JPH1054809A - Method for measuring x-ray absorbing fine structure of battery material and measuring cell - Google Patents

Method for measuring x-ray absorbing fine structure of battery material and measuring cell

Info

Publication number
JPH1054809A
JPH1054809A JP8211498A JP21149896A JPH1054809A JP H1054809 A JPH1054809 A JP H1054809A JP 8211498 A JP8211498 A JP 8211498A JP 21149896 A JP21149896 A JP 21149896A JP H1054809 A JPH1054809 A JP H1054809A
Authority
JP
Japan
Prior art keywords
ray
electrode plate
plate
active material
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8211498A
Other languages
Japanese (ja)
Inventor
Fumishige Nishikawa
文茂 西川
Masaya Yamashita
昌哉 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP8211498A priority Critical patent/JPH1054809A/en
Publication of JPH1054809A publication Critical patent/JPH1054809A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To perform charging and discharging of active material in a tightly closed cell and to perform detailed measurement for the local crystal structure for every active material having the different charging and discharging quantity and the structure change accompanied by the charging and discharging. SOLUTION: A negative pole plate 3 and a positive pole plate 4 are bonded to each other in an airtight pattern through an insulating O ring 5. A cell main body 2, in which a containing part 12 of electrolyte solution 11 is formed, is provided in a space surrounded by the respective plates 3 and 4 and the O ring 5. An x-ray transmitting hole 13, which is communicated to the containing part 12, is formed at the positive pole par plate 4. The positive pole material of battery material is arranged in an airtight state under the state, in which the plate 4 is electrically conducted, in the transmitting hole 13. An X-ray transmitting hole 19, which is communicated to the containing part 12, is formed in the negative pole plate 3. A conducting foil is arranged in the transmitting hole 19 under the state, in which the plate 3 is electrically conducted. Escape holes with bottoms 26 and 27, by which the electrolyte solution 11 intruded into the respective through holes 13 and 19 are made to flow down and the electrolyte solution 11 is discharged through the respective through holes 13 and 19 when the cell main body 2 is arranged in the different up and down directions, are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池材料の構造を
測定する方法、特にX線吸収微細構造(XAFS)測定
方法及び該測定用セルに関する。
The present invention relates to a method for measuring the structure of a battery material, and more particularly to a method for measuring an X-ray absorption fine structure (XAFS) and a cell for the measurement.

【0002】[0002]

【従来の技術】まず、一般的なX線吸収微細構造(XA
FS)の測定について説明する。IRやUVなどの光は
物質により吸収されるが、X線も例外なく物質により吸
収され、その吸収分のエネルギーは光電子や蛍光X線、
及び熱に変換される。このとき、X線の吸収によって発
生した光電子波の一部は、複数の原子による散乱と干渉
によって、X線の吸収量に対し構造情報として反映され
る。つまり、X線の吸収量をモニタすれば、原子間構造
に関する情報が得られる。
2. Description of the Related Art First, a general X-ray absorption fine structure (XA
The measurement of FS) will be described. Light such as IR and UV is absorbed by the substance, but X-rays are also absorbed by the substance without exception, and the energy of the absorbed amount is converted into photoelectrons, fluorescent X-rays,
And converted to heat. At this time, part of the photoelectron wave generated by the absorption of X-rays is reflected as structural information on the amount of X-ray absorption due to scattering and interference by a plurality of atoms. That is, by monitoring the amount of X-ray absorption, information on the interatomic structure can be obtained.

【0003】X線のビームライン上に物質を置いた場
合、物質に照射されたX線(入射X線:Io)強度と物
質を通過してきたX線(透過X線:It)強度とからそ
の物質によるX線の吸収量(X線吸収係数)が算出され
る。
When a substance is placed on an X-ray beam line, the intensity of the X-ray (incident X-ray: Io) irradiated to the substance and the intensity of the X-ray (transmission X-ray: It) passing through the substance are determined. The X-ray absorption amount (X-ray absorption coefficient) of the substance is calculated.

【0004】X線吸収係数の増減をモニタしながらX線
エネルギ(波長)を変化させ、X線吸収スペクトルを測
定すると、あるエネルギ位置でX線吸収係数の急激な立
ち上がり(吸収端)が観測される。この吸収端のエネル
ギ位置は元素に固有であるため、この吸収端付近のエネ
ルギ領域で構造情報を抽出できれば、それは元素(注目
元素)の固有の情報であることを意味する。
When the X-ray absorption spectrum is measured while changing the X-ray energy (wavelength) while monitoring the increase and decrease of the X-ray absorption coefficient, a sharp rise (absorption edge) of the X-ray absorption coefficient is observed at a certain energy position. You. Since the energy position at the absorption edge is unique to the element, if structural information can be extracted in the energy region near the absorption edge, it means that the information is unique to the element (element of interest).

【0005】ある注目元素の吸収端付近のエネルギ領域
で、充分な精度でX線吸収スペクトルを測定すると、吸
収端から数十eVのエネルギ領域において減衰を伴う大
きな構造性振動が観測される。これをX線吸収端近傍構
造(XANES:X-Ray absorption near edge structu
re)と呼び、主に注目元素の電子状態や立体構造に関連
した情報を含有している。
When an X-ray absorption spectrum is measured with sufficient accuracy in the energy region near the absorption edge of a certain element of interest, a large structural vibration accompanied by attenuation is observed in the energy region of several tens eV from the absorption edge. This is converted to a structure near the X-ray absorption edge (XANES: X-Ray absorption near edge structu).
re), which mainly contains information related to the electronic state and three-dimensional structure of the element of interest.

