JPH1054796A - Liquid concentration detecting device - Google Patents

Liquid concentration detecting device

Info

Publication number
JPH1054796A
JPH1054796A JP22602996A JP22602996A JPH1054796A JP H1054796 A JPH1054796 A JP H1054796A JP 22602996 A JP22602996 A JP 22602996A JP 22602996 A JP22602996 A JP 22602996A JP H1054796 A JPH1054796 A JP H1054796A
Authority
JP
Japan
Prior art keywords
light
liquid
amount
concentration
developer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22602996A
Other languages
Japanese (ja)
Other versions
JP3589530B2 (en
Inventor
Shunichi Abe
俊一 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP22602996A priority Critical patent/JP3589530B2/en
Publication of JPH1054796A publication Critical patent/JPH1054796A/en
Application granted granted Critical
Publication of JP3589530B2 publication Critical patent/JP3589530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Wet Developing In Electrophotography (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely measure toner concentration by correcting a measured liquid concentration with the measured value of the light quantity of the reflected or transmitted light when no liquid is present. SOLUTION: A developer 1 within a transparent tube 6 is lighted by an illuminating lamp 11, and the light transmitted by the tube 6 is detected by a photo transistor 13, thereby, the concentration of the developer in the tube 6 is optically read. A main body control part 20 loads a microcomputer 22 having an A/D input terminal 21, and the output signals of voltage amplifiers 15B, 15G, 15R are inputted to the A/D input terminal 21 of the microcomputer 22. Since the value of the voltage proportional to the light quantity of the photo transistor 13 is read from the A/D input terminal 21 of the microcomputer 22, the microcomputer 22 corrects the portion of light quantity reduction by the toner contamination 7 of the glass tube 6, and a precise change of developer concentration can be known.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体濃度検出装
置、より詳細には、湿式現像装置を有する、アナログカ
ラー複写機,デジタルカラー複写機,カラープリンタ等
の現像液濃度を検出するセンサに関するものであるが、
より一般的には、透明な容器、或いは、透明な管内の液
体の濃度を光学的に測定するセンサ全般に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid concentration detecting device, and more particularly, to a sensor for detecting the concentration of a developing solution, such as an analog color copying machine, a digital color copying machine, and a color printer, having a wet developing device. In Although,
More generally, the present invention relates to a general sensor for optically measuring the concentration of a liquid in a transparent container or a transparent tube.

【0002】[0002]

【従来の技術】[Prior art]

【0003】電子写真装置等により可視画像を作成する
場合、現像器内に一定の割合のトナーとキャリアとを混
合し、この現像液で像支持体すなわち感光体上の静電潜
像を現像するが、現像を繰り返すと、現像器内の現象液
に含まれるトナーの量が減少していくため、被現像物の
可視画像の濃度が低下する。このような現象を防ぐため
に、トナーを現像器内に順次補給する必要がある。しか
し、作成する可視画像の面積及び濃度の違いによりトナ
ーの消費量が異なるため、定量補給では、現像器内のト
ナーの量が減少し、或いは、多くなりすぎて現像された
可視画像濃度が一定でなくなる。
When a visible image is formed by an electrophotographic apparatus or the like, a fixed ratio of toner and carrier are mixed in a developing device, and an electrostatic latent image on an image support, that is, a photoreceptor is developed with the developing solution. However, when the development is repeated, the amount of the toner contained in the developing liquid in the developing device decreases, so that the density of the visible image of the developing object decreases. In order to prevent such a phenomenon, it is necessary to supply toner to the developing device sequentially. However, since the amount of toner consumption is different depending on the area and density of the visible image to be created, the amount of toner in the developing device is reduced or the amount of toner in the developing device is too large, and the density of the developed visible image is constant. No longer.

【0004】従って、従来から、現像器内の現像液中の
トナー濃度を一定に制御するために、種々の現像液濃度
測定方法が採用されてきた。例えば、現像液をガラス管
の中に流し、そのガラス管を挟むように発光素子と受光
素子を配置し、現像液を透過する光量の変化を検出する
ことによって現像液内のトナーの割合を測定し、不足ト
ナーの補給をしている。
Therefore, conventionally, various methods for measuring the concentration of a developing solution have been employed in order to control the toner concentration in the developing solution in the developing device to be constant. For example, a developer is allowed to flow into a glass tube, and a light-emitting element and a light-receiving element are arranged so as to sandwich the glass tube. By measuring a change in the amount of light transmitted through the developer, the ratio of the toner in the developer is measured. And replenish the toner shortage.

【0005】従来、カラーセンサは赤外光あるいは単色
光を使用して測定を行っていた。カラートナー(Y:イ
エロー,M:マゼンタ,C:シアン)は、赤外光あるい
は補色以外の単色光をほとんど吸収しない。そのため、
液の濃度に応じた透過光量或いは反射光量の変化があま
りとれないため、正確な測定が困難だった。
Conventionally, a color sensor has performed measurement using infrared light or monochromatic light. Color toners (Y: yellow, M: magenta, C: cyan) hardly absorb infrared light or monochromatic light other than complementary colors. for that reason,
Since the amount of transmitted light or the amount of reflected light does not change much depending on the concentration of the liquid, accurate measurement was difficult.

