
FIG. 2 is a photograph showing the results of agarose gel electrophoresis.

【図3】アガロースゲル電気泳動の結果を示す写真であ
る。
FIG. 3 is a photograph showing the results of agarose gel electrophoresis.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 配列番号7、8、9又は10で表される塩
基配列を含むサルコグリカン遺伝子産物の翻訳領域に隣
接する上流及び下流領域の少なくとも一部とそれぞれハ
イブリダイズすることができるオリゴヌクレオチドプラ
イマーセット。
1. An oligonucleotide capable of hybridizing with at least a part of an upstream and downstream region adjacent to a translation region of a sarcoglycan gene product containing the nucleotide sequence represented by SEQ ID NO: 7, 8, 9, or 10, respectively. Primer set.
【請求項2】 オリゴヌクレオチドプライマーセット
が、配列番号1及び2、配列番号3及び4、又は配列番
号5及び6で表されるもののうち少なくとも一組を含む
ものである、請求項1記載のオリゴヌクレオチドプライ
マーセット。
2. The oligonucleotide primer according to claim 1, wherein the oligonucleotide primer set comprises at least one of those represented by SEQ ID NOs: 1 and 2, SEQ ID NOs: 3 and 4, or SEQ ID NOs: 5 and 6. set.
【請求項3】 請求項1又は2記載のオリゴヌクレオチ
ドプライマーセット及びポリメラーゼを含むサルコグリ
カン遺伝子産物増幅用キット。
3. A kit for amplifying a sarcoglycan gene product, comprising the oligonucleotide primer set according to claim 1 or 2 and a polymerase.
【請求項4】 請求項3記載の遺伝子産物増幅用キット
を用いてポリメラーゼ連鎖反応を行うことを特徴とする
サルコグリカン遺伝子産物の増幅方法。
4. A method for amplifying a sarcoglycan gene product, comprising performing a polymerase chain reaction using the gene product amplification kit according to claim 3.
【請求項5】 ポリメラーゼ連鎖反応が、94℃で1分、
45〜65℃で45秒及び72℃で1〜5分の反応を1サイクル
としてこれを25〜35サイクル行い、さらに72℃で10分の
反応を1サイクル行うものである請求項4記載のサルコ
グリカン遺伝子産物の増幅方法。
5. The polymerase chain reaction is performed at 94 ° C. for 1 minute,
The sarco according to claim 4, wherein the reaction is carried out for 25 to 35 cycles with a reaction of 45 to 65 ° C for 45 seconds and a reaction of 1 to 5 minutes at 72 ° C as one cycle, and further performed for one cycle at 72 ° C for 10 minutes. A method for amplifying a glycan gene product.
JP8216508A 1996-08-16 1996-08-16 Primer set for amplifying sarcoglycan gene product and amplification of the same gene prodect Pending JPH1057065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8216508A JPH1057065A (en) 1996-08-16 1996-08-16 Primer set for amplifying sarcoglycan gene product and amplification of the same gene prodect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8216508A JPH1057065A (en) 1996-08-16 1996-08-16 Primer set for amplifying sarcoglycan gene product and amplification of the same gene prodect

Publications (1)

Publication Number Publication Date
JPH1057065A true JPH1057065A (en) 1998-03-03

Family

ID=16689534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8216508A Pending JPH1057065A (en) 1996-08-16 1996-08-16 Primer set for amplifying sarcoglycan gene product and amplification of the same gene prodect

Country Status (1)

Country Link
JP (1) JPH1057065A (en)

Similar Documents

Publication Publication Date Title
US5750400A (en) Coding sequences of the human BRCA1 gene
CN110541025B (en) Detection method, primer composition and kit for Duchenne muscular dystrophy gene defect
Nobile et al. Exon–intron organization of the human dystrophin gene
CA2404448C (en) Genes involved in intestinal inflammatory diseases and use thereof
Ma et al. Cloning and localization of RPE65 mRNA in salamander cone photoreceptor cells
Eerola et al. Identification of eight novel 5′-exons in cerebral capillary malformation gene-1 (CCM1) encoding KRIT1
JP2004531261A (en) Skin treatment
Chamberlain et al. PCR analysis of dystrophin gene mutation and expression
WO1997011175A1 (en) Screening for disorders of serotonergic dysfunction
JPH1057065A (en) Primer set for amplifying sarcoglycan gene product and amplification of the same gene prodect
JP2004519219A (en) Genetic tests to identify complex spinal malformation carriers in cattle
Olive et al. Molecular characterization of the Vγ9 T cell receptor repertoire expressed in patients with rheumatoid arthritis
JPH11510059A (en) Genetic diagnostic co-dominance test
EP0857219B1 (en) Microsatellite sequences for canine genotyping
US20030008301A1 (en) Association between schizophrenia and a two-marker haplotype near PILB gene
JP4728949B2 (en) Analysis and use of PAR1 polymorphisms to assess cardiovascular disease risk
Fujiki et al. Analysis of peripherin/RDS gene for Japanese retinal dystrophies
KR20130048319A (en) Single nucleotide polymorphisms associated in left ventricular hypertrophy and use thereof
Moric-Janiszewska et al. Mutational screening of SCN5A linked disorders in Polish patients and their family members
US6280931B1 (en) Method for specifically amplifying a dystroglycan, α-sarcoglycan, or endothelin Breceptor cDNA of an extremely small
US6838256B2 (en) Coding sequences of the human BRCA1 gene
Gorin et al. Sequence analysis and exclusion of phosducin as the gene for the recessive retinal degeneration of the Abyssinian cat
WO1991006675A1 (en) New oligonucleotide probe
AU777341B2 (en) Coding sequences of the human BRCA1 gene
US20040132060A1 (en) Variant of HNF-1alpha gene having novel single nucleotide polymorphism and a variant protein encoded by the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050412