【0006】また、XANESよりもさらに高エネルギ
側数百eVのエネルギ領域において、同様な減衰を伴っ
た微細な構造性振動が観測される。これをX線吸収微細
構造(EXAFS:Extended X-Ray absorption fine s
tructure)と呼び、注目元素近傍の局所構造(原子間距
離や配位数)についての情報を含有している。
[0006] In the energy region of several hundred eV on the higher energy side than XANES, fine structural vibration accompanied by similar attenuation is observed. This is called X-ray absorption fine structure (EXAFS: Extended X-Ray absorption fine s).
It contains information about the local structure (interatomic distance and coordination number) near the element of interest.

【0007】一方、X線吸収スペクトルから抽出された
EXAFSスペクトルに対し、適当な領域でフーリエ変
換を行うと、動径分布関数が得られる。この関数は、注
目元素を中心とした電子密度の一次元分布であり、その
極大値を示す距離には何らかの原子が位置し、その強度
(面積)は位置している原子の電子密度に比例してい
る。したがって、この動径分布関数を数値的に吟味する
ことによって、注目元素についての構造情報を得ること
ができる。
On the other hand, when the EXAFS spectrum extracted from the X-ray absorption spectrum is subjected to a Fourier transform in an appropriate region, a radial distribution function is obtained. This function is a one-dimensional distribution of electron density centered on the element of interest. Some atoms are located at the distance where the local maximum is shown, and the intensity (area) is proportional to the electron density of the located atom. ing. Therefore, structural information on the element of interest can be obtained by numerically examining the radial distribution function.

【0008】そして、近年、上述したXANESとEX
AFSとを総称してXAFSと呼んでいる。すなわち、
XAFSとは、高精度に測定されたX線吸収スペクトル
から微細な構造性振動(XAFS振動)を抽出し、その
中に潜在する構造情報を計算技法によって具現化するも
のである。
In recent years, the above-mentioned XANES and EX
AFS is generally called XAFS. That is,
XAFS is a technique for extracting fine structural vibrations (XAFS vibrations) from an X-ray absorption spectrum measured with high precision, and for embodying latent structural information therein by a calculation technique.

【0009】ところで、例えばリチウム二次電池などに
おいて、高性能な活物質を探索するためには、充放電量
の異なる活物質毎の局所的結晶構造や充放電に伴う構造
変化の詳細を測定して明らかにすることが有効な指針と
なると考えられる。XAFSでかかる測定を行うには、
例えば、密閉されたハウジングの両壁にX線透過窓をそ
れぞれ同心に設け、該ハウジング内に予め所定の充放電
量に充放電された活物質を配置して該活物質に対してX
線を透過する方法が考えられる。
In order to search for a high-performance active material in, for example, a lithium secondary battery, the local crystal structure of each active material having a different charge / discharge amount and details of the structural change due to charge / discharge are measured. It will be an effective guideline to clarify this. To make such a measurement with XAFS,
For example, X-ray transmitting windows are provided concentrically on both walls of a sealed housing, and an active material charged and discharged to a predetermined charge / discharge amount is arranged in the housing, and X-rays are applied to the active material.
A method of transmitting a line is conceivable.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、かかる
XAFSによる測定方法では、充放電用の密閉型セル内
から活物質を取り出してXAFS測定用のセル内に移動
する際に、不用意に空気に触れるなどして活物質の物性
が変化してしまうことがあり、この結果、正確な測定が
行えない場合がある。
However, in such a measurement method using XAFS, when the active material is taken out from the sealed type cell for charge / discharge and moved into the cell for XAFS measurement, careless contact with air occurs. For example, the physical properties of the active material may change, and as a result, accurate measurement may not be performed.

【0011】また、活物質の充放電を別の場所で行う必
要があり、しかも、充放電量の異なる多種類の活物質を
用意しなければならないため、その測定に手間がかかる
という不都合がある。
In addition, it is necessary to perform charging and discharging of the active material in another place, and since it is necessary to prepare various kinds of active materials having different charging and discharging amounts, there is a disadvantage that the measurement is troublesome. .

【0012】本発明はかかる不都合を解消するためにな
されたものであり、密閉されたセル内で活物質の充放電
を可能にすることができると共に、充放電量の異なる活
物質毎の局所的結晶構造や充放電に伴う構造変化の詳細
を簡単且つ正確に測定することができる電池材料のX線
吸収微細構造測定方法及び該測定用セルを提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and it is possible to charge and discharge an active material in a sealed cell and to locally charge and discharge each active material having a different charge and discharge amount. An object of the present invention is to provide a method for measuring an X-ray absorption fine structure of a battery material and a cell for the measurement, which can easily and accurately measure a crystal structure and details of a structural change due to charge and discharge.

【0013】[0013]

【課題を解決するための手段】かかる目的を達成するた
めに、請求項1に係る電池材料のX線吸収微細構造測定
方法は、正極プレートと負極プレートとを環状の絶縁用
シール部材を介して互いに気密接合して前記正極及び負
極の各プレートと前記絶縁用シール部材とで囲まれる空
間に電解液の収容部を形成し、前記正極プレート及び負
極プレートの内のいずれか一方のプレートに前記収容部
に連通する第1のX線透過孔を形成して該第1のX線透
過孔に電池材料の活物質を該プレートに電気的に導通さ
せた状態で気密に配置すると共に、他方のプレートに前
記収容部に連通する第2のX線透過孔を形成して該第2
のX線透過孔に箔を気密に配置したX線吸収微細構造測
定用セルを用意し、前記収容部に収容された電解液が前
記第1及び第2のX線透過孔に浸入した状態で前記正極
及び負極のプレートに電流を流して前記活物質を充放電
し、次いで、前記第1及び第2のX線透過孔から電解液
を排出した状態で該第1及び第2のX線透過孔にX線を
透過して前記活物質の構造を測定することを特徴とす
る。
In order to achieve the above object, a method for measuring an X-ray absorption fine structure of a battery material according to the present invention is directed to a method for measuring a fine structure of a positive electrode plate and a negative electrode plate via an annular insulating seal member. The positive electrode and the negative electrode are hermetically bonded to each other to form an electrolyte solution accommodating portion in a space surrounded by the insulating and sealing members, and the accommodating portion is accommodated in one of the positive electrode plate and the negative electrode plate. A first X-ray transmitting hole communicating with the portion, and the first X-ray transmitting hole is hermetically disposed in a state in which the active material of the battery material is electrically connected to the plate; Forming a second X-ray transmission hole communicating with the accommodation portion in the second portion;
An X-ray absorption fine structure measurement cell in which a foil is air-tightly arranged in the X-ray transmission hole is prepared, and in a state where the electrolyte accommodated in the accommodation section has entered the first and second X-ray transmission holes. An electric current is applied to the positive and negative plates to charge and discharge the active material, and then the first and second X-ray transmission electrodes are discharged in a state where the electrolyte is discharged from the first and second X-ray transmission holes. The structure of the active material is measured by transmitting X-rays through the holes.