【0006】[0006]

【発明が解決しようとする課題】カラープリンタやカラ
ー複写機のカラー画像形成は紙の上にドラム上のY,
M,C,K(ブラック)の画像を順次転写することで行
う。この転写の際に実際はわずかだが、紙からドラムへ
の逆転写が発生する。一例として、Mの転写を説明する
と、M画像をドラムから紙に転写する時には、既に紙の
上にY画像が形成されている。そこにM画像の形成され
たドラムが接触してM画像を紙の上のY画像の上に転写
する。この時に、紙の上のYトナーがドラム上のM画像
に付着する。このMドラム上に付着したYトナーはクリ
ーニングされるが、そのうちの数%はクリーニング残と
して次回現像器がドラム上に画像を現像する際に現像器
の中に入り込まれてしまう。つまり、M現像器の中のM
トナーにYトナーが混じってしまう。その他、機械の内
部に飛散したトナーや用紙を搬送するベルトに付いたト
ナーも全ての色の現像器のトナーに混入する。従って、
従来の分光特性のないセンサでは、他の色が混色したた
めに、パッチの濃度が変化したか、或いは、本当にその
色のトナー濃度が変化したか見分けることが出来ない。
The color image formation of a color printer or a color copier is performed by forming Y, Y on a drum on paper.
This is performed by sequentially transferring M, C, and K (black) images. During this transfer, reverse transfer from paper to the drum occurs, albeit slightly. As an example, the transfer of M will be described. When the M image is transferred from the drum to the paper, the Y image is already formed on the paper. The drum on which the M image is formed comes into contact therewith and transfers the M image onto the Y image on paper. At this time, the Y toner on the paper adheres to the M image on the drum. The Y toner adhered to the M drum is cleaned, but a few% of the Y toner enters the developing device when the developing device next develops an image on the drum as a residual cleaning. That is, M in the M developing device
The Y toner is mixed with the toner. In addition, the toner scattered inside the machine and the toner attached to the belt that conveys the paper are mixed into the toners of the developing units of all colors. Therefore,
In a conventional sensor having no spectral characteristic, it is impossible to determine whether the density of a patch has changed or the toner density of the color has really changed because other colors are mixed.

【0007】本発明は、上記問題点を解決することを目
的として、センサに分光特性を持たせることにより、ト
ナー濃度変化を検出するだけでなく、混色の割合(程
度)もわかるようにし、積極的に混色に応じて補正する
ことを可能としたものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a sensor having spectral characteristics to not only detect a change in toner density but also to detect a color mixing ratio (degree). This makes it possible to perform correction according to the color mixture.

【0008】更に、従来のセンサでは以下のような不具
合もあった。使用するに従って、ガラス管内壁に徐々に
トナーが付着するため、透過光量が付着したトナーで減
衰されるため、現像液中の真のトナーの割合よりもトナ
ー濃度が高めに検出され、その結果、濃度コントロール
が適正値よりも低めになることがあった。この対策とし
て、サービスマンが頻繁にガラス管内壁の清掃を行なう
ことが考えられるが、ガラス管を取り外す必要があるた
め、破損の心配があり、頻繁に作業を行うことも非常に
煩わしいことであった。
Further, the conventional sensor has the following disadvantages. As the toner is used, since the toner gradually adheres to the inner wall of the glass tube, the transmitted light amount is attenuated by the adhered toner, so that the toner concentration is detected to be higher than the ratio of the true toner in the developer, and as a result, Concentration controls were sometimes lower than appropriate. As a countermeasure, it is conceivable that a service person frequently cleans the inner wall of the glass tube.However, since the glass tube needs to be removed, there is a risk of breakage, and frequent work is very troublesome. Was.

【0009】本発明は、上記問題点を解決することを目
的として、ガラス管に空気を満たしたときの値で、現像
液を測定したときの値を補正することで、ガラス管内壁
に付着したトナーによる光量低下の影響を取り除き、サ
ービスマンが頻繁に清掃しなくても、長期間に渡り正確
なトナー濃度の測定が出来るようにしたものである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention corrects a value when a developer is measured with a value when a glass tube is filled with air, so that the value adhered to the inner wall of the glass tube. The effect of the decrease in the amount of light due to the toner is removed, and the toner concentration can be accurately measured over a long period of time without frequent cleaning by a service person.

【0010】[0010]

【課題を解決するための手段】請求項1の発明は、発光
手段により液体を照射し、受光手段に入射する該液体か
らの反射或いは透過光の光量の変化より液体濃度を検出
する装置において、前記発光手段は、可視光域すべての
波長を発光する発光素子にて構成され、前記受光手段
は、光の三原色を選択的に受光するよう分光特性を有す
る受光素子にて構成されていることを特徴としたもので
ある。
According to a first aspect of the present invention, there is provided an apparatus for irradiating a liquid with a light emitting unit and detecting a liquid concentration based on a change in the amount of reflected or transmitted light from the liquid incident on a light receiving unit. The light emitting means is configured by a light emitting element that emits all wavelengths in the visible light range, and the light receiving means is configured by a light receiving element having a spectral characteristic so as to selectively receive three primary colors of light. It is a characteristic.

【0011】請求項2の発明は、発光手段により液体を
照射し、受光手段に入射する液体からの反射或いは透過
光の光量の変化より液体濃度を検出する装置において、
前記発光手段は、光の三原色を選択的に発光する発光素
子から成り、前記受光手段は、可視光域総にて感度を有
する受光素子からなることを特徴としたものである。
According to a second aspect of the present invention, there is provided an apparatus for irradiating a liquid with a light emitting unit and detecting a liquid concentration based on a change in the amount of reflected or transmitted light from the liquid incident on the light receiving unit.
The light emitting means comprises a light emitting element which selectively emits three primary colors of light, and the light receiving means comprises a light receiving element having sensitivity in the entire visible light region.

【0012】請求項3の発明は、請求項1において、液
体のない状態(空気)を作りだす手段を有し、この液体
のない時の反射或いは透過光の光量を測定し、この測定
値により測定した液体濃度に補正を加えることを特徴と
したものである。
According to a third aspect of the present invention, in the first aspect, there is provided means for creating a state without liquid (air), and the amount of reflected or transmitted light when there is no liquid is measured, and the measurement is performed based on the measured value. The liquid concentration is corrected.

【0013】請求項4の発明は、請求項2において、液
体のない状態(空気)を作りだす手段を有し、この液体
のない時の反射或いは透過光の光量を測定し、この測定
値により測定した液体濃度に補正を加えることを特徴と
したものである。
According to a fourth aspect of the present invention, in the second aspect, there is provided means for creating a liquid-free state (air), and the amount of reflected or transmitted light when there is no liquid is measured, and the measurement is performed based on the measured value. The liquid concentration is corrected.

【0014】[0014]

【発明の実施の形態】図1の左側は、現像器の一部で、
現像液の入っている部分だけを、切り取って表わしたも
ので、図中、1は現像液、2は現像液或いは空気を循環
させるパイプ、3は現像液を通過させたり、停止させた
り切り替える液バルブである。4は空気バルブで空気を
通過させたり、停止させたり切り替える。5はポンプ
で、現像液或いは空気を測定用ガラス管6に送り込む。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The left side of FIG. 1 is a part of a developing device,
In the drawing, only the portion containing the developing solution is cut out, and in the figure, 1 is a developing solution, 2 is a pipe for circulating the developing solution or air, and 3 is a solution for switching the passing or stopping of the developing solution. It is a valve. Reference numeral 4 denotes an air valve which allows air to pass therethrough and stops or switches the air. Reference numeral 5 denotes a pump for feeding a developing solution or air into a glass tube 6 for measurement.

【0015】図1は、本発明による現像液濃度センサの
一実施例を示す構成図で、図中、10はカラー濃度セン
サで、該カラー濃度センサ10は、照明ランプ11とフ
ィルタ12(12B,12G,12R)、3個のフォト
トランジスタ13(13B,13G,13R)から構成
されており、透明な管6内の現像液1を照明ランプ11
で照らし、該管6を透過した先をフォトトランジスタ1
3で検知することにより、該管6内の現像液の濃度を光
学的に読み取っている。3個のフォトトランジスタ13
B,13G,13Rは、現像液濃度に反比例した透過光
を受け取り、その光量に比例した電流を抵抗器14(1
4B,14G,14R)に出力し、3個のフォトトラン
ジスタ13B,13G,13Rのそれぞれの出力電流の
変化を電圧の変化に変換する。15(15B,15G,
15R)は電圧増幅器で、フォトトランジスタ13B,
13G,13Rからの微弱電流変化を充分な大きさの電
圧変化に増幅する。20は本体制御部であり、該本体制
御部20は、A/D入力端子21を有するマイコン22
を搭載しており、電圧増幅器15B,15G,15Rの
出力信号はマイコン22のA/D入力端子21に入力さ
れる。
FIG. 1 is a block diagram showing one embodiment of a developer density sensor according to the present invention. In the figure, reference numeral 10 denotes a color density sensor, and the color density sensor 10 comprises an illumination lamp 11 and a filter 12 (12B, 12B, 12B, 12B). 12G, 12R) and three phototransistors 13 (13B, 13G, 13R).
Illuminated by the phototransistor 1
By detecting at 3, the concentration of the developer in the tube 6 is optically read. Three phototransistors 13
B, 13G, and 13R receive the transmitted light that is inversely proportional to the developer concentration, and apply a current that is proportional to the amount of light to the resistor 14 (1).
4B, 14G, and 14R), and changes in output current of each of the three phototransistors 13B, 13G, and 13R are converted into voltage changes. 15 (15B, 15G,
15R) is a voltage amplifier, which is a phototransistor 13B,
A weak current change from 13G, 13R is amplified to a sufficiently large voltage change. Reference numeral 20 denotes a main body control unit. The main body control unit 20 includes a microcomputer 22 having an A / D input terminal 21.
The output signals of the voltage amplifiers 15B, 15G, 15R are input to the A / D input terminal 21 of the microcomputer 22.