【0014】請求項2に係る電池材料のX線吸収微細構
造測定用セルは、正極プレートと負極プレートとを環状
の絶縁用シール部材を介して互いに気密接合して前記正
極及び負極の各プレートと前記絶縁用シール部材とで囲
まれる空間に電解液の収容部を形成したセル本体を備
え、前記正極プレート及び負極プレートの内のいずれか
一方のプレートに前記収容部に連通する第1のX線透過
孔を形成して該第1のX線透過孔に電池材料の活物質を
該プレートに電気的に導通させた状態で気密に配置する
と共に、他方のプレートに前記収容部に連通する第2の
X線透過孔を形成して該第2のX線透過孔に箔を気密に
配置し、更に、前記セル本体の向きを変えた際に、前記
第1及び第2のX線透過孔に浸入した電解液を該第1及
び第2のX線透過孔から離間する側に流して該第1及び
第2のX線透過孔から電解液を排出する逃げ部を設けた
ことを特徴とする。
According to a second aspect of the present invention, there is provided a cell for measuring an X-ray absorption fine structure of a battery material, wherein a positive electrode plate and a negative electrode plate are hermetically bonded to each other via an annular insulating sealing member, and the positive electrode plate and the negative electrode plate are connected to each other. A first X-ray including a cell main body having an electrolyte solution accommodating portion formed in a space surrounded by the insulating sealing member and communicating with the accommodating portion on one of the positive electrode plate and the negative electrode plate; The second X-ray transmission hole is formed, and the first X-ray transmission hole is hermetically disposed in a state where the active material of the battery material is electrically connected to the plate, and the second X-ray transmission hole communicates with the receiving portion. Forming an X-ray transmitting hole, and placing a foil in the second X-ray transmitting hole in an airtight manner. Further, when the orientation of the cell body is changed, the first and second X-ray transmitting holes are formed. The first and second X-ray transmission holes are filled with the infiltrated electrolyte. Characterized by flowing on the side et spaced from the first and second X-ray transmission hole providing the relief portion for discharging the electrolyte.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態の一例
を図1〜図4を参照して説明する。図1は本発明の実施
の形態の一例である電池材料のX線吸収微細構造測定用
セルの正面図、図2は図1のII−II線断面図、図3
は図2の部分的詳細図、図4は電池材料のX線吸収微細
構造の測定方法を説明するための説明的断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a front view of a cell for measuring an X-ray absorption fine structure of a battery material according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line II-II of FIG.
2 is a partially detailed view of FIG. 2, and FIG. 4 is an explanatory sectional view for explaining a method for measuring the X-ray absorption fine structure of the battery material.

【0016】図1及び図2において符号1はX線吸収微
細構造測定用セル(以下、XAFS測定用セルと略称す
る。)であり、このXAFS測定用セル1はセル本体2
を備える。セル本体2は、例えばステンレス鋼からなる
正方形状の負極プレート3、該負極プレート3に所定の
間隔を存して対面配置された例えばステンレス鋼からな
る正方形状の正極プレート4、及び負極プレート3と正
極プレート4との間に介在されたOリング(絶縁用シー
ル部材)5から構成されている。Oリング5にはPFA
(四ふっ化エチレン・パーフロロアルキルビニルエーテ
ル共重合体)の被覆が施されており、負極プレート3及
び正極プレート4の中心と略同心に配置されている。な
お、この実施の形態では、絶縁用シール部材として円形
のOリングを用いたが、これに限定されず、四角形ある
いはその他の形状のものでもよい。
1 and 2, reference numeral 1 denotes a cell for measuring an X-ray absorption fine structure (hereinafter abbreviated as a cell for measuring XAFS). The cell 1 for measuring XAFS is a cell body 2.
Is provided. The cell body 2 includes a square negative electrode plate 3 made of, for example, stainless steel, a square positive plate 4 made of, for example, stainless steel, and a negative electrode plate 3 that are arranged facing the negative electrode plate 3 at a predetermined interval. An O-ring (insulating sealing member) 5 is interposed between the positive electrode plate 4 and the positive electrode plate 4. PFA on O-ring 5
(Ethylene tetrafluoride / perfluoroalkyl vinyl ether copolymer) and is disposed substantially concentrically with the centers of the negative electrode plate 3 and the positive electrode plate 4. In this embodiment, a circular O-ring is used as the insulating seal member. However, the present invention is not limited to this, and a rectangular or other shape may be used.