【0016】図2は、図1の照明ランプ11〜フォトト
ランジスタ13の部分を他の手段に置き換えたものであ
る。この例においては、カラー濃度センサ10は、それ
ぞれB,G,Rの光の三原色を発光する3個のLED1
1B,11G,11Rと1個のフォトトランジスタ13
から構成されており、選択的に点灯された1色だけのL
EDで照らされた透明な管6内の現像液1の濃度を光学
的に読み取る。フォトトランジスタ13は、現像液濃度
に反比例した透過光を受け取り、その光量に比例した電
流を抵抗器14に出力し、該抵抗器14によりフォトト
ランジスタ13の出力電流の変化を電圧の変化に変換す
る。このフォトトランジスタ13からの微弱な電流変化
は、電圧増幅器15により充分な大きさの電圧変化に増
幅される。20は本体制御部であり、該本体制御部は、
図1に示した実施例と同様、A/D入力端子21を有す
るマイコン22を搭載しており、電圧増幅器15の出力
信号はマイコン22のA/D入力端子21に入力され
る。
FIG. 2 shows the illumination lamp 11 to the phototransistor 13 shown in FIG. In this example, the color density sensor 10 includes three LEDs 1 emitting three primary colors of light of B, G, and R, respectively.
1B, 11G, 11R and one phototransistor 13
, And L of only one color selectively lit.
The concentration of the developer 1 in the transparent tube 6 illuminated by ED is read optically. The phototransistor 13 receives the transmitted light inversely proportional to the developer concentration, outputs a current proportional to the amount of light to the resistor 14, and converts a change in the output current of the phototransistor 13 into a change in voltage by the resistor 14. . The weak current change from the phototransistor 13 is amplified by the voltage amplifier 15 into a sufficiently large voltage change. 20 is a main body control section, and the main body control section
As in the embodiment shown in FIG. 1, a microcomputer 22 having an A / D input terminal 21 is mounted, and an output signal of the voltage amplifier 15 is input to the A / D input terminal 21 of the microcomputer 22.

【0017】図1及び図2における照明ランプ11又は
発光ダイオード11B,11G,11Rから発した光は
ガラス管6を通過し、フォトトランジスタ13B,13
G,13R又は13に達するが、その光量Aiは、 発光ダイオードからガラス管に入射する光量 :A0 ガラスの透過率 :α トナー付着部の透過率 :β 現像液の透過率 :γ フォトトランジスタの受光量 :Ai とすると、Ai=α×β×γ×A0 …… で表わされる。
The light emitted from the illumination lamp 11 or the light emitting diodes 11B, 11G, 11R in FIGS. 1 and 2 passes through the glass tube 6, and the phototransistors 13B, 13B.
G, 13R or 13, the light amount Ai is the light amount incident on the glass tube from the light emitting diode: A 0 The transmittance of the glass: α The transmittance of the toner attached portion: β The transmittance of the developer: γ Assuming that the amount of received light is Ai, it is represented by Ai = α × β × γ × A 0 .

【0018】最初に、図3のフロー図を用いて、初期状
態の測定(読み込み)について説明する。まず、図1又
は図2において、ガラス管6に現像液を通過させない状
態で、マイコン22の出力ポート23にH信号を出力
し、トランジスタアレー25又は25B,25G,25
RをONさせ、照明ランプ11又は発光ダイオード11
B,11G,11Rを点灯させる(S1)。16,16
B,16G,16Rは発光ダイオードに流れる電流を適
当な値に調整するための可変抵抗、17,17B,17
G,17Rは固定抵抗で、該可変抵抗の値をミニマムに
して照明ランプ又は発光ダイオードに流れる電流値が最
大定格を越えないよう制限する。
First, the measurement (reading) of the initial state will be described with reference to the flowchart of FIG. First, in FIG. 1 or FIG. 2, an H signal is output to the output port 23 of the microcomputer 22 in a state where the developing solution does not pass through the glass tube 6, and the transistor array 25 or 25B, 25G, 25
R is turned on, and the illumination lamp 11 or the light emitting diode 11
B, 11G, and 11R are turned on (S1). 16,16
B, 16G and 16R are variable resistors for adjusting the current flowing through the light emitting diode to an appropriate value.
G and 17R are fixed resistors which limit the value of the variable resistor to a minimum value so that the current flowing through the illumination lamp or the light emitting diode does not exceed the maximum rating.