【0017】正極プレート4のOリング5の径方向外側
位置にはボルト挿入孔6が周方向に等間隔で複数形成さ
れており、該ボルト挿入孔6にはフェノール樹脂などか
らなる絶縁スリーブ7が嵌入されている。絶縁スリーブ
7のフランジ8にはボルト9の頭部が当接するようにな
っている。負極プレート3のOリング5の径方向外側に
は、ボルト挿入孔6に対応するねじ孔10が周方向に等
間隔で複数形成されている。正極プレート4側から絶縁
スリーブ7の穴にボルト9を挿入してねじ孔10に締め
付けることにより、負極プレート3と正極プレート4と
がOリング5を介して互いに気密接合され、これによ
り、正極及び負極の各プレート4,3とOリング5とで
囲まれる円形空間に電解液11の収容部12が形成され
る。
A plurality of bolt insertion holes 6 are formed at a radially outer position of the O-ring 5 of the positive electrode plate 4 at equal intervals in a circumferential direction, and an insulating sleeve 7 made of phenol resin or the like is formed in the bolt insertion holes 6. It is inserted. The head of the bolt 9 is in contact with the flange 8 of the insulating sleeve 7. A plurality of screw holes 10 corresponding to the bolt insertion holes 6 are formed at equal intervals in the circumferential direction on the radially outer side of the O-ring 5 of the negative electrode plate 3. By inserting a bolt 9 into the hole of the insulating sleeve 7 from the side of the positive electrode plate 4 and tightening it into the screw hole 10, the negative electrode plate 3 and the positive electrode plate 4 are air-tightly joined to each other via the O-ring 5. An accommodating portion 12 for the electrolytic solution 11 is formed in a circular space surrounded by the plates 4 and 3 of the negative electrode and the O-ring 5.

【0018】正極プレート4には、収容部12に連通す
る第1のX線透過孔13が収容部12の中心より下方に
偏心した位置に形成されている。図3に示すように、第
1のX線透過孔13の外側の端部には、例えばLiNi
2 などの電池材料の正極活物質14が片面に被着され
たアルミニウムなどの金属箔15が該正極活物質14を
内側(第1のX線透過孔13側)に向けた状態で第1の
X線透過孔13を覆うように配置されている。金属箔1
5の周縁部は、正極プレート4の外側面に接触してお
り、これにより、正極活物質14が金属箔15を介して
正極プレート4と電気的に導通されている。
A first X-ray transmission hole 13 communicating with the housing 12 is formed in the positive electrode plate 4 at a position eccentric below the center of the housing 12. As shown in FIG. 3, the outer end of the first X-ray transmission hole 13 is made of, for example, LiNi.
A metal foil 15 such as aluminum having a positive electrode active material 14 of a battery material such as O 2 adhered to one surface thereof has the first positive electrode active material 14 facing inward (toward the first X-ray transmitting hole 13). Are arranged so as to cover the X-ray transmission holes 13. Metal foil 1
5 is in contact with the outer surface of the positive electrode plate 4, whereby the positive electrode active material 14 is electrically connected to the positive electrode plate 4 via the metal foil 15.

【0019】正極プレート4の金属箔15の外周部には
Oリング16が配置されており、該Oリング16及び金
属箔15は外側から例えばポリイミドフィルム16aな
どで覆われている。ポリイミドフィルム16aの外側に
は第1のX線透過孔13と同径の孔17aが中央部に形
成された円形部材17が配置されている。円形部材17
は、孔17aを第1のX線透過孔13に一致させた状態
でボルト18によって正極プレート4に着脱自在に締め
つけ固定されている。ボルト18は、Oリング16の径
方向外側位置で周方向に等間隔で複数配置されており、
これにより、正極活物質14が第1のX線透過孔13に
気密に配置されるようになっている。
An O-ring 16 is arranged on the outer periphery of the metal foil 15 of the positive electrode plate 4, and the O-ring 16 and the metal foil 15 are covered from the outside with, for example, a polyimide film 16a. Outside the polyimide film 16a, a circular member 17 in which a hole 17a having the same diameter as the first X-ray transmission hole 13 is formed at the center is arranged. Circular member 17
Are fixed to the positive electrode plate 4 by bolts 18 in a detachable manner with the holes 17a aligned with the first X-ray transmitting holes 13. A plurality of bolts 18 are arranged at regular intervals in the circumferential direction at a position radially outside the O-ring 16,
Thus, the positive electrode active material 14 is arranged in the first X-ray transmission hole 13 in an airtight manner.

【0020】負極プレート3には、収容部12に連通す
る第2のX線透過孔19が第1のX線透過孔13と同心
且つ同径に形成されている。図3に示すように、第2の
X線透過孔19の外側の端部には、例えばリチウムなど
の金属箔、負極活物質を塗布した金属箔又は金属以外の
導電性材料からなる箔などの導電箔20が第2のX線透
過孔19を覆うように配置されている。導電箔20の周
縁部は、負極プレート3の外側面に接触しており、これ
により、導電箔20が負極プレート3と電気的に導通さ
れている。なお、この実施の形態では、導電箔20を用
いているが、これに限定されず、金属以外の例えば樹脂
フィルムなどでもよい。
A second X-ray transmission hole 19 communicating with the housing 12 is formed in the negative electrode plate 3 so as to be concentric with the first X-ray transmission hole 13 and have the same diameter. As shown in FIG. 3, for example, a metal foil such as lithium, a metal foil coated with a negative electrode active material, a foil made of a conductive material other than a metal, or the like is provided on the outer end of the second X-ray transmission hole 19. The conductive foil 20 is arranged so as to cover the second X-ray transmission hole 19. The peripheral portion of the conductive foil 20 is in contact with the outer surface of the negative electrode plate 3, whereby the conductive foil 20 is electrically connected to the negative electrode plate 3. In this embodiment, the conductive foil 20 is used. However, the present invention is not limited to this. For example, a resin film other than metal may be used.

【0021】負極プレート3の導電箔20の外周部には
Oリング16が配置されており、該Oリング16及び導
電箔20は外側から例えばポリイミドフィルム16aな
どで覆われている。ポリイミドフィルム16aの外側に
は第2のX線透過孔19と同径の孔17aが中央部に形
成された円形部材17が配置されている。円形部材17
は、孔17aを第2のX線透過孔19に一致させた状態
でボルト18によって負極プレート3に着脱自在に締め
付け固定されている。ボルト18は、Oリング16の径
方向外側位置で周方向に等間隔で複数配置されており、
これにより、導電箔20が第2のX線透過孔19に気密
に配置されるようになっている。
An O-ring 16 is arranged around the outer periphery of the conductive foil 20 of the negative electrode plate 3, and the O-ring 16 and the conductive foil 20 are covered from the outside with, for example, a polyimide film 16a. Outside the polyimide film 16a, a circular member 17 in which a hole 17a having the same diameter as the second X-ray transmission hole 19 is formed at the center is arranged. Circular member 17
Is removably fastened and fixed to the negative electrode plate 3 by bolts 18 with the holes 17 a aligned with the second X-ray transmission holes 19. A plurality of bolts 18 are arranged at regular intervals in the circumferential direction at a position radially outside the O-ring 16,
As a result, the conductive foil 20 is arranged in the second X-ray transmission hole 19 in an airtight manner.

【0022】正極プレート4の収容部12の中心から水
平方向に所定距離離間した位置には、収容部12に連通
するねじ孔21が形成されている。ねじ孔21は電解液
11注入孔とされており、蓋部22によって着脱自在に
閉塞されている。蓋部22は、ねじ孔21に螺合される
ねじ部23と、該ねじ部23の端部に設けられたフラン
ジ24とを備えており、フランジ24を手などで回して
ねじ部23をねじ孔21に締め付けることにより、ねじ
孔21が閉塞される。かかる閉塞時には、フランジ24
と正極プレート4との間に介在されたOリング25がフ
ランジ24によって押圧されてねじ孔21のシールがな
されている。
A screw hole 21 is formed in the positive electrode plate 4 at a position horizontally separated from the center of the housing 12 by a predetermined distance. The screw hole 21 is a hole for injecting the electrolytic solution 11 and is removably closed by the lid 22. The lid portion 22 includes a screw portion 23 to be screwed into the screw hole 21 and a flange 24 provided at an end of the screw portion 23. The screw portion 23 is screwed by turning the flange 24 by hand or the like. The screw hole 21 is closed by tightening the screw hole 21. In such a blockage, the flange 24
The O-ring 25 interposed between the O-ring 25 and the positive electrode plate 4 is pressed by the flange 24 to seal the screw hole 21.

【0023】収容部12内において、収容部12の中心
から上方向に所定距離離間した負極プレート3及び正極
プレート4の対面部分には、電解液11の有底逃げ孔
(逃げ部)26がそれぞれ形成されている。また、負極
プレート3のねじ孔21の内端部を臨む部分にも電解液
11の有底逃げ孔(逃げ部)27が形成されている。有
底逃げ孔26及び27は、図4に示すように、セル本体
2を上下方向の向きを変えて載置した際に、第1及び第
2のX線透過孔13,19内から下方に流れる電解液1
1を溜めて第1及び第2のX線透過孔13,19内にX
線の強度を低下させる電解液11が残らないようにする
ためのものである。なお、図1及び図2において符号2
8は位置決めピン、29,30はそれぞれ負電極端子、
正電極端子である。
In the receiving part 12, a bottomed escape hole (a relief part) 26 for the electrolytic solution 11 is provided at a portion facing the negative electrode plate 3 and the positive electrode plate 4 separated from the center of the receiving part 12 by a predetermined distance upward. Is formed. A bottomed escape hole 27 for the electrolyte solution 11 is also formed in a portion of the negative electrode plate 3 facing the inner end of the screw hole 21. As shown in FIG. 4, the bottomed escape holes 26 and 27 move downward from the inside of the first and second X-ray transmission holes 13 and 19 when the cell body 2 is placed with its vertical direction changed. Flowing electrolyte 1
1 is stored in the first and second X-ray transmitting holes 13 and 19.
This is for preventing the electrolytic solution 11 that lowers the strength of the wire from remaining. 1 and FIG.
8 is a positioning pin, 29 and 30 are negative electrode terminals,
This is a positive electrode terminal.

【0024】次に、かかる構成のXAFS測定用セル1
を用いた測定方法について説明する。まず、収容部12
の中心より下方に第1及び第2のX線透過孔13,19
が配置されるようにセル1を載置する。この時、収容部
12内には、図2に示すように、所定量の電解液11が
収容されており、第1及び第2のX線透過孔13,19
は電解液11によって満たされている。次いで、この状
態で負極プレート3及び正極プレート4に電流を流し、
正極プレート4側に配置された正極活物質14を充放電
する。
Next, the cell 1 for XAFS measurement having the above configuration
The measurement method using is described. First, the accommodation unit 12
And the first and second X-ray transmitting holes 13 and 19 below the center of the
Is placed so that is placed. At this time, as shown in FIG. 2, a predetermined amount of the electrolytic solution 11 is contained in the containing section 12, and the first and second X-ray transmitting holes 13 and 19 are contained.
Is filled with the electrolyte 11. Next, in this state, a current is applied to the negative electrode plate 3 and the positive electrode plate 4,
The positive electrode active material 14 arranged on the positive electrode plate 4 side is charged and discharged.