【0019】この場合は、現像液が未通過なので、トナ
ー付着はなく現像液もない。従って、式は、 A2=α×1×1×A0=α×A0 …… (ガラス管6だけの影響) となる。この時、フォトトランジスタ13は受光光量に
比例した電流を発生し、その電流に比例した電圧が抵抗
14の両端に発生する。その電圧は増幅器15に入力さ
れ、その電圧に増幅度をかけた電圧がマイコン22のA
/D入力端子21に印加される。つまり、フォトトラン
ジスタ13の受光光量に比例した信号が、マイコン22
のA/D入力端子21に印加される(S2)。
In this case, since the developing solution has not passed, there is no toner adhesion and no developing solution. Therefore, the equation is: A 2 = α × 1 × 1 × A 0 = α × A 0 (influence of only the glass tube 6). At this time, the phototransistor 13 generates a current proportional to the amount of received light, and a voltage proportional to the current is generated across the resistor 14. The voltage is input to the amplifier 15, and a voltage obtained by multiplying the voltage by the amplification is input to the microcomputer 22.
/ D input terminal 21. That is, a signal proportional to the amount of light received by the phototransistor 13 is transmitted to the microcomputer 22.
(S2).

【0020】次に、液バルブ3を開(S3)、空気バル
ブ4を閉(S4)にしてポンプ5を回して(S5)、現
像液1を吸い上げ、少なくともガラス管6の上面まで現
像液1を満たして(S6)ポンプ5を止める(S7)。
ポンプ5は必ずしも止める必要はないが、ポンプ5を止
めることで、微少な気泡が流れる影響を取り除いて、正
確な測定を行うことができるようにする。この状態で上
記と同様にしてフォトトランジスタ13の受光光量の測
定を行う。まず、新しい状態なので、ガラス管6にトナ
ーの付着はおきておらず、従って、式は A3=α×1×γn×A0=α×γn×A0 ここで、式よりα×A0=A2を代入すると、 A3=γn×A2 (ガラス管と新現像液の影響) これよりγn=A3/A2 …… となる(S8)。
Next, the liquid valve 3 is opened (S3), the air valve 4 is closed (S4), and the pump 5 is turned (S5) to suck up the developing solution 1 and at least reach the upper surface of the glass tube 6. Is satisfied (S6), and the pump 5 is stopped (S7).
Although it is not always necessary to stop the pump 5, by stopping the pump 5, the influence of the flow of minute bubbles is removed, and accurate measurement can be performed. In this state, the amount of light received by the phototransistor 13 is measured in the same manner as described above. First, since it is a new state, no toner adheres to the glass tube 6, and therefore, the equation is A 3 = α × 1 × γn × A 0 = α × γn × A 0 where α × A 0 = A 2 , A 3 = γn × A 2 (influence of glass tube and new developer). From this, γn = A 3 / A 2 ... (S8).

【0021】次に、図4のフロー図を用いて、液濃度の
測定について説明する。かなり長い間使用してガラス管
にトナー付着7が発生した場合を考える。まず、照明ラ
ンプ11或は発生ダイオード11B,11G,11Rを
点灯し(S11)液バルブ3を閉(S12)、空気バル
ブ4を開(S13)にしてポンプ5を回して(S14)
空気を吸入する。この瞬間、ガラス管6は現像液1で濡
れた状態にある。このため、現像液無しの状態での透過
光量を計りたいので、現像液1がガラス管6の壁から流
れ落ちるに十分な時間まで待って(S15)、ポンプ5
を止める(S16)。この時間は測定する現像液の粘度
により違うので、予め実験で確かめておく必要がある。
Next, the measurement of the liquid concentration will be described with reference to the flowchart of FIG. Consider the case where toner adhesion 7 occurs on a glass tube after being used for a long time. First, the illumination lamp 11 or the generation diodes 11B, 11G, 11R are turned on (S11), the liquid valve 3 is closed (S12), the air valve 4 is opened (S13), and the pump 5 is turned (S14).
Inhale air. At this moment, the glass tube 6 is wet with the developer 1. For this reason, since it is desired to measure the amount of transmitted light without the developing solution, the pump 5 waits for a time sufficient for the developing solution 1 to flow down from the wall of the glass tube 6 (S15).
Is stopped (S16). Since this time varies depending on the viscosity of the developer to be measured, it needs to be confirmed in advance by an experiment.