【0025】充放電終了後、図4に示すように、セル1
を上下方向の向きを変えて載置し、第1及び第2のX線
透過孔13,19内の電解液11を下方に流して有底逃
げ孔26,27に溜め、第1及び第2のX線透過孔1
3,19から電解液11を排出する。これにより、電解
液11によるX線の強度低下を回避することができる。
次いで、この状態で、第1及び第2のX線透過孔13,
19にX線を透過する。第1及び第2のX線透過孔1
3,19を透過したX線は図示しない半導体検出器(S
SD)などによって強度測定がなされると共に、該測定
値に基づいてX線吸収係数が算出され、これにより、正
極活物質14の局所的結晶構造や充放電に伴う構造変化
の詳細を明らかにすることができる。
After the completion of charging and discharging, as shown in FIG.
Is placed in the vertical direction, and the electrolyte 11 in the first and second X-ray transmitting holes 13 and 19 is caused to flow downward to be collected in the bottomed escape holes 26 and 27, and the first and second X-ray transmitting holes 13 and 19 are stored. X-ray transmission hole 1
The electrolyte solution 11 is discharged from 3,19. Thereby, it is possible to avoid a decrease in X-ray intensity due to the electrolytic solution 11.
Next, in this state, the first and second X-ray transmission holes 13,
X-ray is transmitted through 19. First and second X-ray transmitting holes 1
X-rays transmitted through 3, 19 are the semiconductor detectors (not shown) (S
SD) and the like, and the X-ray absorption coefficient is calculated based on the measured values, thereby clarifying the local crystal structure of the positive electrode active material 14 and the details of the structural change due to charge and discharge. be able to.

【0026】充放電量が異なる正極活物質14を測定す
る際には、例えば上述した充放電時に電流の供給時間或
いは電流の大きさなどを変えて正極活物質14の充放電
量の変え、かかる充放電後に測定を行うか、充放電を行
いながら測定を行うか、或いは一定の電流(例えば1m
A)を一定時間(例えば10分)積算供給して測定を行
うことで対応する。
When measuring the positive electrode active materials 14 having different charge / discharge amounts, the charge / discharge amount of the positive electrode active materials 14 is changed by, for example, changing the current supply time or the magnitude of the current during the charge / discharge described above. Measurement after charging / discharging, measurement while charging / discharging, or a constant current (for example, 1 m
A) is responded by integrating and supplying A) for a certain period of time (for example, 10 minutes) and performing measurement.

【0027】このように、この実施の形態では、密閉さ
れたセル1内で電池材料の正極活物質14の充放電を行
うことができるので、正極活物質14の充放電量を変え
ることにより、同一のセル1及び同一の正極活物質14
を用いて充放電量の異なる正極活物質14のXAFS測
定を行うことができ、この結果、充放電量の異なる活物
質毎の局所的結晶構造や充放電に伴う構造変化の詳細を
簡単且つ正確に測定することができる。
As described above, in this embodiment, since the positive electrode active material 14 of the battery material can be charged and discharged in the sealed cell 1, the charge and discharge amount of the positive electrode active material 14 can be changed. Same cell 1 and same positive electrode active material 14
XAFS measurement of the positive electrode active materials 14 having different charge / discharge amounts can be performed by using the method. As a result, the local crystal structure of each active material having different charge / discharge amounts and the details of the structural change due to the charge / discharge can be easily and accurately determined. Can be measured.

【0028】また、セル1を上下方向に向きを変えて載
置するだけで、X線の強度を低下させる電解液11を第
1及び第2のX線透過孔13,19から排出することが
できるので、充放電後のX線透過を迅速に行うことがで
きる。
Further, the electrolyte solution 11 for reducing the intensity of X-rays can be discharged from the first and second X-ray transmission holes 13 and 19 simply by placing the cell 1 in a vertical direction. Therefore, X-ray transmission after charge / discharge can be quickly performed.

【0029】なお、上記実施の形態では、逃げ部として
有底逃げ孔26,27を例に採ったが、これに限定され
ず、有底逃げ孔26,27を設けずに収容部12の容積
を調整することにより、セル1の向きを変えた際に第1
及び第2のX線透過孔13,19内の電解液が排出され
るようにしてもよい。
In the above-mentioned embodiment, the bottomed escape holes 26 and 27 are taken as an example of the escape portion. However, the present invention is not limited to this. Is adjusted so that when the direction of the cell 1 is changed, the first
Alternatively, the electrolyte in the second X-ray transmission holes 13 and 19 may be discharged.

【0030】図5は、円形部材17の孔17aの外端側
周縁にテーパ状の切欠き部31を設けたものである。こ
のように切欠き部31を設けると、X線を斜めに入射さ
せる反射型タイプのXRD測定用セル又は反射型タイプ
のXAFS測定用セルとして兼用することができると共
に、図6に示すような透過型のXRD測定用セルとして
も兼用することができる。
FIG. 5 shows a circular member 17 in which a tapered notch 31 is provided on the outer peripheral edge of the hole 17a. When the notch 31 is provided in this manner, it can be used also as a reflection-type XRD measurement cell or a reflection-type XAFS measurement cell in which X-rays are incident obliquely, and the transmission as shown in FIG. It can also be used as a type XRD measurement cell.

【0031】[0031]

【発明の効果】上記の説明から明らかなように、本発明
によれば、密閉されたセル内で電池材料の活物質の充放
電を行うことができるので、活物質の充放電量を変える
ことにより、同一のセル及び同一の活物質を用いて充放
電量の異なる活物質のXAFS測定を行うことができ、
この結果、充放電量の異なる活物質毎の局所的結晶構造
や充放電に伴う構造変化の詳細を簡単且つ正確に測定す
ることができるという効果が得られる。
As is apparent from the above description, according to the present invention, the active material of the battery material can be charged and discharged in a sealed cell. Thereby, it is possible to perform XAFS measurement of active materials having different charge / discharge amounts using the same cell and the same active material,
As a result, it is possible to easily and accurately measure the local crystal structure of each active material having different charge / discharge amounts and the details of the structural change due to charge / discharge.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例である電池材料のX
線吸収微細構造測定用セルの正面図である。
FIG. 1 is a cross-sectional view of a battery material X according to an embodiment of the present invention.
It is a front view of the cell for line absorption fine structure measurement.

【図2】図1のII−II線断面図である。FIG. 2 is a sectional view taken along line II-II of FIG.

【図3】図2の部分的詳細図である。FIG. 3 is a partial detailed view of FIG. 2;

【図4】電池材料のX線吸収微細構造の測定方法を説明
するための説明的断面図である。
FIG. 4 is an explanatory cross-sectional view for explaining a method for measuring an X-ray absorption fine structure of a battery material.

【図5】本発明の他の実施の形態である電池材料のX線
吸収微細構造測定用セルを説明するための説明的断面図
である。
FIG. 5 is an explanatory cross-sectional view illustrating a cell for measuring an X-ray absorption fine structure of a battery material according to another embodiment of the present invention.

【図6】本発明の他の実施の形態である電池材料のX線
吸収微細構造測定用セルを説明するための説明的断面図
である。
FIG. 6 is an explanatory cross-sectional view illustrating a cell for measuring an X-ray absorption fine structure of a battery material according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…X線吸収微細構造測定用セル 2…セル本体 3…負極プレート 4…正極プレート 5…Oリング(絶縁用シール部材) 11…電解液 12…収容部 13…第1のX線透過孔 14…正極活物質 19…第2のX線透過孔 20…導電箔 26,27…有底逃げ孔(逃げ部) DESCRIPTION OF SYMBOLS 1 ... Cell for X-ray absorption fine structure measurement 2 ... Cell main body 3 ... Negative electrode plate 4 ... Positive electrode plate 5 ... O-ring (insulating sealing member) 11 ... Electrolyte solution 12 ... Accommodating part 13 ... First X-ray transmission hole 14 ... Positive electrode active material 19 ... Second X-ray transmission hole 20 ... Conductive foil 26,27 ... Escape hole with bottom (escape part)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極プレートと負極プレートとを環状の
絶縁用シール部材を介して互いに気密接合して前記正極
及び負極の各プレートと前記絶縁用シール部材とで囲ま
れる空間に電解液の収容部を形成し、前記正極プレート
及び負極プレートの内のいずれか一方のプレートに前記
収容部に連通する第1のX線透過孔を形成して該第1の
X線透過孔に電池材料の活物質を該プレートに電気的に
導通させた状態で気密に配置すると共に、他方のプレー
トに前記収容部に連通する第2のX線透過孔を形成して
該第2のX線透過孔に箔を気密に配置したX線吸収微細
構造測定用セルを用意し、 前記収容部に収容された電解液が前記第1及び第2のX
線透過孔に浸入した状態で前記正極及び負極のプレート
に電流を流して前記活物質を充放電し、 次いで、前記第1及び第2のX線透過孔から電解液を排
出した状態で該第1及び第2のX線透過孔にX線を透過
して前記活物質の構造を測定することを特徴とする電池
材料のX線吸収微細構造測定方法。
1. A positive electrode plate and a negative electrode plate are hermetically joined to each other via an annular insulating seal member, and an electrolytic solution containing portion is provided in a space surrounded by each of the positive and negative plates and the insulating seal member. And forming a first X-ray transmission hole communicating with the housing portion in one of the positive electrode plate and the negative electrode plate, and forming an active material of a battery material in the first X-ray transmission hole. Is electrically sealed with the plate, and a second X-ray transmitting hole communicating with the housing portion is formed on the other plate, and a foil is formed on the second X-ray transmitting hole. An X-ray absorption fine structure measurement cell arranged in an airtight manner is prepared, and the electrolytic solution accommodated in the accommodating portion is filled with the first and second X-rays.
An electric current is applied to the positive and negative plates while penetrating the X-ray transmission holes to charge and discharge the active material. Then, the electrolyte is discharged from the first and second X-ray transmission holes while the electrolyte is discharged. A method for measuring an X-ray absorption fine structure of a battery material, wherein the structure of the active material is measured by transmitting X-rays through first and second X-ray transmission holes.
【請求項2】 正極プレートと負極プレートとを環状の
絶縁用シール部材を介して互いに気密接合して前記正極
及び負極の各プレートと前記シール部材とで囲まれる空
間に電解液の収容部を形成したセル本体を備え、前記正
極プレート及び負極プレートの内のいずれか一方のプレ
ートに前記収容部に連通する第1のX線透過孔を形成し
て該第1のX線透過孔に電池材料の活物質を該プレート
に電気的に導通させた状態で気密に配置すると共に、他
方のプレートに前記収容部に連通する第2のX線透過孔
を形成して該第2のX線透過孔に箔を気密に配置し、更
に、前記セル本体の向きを変えた際に、前記第1及び第
2のX線透過孔に浸入した電解液を該第1及び第2のX
線透過孔から離間する側に流して該第1及び第2のX線
透過孔から電解液を排出する逃げ部を設けたことを特徴
とする電池材料のX線吸収微細構造測定用セル。
2. A positive electrode plate and a negative electrode plate are hermetically joined to each other via an annular insulating sealing member to form an electrolyte solution accommodating portion in a space surrounded by the positive and negative electrode plates and the sealing member. A first X-ray transmitting hole communicating with the housing portion is formed in one of the positive electrode plate and the negative electrode plate, and the first X-ray transmitting hole is provided with a battery material. The active material is placed in an airtight manner in a state of being electrically connected to the plate, and a second X-ray transmitting hole communicating with the housing portion is formed in the other plate, and the second X-ray transmitting hole is formed in the second plate. When the foil is arranged in an airtight manner and the orientation of the cell body is changed, the electrolytic solution that has penetrated the first and second X-ray transmitting holes is subjected to the first and second X-rays.
A cell for measuring an X-ray absorption fine structure of a battery material, comprising a relief portion for flowing to a side away from the X-ray transmission hole and discharging an electrolyte from the first and second X-ray transmission holes.
JP8211498A 1996-08-09 1996-08-09 Method for measuring x-ray absorbing fine structure of battery material and measuring cell Withdrawn JPH1054809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8211498A JPH1054809A (en) 1996-08-09 1996-08-09 Method for measuring x-ray absorbing fine structure of battery material and measuring cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8211498A JPH1054809A (en) 1996-08-09 1996-08-09 Method for measuring x-ray absorbing fine structure of battery material and measuring cell