【0022】なお、現像液が流れ落ち易くするため、ガ
ラス管6は立てて使用することが望ましい。この状態で
上記と同様にしてフォトトランジスタ13の受光光量の
測定を行う(S17)。空気だけで現像液1はないの
で、式は、 A4=α×β×1×A0=α×β×A0 …… (ガラス管とトナー汚れの影響) のようになる。式よりα×A0=A2なので、 A4=β×A2 β=A4/A2 …… このβがガラス管6にトナー付着7が発生したために減
衰する光量である。
It is desirable that the glass tube 6 be used upright to make it easier for the developer to flow down. In this state, the amount of light received by the phototransistor 13 is measured in the same manner as described above (S17). Since there is no developer 1 only with air, the formula is as follows: A 4 = α × β × 1 × A 0 = α × β × A 0 (influence of glass tube and toner contamination). Since α × A 0 = A 2 according to the equation, A 4 = β × A 2 β = A 4 / A 2 ... Β is the amount of light attenuated due to the occurrence of toner adhesion 7 on the glass tube 6.

【0023】上記の説明では、現像液無しの状態での透
過光量を計るために、現像液1がガラス管6から流れ落
ちるに十分な時間まで待ったが、現像液1を空気に置き
換えたら、連続して受光光量の変化の測定を行ない、そ
の変化量がほとんどなくなったときの値をA4としても
良い。
In the above description, in order to measure the amount of transmitted light in the absence of the developing solution, the developing solution 1 waited for a time sufficient for the developing solution 1 to flow down from the glass tube 6. performs measurement of the change in received light quantity Te, may the value when the change amount is almost disappeared as a 4.

【0024】次に、空気バルブ4を閉(S17)、液バ
ルブ3を開(S18)、にしてポンプ5を回して(S2
0)現像液1を吸い上げ、少なくともガラス管6の上面
まで現像液を満たして(S22)ポンプ5を止める(S
23)。この状態で上記と同様にしてフォトトランジス
タ13の受光光量の測定を行なう(S21)。ガラス管
6にトナー付着7が発生し、しかも現像液1があるの
で、式は A5=α×β×γ0×A0 …… (ガラス管とトナー汚れと使用した現像液の影響) のようになる。
Next, the air valve 4 is closed (S17), the liquid valve 3 is opened (S18), and the pump 5 is turned (S2).
0) The developer 1 is sucked up, the developer is filled up to at least the upper surface of the glass tube 6 (S22), and the pump 5 is stopped (S22).
23). In this state, the amount of light received by the phototransistor 13 is measured in the same manner as described above (S21). Since toner adhesion 7 occurs on the glass tube 6 and the developer 1 is present, the following expression is obtained: A 5 = α × β × γ 0 × A 0 (Effect of the glass tube, toner stain, and used developer) Become like

【0025】この時の受光光量A5はガラス管6のトナ
ー付着7による減衰を受けており、現像液1の濃度変化
だけによる光量変化を求めるにはβが1になるように補
正すれば良いわけである(S24)。つまり、 A6=α×β×γ0×A0÷β=A5÷β=A5÷(A4/A2) この値A6がもしガラス管6がトナー付着が全くないと
仮定したときのフォトトランジスタ13の受光光量と考
える。A3=A6なら現像液1の濃度は適正ということで
あり、A3<A6なら現像液1の濃度は薄すぎるというこ
とであり、A3>A6なら現像液1の濃度は濃すぎるとい
うことである。
[0025] The received light amount A 5 at this time has received the attenuation due to the toner adhesion 7 of the glass tube 6 may be corrected so as β becomes 1 to determine the amount of light caused by only changes in the concentration of the developing solution 1 That is (S24). That is, A 6 = α × β × γ 0 × A 0 ÷ β = A 5 ÷ β = A 5 ÷ (A 4 / A 2 ) This value A 6 assumes that the glass tube 6 has no toner adhesion. Is considered as the amount of light received by the phototransistor 13 at that time. A 3 = A 6 if the developer 1 concentration is that the proper, A 3 <A 6 Naragenzoeki_1nonodowaususugirutoyuukotodeari,A 3> A 6 if the developer 1 concentrations conc That is too much.

【0026】最初に述べたように、本発明の電気回路例
は、フォトトランジスタ13の光量に比例した電圧の値
をマイコン7のA/D入力端子21から読み込めるの
で、マイコン22はフロー図で述べたように、ガラス管
6のトナー汚れ7により光量低下分を補正して正確な現
像液濃度の変化を知ることが出来る。上記説明では、空
気と現像液1の切り替えは、2個のバルブの切り換えで
行ったが、一方を現像液を浸し、他の一方を液面から離
しておき、ポンプを例えば、正転させて、現像液を吸い
込み、逆転させて空気を吸い込むことでも実現できる。
また、上記説明は透過光を使用したものについて行った
が、発光素子の現像液を挟んだ反対側に光を反射する部
材を置くことで、反射光を使用して同様なことが行え
る。
As described earlier, in the example of the electric circuit of the present invention, the voltage value proportional to the light quantity of the phototransistor 13 can be read from the A / D input terminal 21 of the microcomputer 7, so that the microcomputer 22 is described in the flowchart. As described above, the amount of decrease in the amount of light due to the toner contamination 7 on the glass tube 6 can be corrected, and the change in the developer concentration can be known accurately. In the above description, the switching between the air and the developing solution 1 is performed by switching the two valves. However, one of the valves is immersed in the developing solution, the other is separated from the liquid surface, and the pump is rotated forward, for example. Alternatively, it can be realized by sucking the developer and reversing it to suck the air.
Although the above description has been made on the case of using the transmitted light, the same can be performed by using the reflected light by arranging a light reflecting member on the opposite side of the light emitting element with the developer interposed therebetween.