Publications (1)

Publication Number Publication Date
JPH1054809A true JPH1054809A (en) 1998-02-24

Family

ID=16606948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8211498A Withdrawn JPH1054809A (en) 1996-08-09 1996-08-09 Method for measuring x-ray absorbing fine structure of battery material and measuring cell

Country Status (1)

Country Link
JP (1) JPH1054809A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162506A (en) * 2004-12-09 2006-06-22 Hokkaido Univ X-ray transmitting window, x-ray absorption fine structure measuring cell, and reaction system
CN102435625A (en) * 2011-12-27 2012-05-02 东莞新能源科技有限公司 Method and sample shelf for X-ray diffraction in-situ test
JP2012159311A (en) * 2011-01-29 2012-08-23 Rigaku Corp X-ray measurement battery structure and support device therefor
DE102014211901B3 (en) * 2014-06-20 2015-03-19 Karlsruher Institut für Technologie battery carrier
CN104597064A (en) * 2014-12-30 2015-05-06 北大先行科技产业有限公司 Electrochemical analysis in-situ cell for X-ray diffraction and testing method
JP2015232547A (en) * 2014-05-12 2015-12-24 住友金属鉱山株式会社 Sample switching device
JP2015232546A (en) * 2014-05-12 2015-12-24 住友金属鉱山株式会社 X-ray analysis system and program
WO2020118740A1 (en) * 2018-12-14 2020-06-18 深圳先进技术研究院 In situ synchrotron radiation x-ray absorption spectroscopy test device for battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162506A (en) * 2004-12-09 2006-06-22 Hokkaido Univ X-ray transmitting window, x-ray absorption fine structure measuring cell, and reaction system
JP4587290B2 (en) * 2004-12-09 2010-11-24 国立大学法人北海道大学 X-ray transmission window, X-ray absorption fine structure measurement cell and reaction system
JP2012159311A (en) * 2011-01-29 2012-08-23 Rigaku Corp X-ray measurement battery structure and support device therefor
CN102435625A (en) * 2011-12-27 2012-05-02 东莞新能源科技有限公司 Method and sample shelf for X-ray diffraction in-situ test
JP2015232547A (en) * 2014-05-12 2015-12-24 住友金属鉱山株式会社 Sample switching device
JP2015232546A (en) * 2014-05-12 2015-12-24 住友金属鉱山株式会社 X-ray analysis system and program
DE102014211901B3 (en) * 2014-06-20 2015-03-19 Karlsruher Institut für Technologie battery carrier
WO2015193393A1 (en) 2014-06-20 2015-12-23 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Battery carrier for in situ analysis
US9793580B2 (en) 2014-06-20 2017-10-17 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Battery carrier for in situ analysis
CN104597064A (en) * 2014-12-30 2015-05-06 北大先行科技产业有限公司 Electrochemical analysis in-situ cell for X-ray diffraction and testing method
WO2020118740A1 (en) * 2018-12-14 2020-06-18 深圳先进技术研究院 In situ synchrotron radiation x-ray absorption spectroscopy test device for battery

Similar Documents

Publication Publication Date Title
CN102980903B (en) A kind of synchrotron radiation X ray device for analyzing electrode material electrochemical performance and application thereof
JPH1054809A (en) Method for measuring x-ray absorbing fine structure of battery material and measuring cell
US20020192121A1 (en) System structure for in situ x-ray study of electrochemical cell component performance
CN111141755B (en) Method for detecting internal defects of battery cell
KR101803527B1 (en) Apparatus for collecting inner gas in secondary electric cell
CN108398446B (en) In-situ device for testing synchrotron radiation X-ray absorption spectrum of battery electrode material
CN110987978A (en) Device for observing battery pole piece and electrolyte in situ
JP6319147B2 (en) X-ray analysis system and program
US2875343A (en) Personnel dosimeter
US3014550A (en) Noise exposure meter
CN205581220U (en) Lithium ion battery electrode material electrical performance test device
JP2000173676A (en) Secondary battery
US4477728A (en) Radiation detector
CN206671226U (en) Dry change winding material quick discriminating detection means based on x-ray dose
CN113721284A (en) Device and method for measuring the ratio of the number of photons to the number of electrons in a pulsed X-ray radiation field
JP2011095210A (en) Method and system for detecting property value of object to be measured
JPS5555235A (en) Electric capacity type pressure detector
JP3857407B2 (en) Method for analyzing the oxidation state of substances
CN111122626A (en) Device for carrying out CT test on battery
WO2023199833A1 (en) Holder, analysis device comprising same, and battery analysis method
JP2000292544A (en) Radiation detector
CN113495079A (en) Lithium ion battery normal position x-ray diffraction vibration detection device
CN211627415U (en) Device for observing battery pole piece and electrolyte in situ
JPH08189907A (en) X-ray diffraction apparatus with automatic tester for charging/discharging secondary cell
CN211206796U (en) High-integration microminiature place radioactivity monitoring system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104