【0027】[0027]

【発明の効果】本発明は、液体濃度を監視するため、発
光手段より液体を照射し、受光手段に入射する液体から
の反射或いは透過光の光量の変化より液体濃度を検出す
る装置において、液体のない状態(空気)を作りだし、
この時の反射或いは透過光の光量によりガラス管のトナ
ー汚れによる光量の減衰分を求めて、測定した液体濃度
に補正を加えるようにしたので、ガラス管の汚れに影響
されることなく、正確に液体の濃度を測定することがで
きる。
According to the present invention, there is provided an apparatus for monitoring a liquid concentration by irradiating the liquid from a light emitting means and detecting the liquid concentration from a change in the amount of reflected or transmitted light from the liquid incident on the light receiving means. To create a state without air (air)
At this time, the amount of attenuation of the light amount due to toner contamination of the glass tube is obtained based on the amount of the reflected or transmitted light, and the measured liquid concentration is corrected, so that the measurement is accurately performed without being affected by the contamination of the glass tube. The concentration of the liquid can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明は、液体濃度検出装置の一実施例を説
明するための構成図である。
FIG. 1 is a configuration diagram for explaining an embodiment of a liquid concentration detection device according to the present invention.

【図2】 本発明は、液体濃度検出装置の他の実施例を
説明するための構成図である。
FIG. 2 is a configuration diagram for explaining another embodiment of a liquid concentration detection device.

【図3】 初期状態の測定手順を示すフロー図である。FIG. 3 is a flowchart showing a measurement procedure in an initial state.

【図4】 液濃度測定の手順を示すフロー図である。FIG. 4 is a flowchart showing a procedure for measuring a liquid concentration.

【符号の説明】[Explanation of symbols]

1…現像液、2…パイプ、3…液バルブ、4…空気バル
ブ、5…ポンプ、6…測定管、7…付着トナー、10…
カラー濃度センサ、11,11B,11G,11R…光
源、12,12B,12G,12R…フィルタ、13,
13B,13G,13R…フォトトランジスタ、14,
14B,14G,14R…抵抗器、15,15B,15
G,15R…電圧増幅器、16,16B,16G,16
R…可変抵抗、17,17B,17G,17R…固定抵
抗、20…本体制御部、21…A/D入力端子、22…
マイコン、23…出力ポート。
DESCRIPTION OF SYMBOLS 1 ... Developer, 2 ... Pipe, 3 ... Liquid valve, 4 ... Air valve, 5 ... Pump, 6 ... Measuring tube, 7 ... Adhered toner, 10 ...
Color density sensor, 11, 11B, 11G, 11R ... light source, 12, 12B, 12G, 12R ... filter, 13,
13B, 13G, 13R: Phototransistor, 14,
14B, 14G, 14R: resistor, 15, 15B, 15
G, 15R: Voltage amplifier, 16, 16B, 16G, 16
R: Variable resistor, 17, 17B, 17G, 17R: Fixed resistor, 20: Body control unit, 21: A / D input terminal, 22:
Microcomputer, 23 ... Output port.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 発光手段により液体を照射し、受光手段
に入射する該液体からの反射或いは透過光の光量の変化
より液体濃度を検出する装置において、前記発光手段
は、可視光域すべての波長を発光する発光素子にて構成
され、前記受光手段は、光の三原色を選択的に受光する
よう分光特性を有する受光素子にて構成されていること
を特徴とする液体濃度検出装置。
1. A device for irradiating a liquid with a light emitting means and detecting a liquid concentration based on a change in the amount of reflected or transmitted light from the liquid incident on a light receiving means, wherein the light emitting means has a wavelength in all visible light regions. A liquid concentration detection device, comprising: a light-emitting element that emits light; and the light-receiving unit includes a light-receiving element having spectral characteristics so as to selectively receive three primary colors of light.
【請求項2】 発光手段により液体を照射し、受光手段
に入射する液体からの反射或いは透過光の光量の変化よ
り液体濃度を検出する装置において、前記発光手段は、
光の三原色を選択的に発光する発光素子から成り、前記
受光手段は、可視光域総にて感度を有する受光素子から
なることを特徴とする液体濃度検出装置。
2. An apparatus for irradiating a liquid with a light emitting means and detecting a liquid concentration from a change in the amount of reflected or transmitted light from the liquid incident on a light receiving means, wherein the light emitting means comprises:
A liquid concentration detecting device comprising a light emitting element for selectively emitting three primary colors of light, wherein the light receiving means comprises a light receiving element having sensitivity in the entire visible light region.
【請求項3】 請求項1において、液体のない状態(空
気)を作りだす手段を有し、この液体のない時の反射或
いは透過光の光量を測定し、この測定値により測定した
液体濃度に補正を加えることを特徴とする液体濃度検出
装置。
3. The method according to claim 1, further comprising means for creating a liquid-free state (air), measuring the amount of reflected or transmitted light when there is no liquid, and correcting the measured liquid concentration based on the measured value. A liquid concentration detection device characterized by adding:
【請求項4】 請求項2において、液体のない状態(空
気)を作りだす手段を有し、この液体のない時の反射或
いは透過光の光量を測定し、この測定値により測定した
液体濃度に補正を加えることを特徴とする液体濃度検出
装置。
4. The method according to claim 2, further comprising means for creating a liquid-free state (air), measuring the amount of reflected or transmitted light when there is no liquid, and correcting the measured liquid concentration based on the measured value. A liquid concentration detection device characterized by adding:
JP22602996A 1996-08-08 1996-08-08 Liquid concentration correction device Expired - Fee Related JP3589530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22602996A JP3589530B2 (en) 1996-08-08 1996-08-08 Liquid concentration correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22602996A JP3589530B2 (en) 1996-08-08 1996-08-08 Liquid concentration correction device

Publications (2)

Publication Number Publication Date
JPH1054796A true JPH1054796A (en) 1998-02-24
JP3589530B2 JP3589530B2 (en) 2004-11-17

Family

ID=16838669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22602996A Expired - Fee Related JP3589530B2 (en) 1996-08-08 1996-08-08 Liquid concentration correction device

Country Status (1)

Country Link
JP (1) JP3589530B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343200A (en) * 2005-06-08 2006-12-21 Nippon Soken Inc Particle concentration detection method and particle concentration detection device
JP2010151605A (en) * 2008-12-25 2010-07-08 Kurita Water Ind Ltd Method and device for measuring dissolved material concentration, and method and device for detecting color tone
JP2010181150A (en) * 2009-02-03 2010-08-19 Kurita Water Ind Ltd Method and instrument for measuring concentration of dissolved substance, and method and device for detecting color tone
CN115494003A (en) * 2022-10-09 2022-12-20 马鞍山市桓泰环保设备有限公司 Sewage multi-monitoring-factor online monitoring system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343200A (en) * 2005-06-08 2006-12-21 Nippon Soken Inc Particle concentration detection method and particle concentration detection device
JP2010151605A (en) * 2008-12-25 2010-07-08 Kurita Water Ind Ltd Method and device for measuring dissolved material concentration, and method and device for detecting color tone
JP2010181150A (en) * 2009-02-03 2010-08-19 Kurita Water Ind Ltd Method and instrument for measuring concentration of dissolved substance, and method and device for detecting color tone
CN115494003A (en) * 2022-10-09 2022-12-20 马鞍山市桓泰环保设备有限公司 Sewage multi-monitoring-factor online monitoring system

Also Published As

Publication number Publication date
JP3589530B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
US4183657A (en) Dynamic reference for an image quality control system
CA1092185A (en) Abnormally low reflectance photoconductor sensing system
KR100370541B1 (en) Developing device and image forming apparatus
JPH06250480A (en) Toner adhesive quantity measuring instrument for transfer type color printer
JP3589530B2 (en) Liquid concentration correction device
US6289184B1 (en) Apparatus for measuring concentration of developer of liquid printer
JPH04149572A (en) Image forming device
JP3460432B2 (en) Image forming device
JPS62280869A (en) Picture controller
JP2008003370A (en) Toner quantity measuring head and image forming apparatus
JPH01148943A (en) Concentration detector
US7650089B2 (en) System for measuring and controlling total color of a mixture of colorants such as toner
JPS5948776A (en) Photosensor output correcting device
JPH0392874A (en) Image forming device
JP2019078710A (en) Image forming device and embossed paper discriminating method
JPH10333416A (en) Color toner concentration detector and image forming device equipped with the same
US6633052B2 (en) Discriminating paper sensor
JPH05313495A (en) Developer concentration controller and image forming device provided therewith
JPH09185191A (en) Toner concentration detector and image forming device provided with the same
JP2636962B2 (en) Full color copier with automatic document feeder
JP2001005299A (en) Toner concentration measuring method and sensor used for executing the method
JPH04152248A (en) Concentration sensing device of color image forming device of wet type
JPS6326671A (en) Detecting device for concentration of liquid developer
JPS6024569A (en) Reflection type color toner concentration detector
JPH11194663A (en) Image forming device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040227

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Effective date: 20040521

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040817

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040817

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080827

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080827

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110827

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees