JPH09185191A - Toner concentration detector and image forming device provided with the same - Google Patents

Toner concentration detector and image forming device provided with the same

Info

Publication number
JPH09185191A
JPH09185191A JP7342647A JP34264795A JPH09185191A JP H09185191 A JPH09185191 A JP H09185191A JP 7342647 A JP7342647 A JP 7342647A JP 34264795 A JP34264795 A JP 34264795A JP H09185191 A JPH09185191 A JP H09185191A
Authority
JP
Japan
Prior art keywords
light receiving
light emitting
receiving element
light
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7342647A
Other languages
Japanese (ja)
Inventor
Noboru Sawayama
昇 沢山
Kouta Fujimori
仰太 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP7342647A priority Critical patent/JPH09185191A/en
Priority to US08/584,443 priority patent/US5630195A/en
Priority to GB9600665A priority patent/GB2300729B/en
Priority to US08/815,733 priority patent/US5761570A/en
Publication of JPH09185191A publication Critical patent/JPH09185191A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrophotography Configuration And Component (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a color density detector with a simple constitution, capable of optically detecting the quantity of color toner stuck onto an image carrier (surface density), with high accuracy, especially, in a high-sticking region such as a region where the surface of the image carrier is completely covered with toner. SOLUTION: Both of a light emitting element 2 and a light receiving element 3 have directivity. These light emitting and receiving elements 2 and 3 are disposed to place a point P where the optical axes of the light emitting and receiving elements 2 and 3 intersect each other, on the surface of the image carrier 4C or in its vicinity and be at an angle ψ formed in such a manner that an optical axial plane S1 including both optical axes of the light emitting and receiving elements 2 and 3 is inclined with respect to a normal h from the surface of the image carrier 4C passing through the intersection P by a fixed angle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、発光素子と受光素子
によって像担持体上のカラートナー濃度を検出するトナ
ー濃度検出装置およびこのトナー濃度検出装置を具備す
るカラー複写機に代表される画像形成装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a toner density detecting device for detecting the color toner density on an image carrier by means of a light emitting element and a light receiving element, and an image forming represented by a color copying machine equipped with this toner density detecting device. It relates to the device.

【0002】[0002]

【従来の技術】一般に、トナーを含む現像剤を用いて像
担持体たる感光体の表面に形成された静電潜像を現像す
る複写機やプリンタ等の画像形成装置においては、静電
潜像の現像に伴って現像器内に収容されている現像剤中
に含まれているトナーが消費されるため、複写画像の濃
度を常時一定に保つには、現像剤の消費量に応じて新た
なトナーが補給されなければならない。
2. Description of the Related Art Generally, in an image forming apparatus such as a copying machine or a printer, which develops an electrostatic latent image formed on a surface of a photoconductor as an image carrier using a developer containing toner, the electrostatic latent image is formed. Since the toner contained in the developer accommodated in the developing device is consumed with the development of the above, in order to keep the density of the copy image constant at all times, a new toner is added depending on the consumption amount of the developer. Toner must be replenished.

【0003】そのため、従来、現像剤中のトナー濃度と
現像濃度(感光体へのトナー付着量)とが一定の比例関係
にあることに着目して、複写すべき原稿を載せるための
原稿台ガラスの近傍に設けた一定の濃度を有する基準チ
ャートを、感光体上に露光、現像してトナー濃度検出用
の基準パターン像を形成し、その濃度を光学的に検出し
て、検出値に応じてトナーの補給量を制御するようにし
ている。具体的には、基準パターン像の所定の設定値の
濃度と、トナー補給制御のために検出された基準パター
ン像の濃度とを比較し、後者の方が高ければトナー補給
を止めるか、または補給量を減少させ、低ければトナー
補給の再開あるいは補給量を増加させる。
Therefore, conventionally, focusing on the fact that the toner concentration in the developer and the development concentration (toner adhesion amount to the photoconductor) are in a fixed proportional relationship, a platen glass for placing a document to be copied. A reference chart with a certain density provided near the is exposed and developed on the photoconductor to form a reference pattern image for toner density detection, and the density is optically detected, and according to the detected value. The amount of toner replenishment is controlled. Specifically, the density of a predetermined set value of the reference pattern image is compared with the density of the reference pattern image detected for toner replenishment control, and if the latter is higher, the toner replenishment is stopped or replenished. If the amount is reduced, the toner replenishment is restarted or the amount of replenishment is increased if the amount is low.

【0004】一方、近年においては、赤、青等のモノカ
ラーの複写機の開発が進められ、この種の複写機では、
黒トナーの現像器とカラートナーの現像器とを任意に交
換する方式、両現像器を併設してその作動を任意に切り
替え制御する方式およびフルカラー現像器を使用して現
像を行う方式が採用されている。
On the other hand, in recent years, the development of mono-color copying machines for red, blue, etc. has been promoted.
A system in which a black toner developing device and a color toner developing device are exchanged arbitrarily, a system in which both developing devices are installed side by side and their operation is arbitrarily switched and controlled, and a method in which development is performed using a full color developing device are adopted. ing.

【0005】従来、黒トナーの複写機において使用され
ている基準パターン像の濃度を検出する光学手段は、発
光素子と受光素子とからなり、受光素子が発光素子から
の正反射光を検出するように構成され、受発光光束の各
光軸を含む光軸平面は像担持体の法線を含む平面と一致
している。
Conventionally, the optical means for detecting the density of the reference pattern image used in the black toner copying machine is composed of a light emitting element and a light receiving element, and the light receiving element detects the regular reflection light from the light emitting element. The optical axis plane including the respective optical axes of the received and emitted light fluxes coincides with the plane including the normal line of the image carrier.

【0006】しかし、カラートナーでの現像に際して
は、カラートナーは乱反射を生じるため、像担持体とし
ての感光体とカラートナーとの反射率にほとんど差がな
く、図19に示すように、破線で示すカラートナー(実
線は黒トナー)は、トナー濃度と受光素子出力(正反射
光量)との間で相関関係を得ることができず、カラート
ナーによる基準パターン像の濃度を検出することはむず
かしい。
However, during development with color toner, since the color toner causes diffuse reflection, there is almost no difference in the reflectance between the photoconductor as the image carrier and the color toner. As shown in FIG. The color toner shown (solid line is black toner) cannot obtain a correlation between the toner density and the light receiving element output (amount of specular reflection light), and it is difficult to detect the density of the reference pattern image by the color toner.

【0007】その対策として、特開昭61−20947
0号公報には、発光素子又は受光素子の少なくとも一方
を、現像に黒トナーを使用している場合には受光素子が
正反射光を受光するように、そして現像にカラートナー
を使用している場合には、受光素子が乱反射光を受光す
るように上記光軸平面内で回転させて切り替え可能とし
たトナー濃度検出装置が開示されている。
As a measure against this, Japanese Patent Laid-Open No. 61-20947
In JP-A-0, at least one of a light emitting element and a light receiving element is used so that the light receiving element receives specularly reflected light when black toner is used for development, and color toner is used for development. In this case, there is disclosed a toner concentration detecting device in which the light receiving element can rotate and switch in the optical axis plane so as to receive irregularly reflected light.

【0008】また、特開昭62−164066号公報に
は、像担持体上でのトナー付着量に応じて2次曲線状の
赤外線フォトセンサの出力特性を有するモノカラートナ
ーについて、画像濃度が増す時に、センサ出力も増すよ
うなカラー特性領域で制御し、センサ出力が一定値を上
まわるときはトナーの補給を制限する方法が、また、特
開昭62−209476号公報には、受光素子を2個用
い、一方を正反射光、他方を乱反射光を受光するように
配置し、両受光素子の出力信号の差に対応して現像装置
のトナー供給量を制御する方法がそれぞれ開示されてい
る。
Further, in Japanese Patent Laid-Open No. 62-164066, the image density is increased for a monocolor toner having the output characteristic of a quadratic curve infrared photosensor in accordance with the toner adhesion amount on the image carrier. At times, there is a method of controlling in a color characteristic region where the sensor output also increases, and limiting the replenishment of toner when the sensor output exceeds a certain value. Further, Japanese Patent Laid-Open No. 62-209476 discloses a light receiving element. A method is disclosed in which two are used, one is arranged to receive specularly reflected light and the other is to receive irregularly reflected light, and the toner supply amount of the developing device is controlled in accordance with the difference between the output signals of both light receiving elements. .

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記従
来のカラー濃度検出方法または装置においては、像担持
体と発光素子および受光素子の受発光光束の各光軸を含
む光軸平面は、像担持体の法線を含む平面と一致してい
る構成となっており、その光軸平面の中で発光素子およ
び受光素子の角度を変えることで対応している。トナー
濃度検出装置としての発光素子および受光素子とを像担
持体の法線を含む平面と一致している位置に設けて、ト
ナー濃度の検出をさせようとすると、像担持体に形成さ
れているカラートナー像からの反射光が乱反射光である
ため、その光量は非常に弱くなるため、その反射光を検
出するには、発光素子および受光素子を像担持体(被検
出面)に近づけたり、また、発光素子および受光素子の
受光面/発光面の大きさを大きくして、反射光を十分に
検出できるようにする必要がある。しかし、発光素子お
よび受光素子を像担持体(被検出面)に近づけたり、ま
た、発光素子および受光素子の受光面/発光面の大きさ
を大きくしたりした場合、像担持体に形成されたトナー
像からの反射光のうち多くの正反射光がまざって入力さ
れて、正確にカラートナー像の濃度値を検出することが
できないという問題点がある。
However, in the above-described conventional color density detecting method or apparatus, the image carrier and the optical axis plane including the optical axes of the light emitting and receiving light fluxes of the light emitting element and the light receiving element are the image carrier. The configuration is the same as the plane including the normal line, and this is achieved by changing the angles of the light emitting element and the light receiving element in the plane of the optical axis. When the light emitting element and the light receiving element as the toner concentration detecting device are provided at positions that coincide with the plane including the normal line of the image carrier and the toner concentration is to be detected, they are formed on the image carrier. Since the reflected light from the color toner image is irregularly reflected light, the amount of the light becomes very weak. Therefore, in order to detect the reflected light, the light emitting element and the light receiving element are brought close to the image carrier (detected surface), Further, it is necessary to increase the size of the light receiving surface / light emitting surface of the light emitting element and the light receiving element so that the reflected light can be sufficiently detected. However, when the light emitting element and the light receiving element are brought closer to the image carrier (detected surface), or the size of the light receiving surface / light emitting surface of the light emitting element and the light receiving element is increased, the light emitting element and the light receiving element are formed on the image carrier. There is a problem that a large amount of specularly reflected light from the reflected light from the toner image is mixedly input and the density value of the color toner image cannot be accurately detected.

【0010】さらに、発光素子および受光素子とを、乱
反射光を検出するために像担持体(被検出面)に近づけ
たり、また、発光素子および受光素子の受光面/発光面
の大きさを大きくした場合は、狭いスペース内に機構を
組み込まなければならない点や、構成が複雑になる等の
問題点があり、さらなる簡単な構成が望まれるところで
あった。
Further, the light emitting element and the light receiving element are brought closer to the image carrier (the surface to be detected) in order to detect diffused reflection light, and the size of the light receiving surface / light emitting surface of the light emitting element and the light receiving element is increased. In that case, there is a problem that the mechanism has to be incorporated in a narrow space and the configuration is complicated, and a simpler configuration has been desired.

【0011】そこで、この発明の目的は、上述した従来
の問題点を解消して、像担持体上に付着したカラートナ
ーの量(面密度)を光学的に高い精度で検出することが
できる、特に、トナーが像担持体表面を完全被覆するよ
うな高付着領域で高精度に検出できる簡単な構成のカラ
ー濃度検出装置を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned conventional problems and to detect the amount (area density) of color toner adhered on the image carrier with high optical accuracy. In particular, it is an object of the present invention to provide a color density detecting device having a simple structure capable of detecting with high accuracy in a high adhesion region where toner completely covers the surface of an image carrier.

【0012】[0012]

【課題を解決するための手段】請求項1の発明は、像担
持体上に形成されたトナーパターン像に発光素子の光を
照射し、その反射光を受光素子で検出した結果によって
作像条件を制御するトナー濃度検出装置を具備する画像
形成装置において、前記発光素子と前記受光素子は、共
に指向性を有し、且つ前記発光素子と前記受光素子の光
軸が交わる点が、前記像担持体表面上、または前記担持
体表面の近傍にあって、前記発光素子と前記受光素子の
両光軸を含む光軸平面が、前記交点を通過する前記担持
体表面からの法線に対して所定角度傾いた角度に、前記
発光素子と前記受光素子とが配設されていることを特徴
とする画像形成装置にある。
According to a first aspect of the invention, an image forming condition is obtained by irradiating a toner pattern image formed on an image carrier with light from a light emitting element and detecting the reflected light with a light receiving element. In the image forming apparatus including a toner density detecting device for controlling the image carrying device, the light emitting element and the light receiving element both have directivity, and the point where the optical axes of the light emitting element and the light receiving element intersect is the image carrier. An optical axis plane, which is on the body surface or near the carrier surface and includes both optical axes of the light emitting element and the light receiving element, is predetermined with respect to a normal line from the carrier surface passing through the intersection. In the image forming apparatus, the light emitting element and the light receiving element are arranged at an inclined angle.

【0013】請求項2の発明は、被測定体上に形成され
たトナーパターン像に発光素子の光を照射し、その反射
光を受光素子で検出するトナー濃度検出装置において、
前記発光素子と前記受光素子は、共に指向性を有し、且
つ前記発光素子と前記受光素子の光軸が交わる点が、前
記被測定体表面上、または前記担持体表面の近傍にあっ
て、前記発光素子と前記受光素子の両光軸を含む光軸平
面が、前記交点を通過する前記被測定体表面からの法線
に対して所定角度傾いた角度に、前記発光素子と前記受
光素子とが配設されていることを特徴とするトナー濃度
検出装置にある。
According to a second aspect of the present invention, there is provided a toner density detecting device for irradiating a toner pattern image formed on an object to be measured with light from a light emitting element and detecting the reflected light with a light receiving element.
The light emitting element and the light receiving element have both directivity, and the point where the optical axes of the light emitting element and the light receiving element intersect, on the surface of the measured object, or in the vicinity of the surface of the carrier, An optical axis plane including both optical axes of the light emitting element and the light receiving element, the light emitting element and the light receiving element at an angle inclined by a predetermined angle with respect to a normal line from the surface of the measured object passing through the intersection. The toner concentration detecting apparatus is characterized in that

【0014】請求項3の発明は、前記発光素子の発光光
束の広がりである指向性をφ1とし、上記受光素子の受
光光束の広がりである指向性をφ2とし、前記法線と前
記光軸平面とのなす角度をψとし、上記受光素子の発光
面の直径をD1とし、上記前記受光素子の受光面の直径
をD2とし、前記発光面の中心と前記受光面の中心とを
結ぶ光路長をρとしたとき、ψ>φ1+tan~1(D2/
2ρ)または、ψ>φ2+tan~1(D1/2ρ)のいず
れか一方を満足するように、前記発光素子と前記受光素
子を配設してなることを特徴とする請求項1記載の画像
形成装置にある。
According to a third aspect of the present invention, the directivity which is the spread of the luminous flux of the light emitting element is φ1, the directivity which is the spread of the received luminous flux of the light receiving element is φ2, and the normal line and the optical axis plane are set. Is defined as ψ, the diameter of the light emitting surface of the light receiving element is D1, the diameter of the light receiving surface of the light receiving element is D2, and the optical path length connecting the center of the light emitting surface and the center of the light receiving surface is When ρ, ψ> φ1 + tan ~ 1 (D2 /
2. The image forming apparatus according to claim 1, wherein the light emitting element and the light receiving element are arranged so as to satisfy either one of 2ρ) or ψ> φ2 + tan ~ 1 (D1 / 2ρ). It is in.

【0015】請求項4の発明は、前記発光素子の発光光
束の広がりである指向性をφ1とし、上記受光素子の受
光光束の広がりである指向性をφ2とし、前記法線と前
記光軸平面とのなす角度をψとし、上記受光素子の発光
面の直径をD1とし、上記前記受光素子の受光面の直径
をD2とし、前記発光面の中心と前記受光面の中心とを
結ぶ光路長をρとしたとき、ψ>1/2・φ1+tan~
1(D2/2ρ)または、ψ>1/2・φ2+tan~
1(D1/2ρ)のいずれか一方を満足するように、前記
発光素子と前記受光素子を配設してなることを特徴とす
る請求項2記載の画像形成装置にある。
According to a fourth aspect of the present invention, the directivity which is the spread of the luminous flux of the light emitting element is φ1, the directivity which is the spread of the received luminous flux of the light receiving element is φ2, and the normal line and the optical axis plane are set. Is defined as ψ, the diameter of the light emitting surface of the light receiving element is D1, the diameter of the light receiving surface of the light receiving element is D2, and the optical path length connecting the center of the light emitting surface and the center of the light receiving surface is When ρ, ψ> 1/2 ・ φ1 + tan ~
1 (D2 / 2ρ) or ψ> 1/2 ・ φ2 + tan ~
3. The image forming apparatus according to claim 2, wherein the light emitting element and the light receiving element are arranged so as to satisfy any one of 1 (D1 / 2ρ).

【0016】請求項5の発明は、前記発光素子と前記受
光素子の両光軸が同一平面内に含まれるように前記発光
素子と前記受光素子を支持部材でユニット化し、前記発
光素子または受光素子の少なくとも一方の前方に集光光
学素子を設けたことを特徴とする請求項1、2、3また
は4記載の画像形成装置にある。
According to a fifth aspect of the invention, the light emitting element and the light receiving element are unitized by a supporting member so that both optical axes of the light emitting element and the light receiving element are included in the same plane, and the light emitting element or the light receiving element is united. 5. An image forming apparatus according to claim 1, wherein a condensing optical element is provided in front of at least one of the above.

【0017】[0017]

【実施例】以下、この発明の第1実施例を図面を参照し
て説明する。図1は、この発明が適用されるカラー画像
形成装置を示しており、同図において、図示しないスキ
ャナ部において、デジタル信号に変換された画像情報
は、顕像パターンを形成する書込みユニット22に送ら
れる。この書込みユニット22は、各色の画像情報を含
むレーザ光22Y、22M、22C、22BKを記録ユ
ニット23Y、23M、23C、23BKに射出するも
のであり、記録ユニット23Y、23M、23C、23
BKは同一平面上に一定の間隔で配置されている。各記
録ユニット23Y、23M、23C、23BKは、それ
ぞれ現像色が異なるものの電子写真方式の同一構成を有
しており、例えば、記録ユニット23Cは、感光体ドラ
ム24Cを帯電チャージャ25Cによって何れかの階調
に対応する電位で一様帯電し、書込みユニット22から
のレーザ光22Cにより画像情報に応じた変調光を照射
して感光体ドラム4Cを露光し、これによって感光体ド
ラム4Cに形成したシアン光像の静電潜像に対して、現
像ユニット26Cにより現像を行って顕像化する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a color image forming apparatus to which the present invention is applied. In FIG. 1, image information converted into a digital signal in a scanner unit (not shown) is sent to a writing unit 22 that forms a visible image pattern. To be The writing unit 22 emits laser light 22Y, 22M, 22C, 22BK including image information of each color to the recording units 23Y, 23M, 23C, 23BK, and the recording units 23Y, 23M, 23C, 23.
The BKs are arranged on the same plane at regular intervals. Each of the recording units 23Y, 23M, 23C, and 23BK has the same electrophotographic system configuration although the developing colors are different. For example, the recording unit 23C includes a photoconductor drum 24C and a charger 25C. Cyan light formed on the photoconductor drum 4C by exposing the photoconductor drum 4C by irradiating the laser beam 22C from the writing unit 22 with modulated light according to image information to uniformly charge the photoconductor drum 4C. The electrostatic latent image of the image is developed by the developing unit 26C and visualized.

【0018】図示しない給紙部より送られた転写紙は、
レジストローラ30によりタイミングを合わせて駆動ロ
ーラ34と従動ローラ35に支張された転写ベルト1に
送り出され、図中左方向に搬送されながら、感光体ドラ
ム4BK、4C、4M、4Yによって順にトナー像が転
写された後、定着ローラ32によって定着されて排紙さ
れる。
The transfer paper sent from a paper supply unit (not shown)
The registration roller 30 sends the toner image to the transfer belt 1 supported by the driving roller 34 and the driven roller 35 at the same timing and the toner images in order by the photoconductor drums 4BK, 4C, 4M, and 4Y while being conveyed leftward in the drawing. After being transferred, it is fixed by the fixing roller 32 and discharged.

【0019】この転写ベルト1において、図2に示すよ
うに、発光素子2と受光素子3が、同ベルト1上の所定
の点Pにおける垂線sとその光軸2aと光軸3aとがな
す角がそれぞれθ1とθ2となるように配置されている。
この実施例で用いている発光素子2と受光素子3は、共
に比較的広い指向性を有している。すなわち、本実施例
においては、発光素子2の射出光の光量、又は受光素子
3の受光域の感度が1/2になる角度が、発光素子の場
合は、φ1=30°、受光素子3の場合は、φ2=20
°となっている(φ1,φ2はそれぞれ、各素子の広が
り角度を表している。)。
In this transfer belt 1, as shown in FIG. 2, a light emitting element 2 and a light receiving element 3 form an angle formed by a perpendicular line s at a predetermined point P on the belt 1 and its optical axis 2a and optical axis 3a. Are arranged so as to be θ 1 and θ 2, respectively.
The light emitting element 2 and the light receiving element 3 used in this embodiment both have a relatively wide directivity. That is, in the present embodiment, the light amount of the emitted light of the light emitting element 2 or the angle at which the sensitivity of the light receiving area of the light receiving element 3 becomes 1/2 is φ1 = 30 ° for the light emitting element, In case of φ2 = 20
Is 0 ° (φ1 and φ2 respectively represent the spread angle of each element).

【0020】ここにおいて、両素子の指向性とは、素子
の出射光または受光光における放射強度、感度強度が1
/2になる光の分布領域をいう。そして、図2の矢印A
方向から見た図3に示すように、点Pにおける法線hと
光軸2a、光軸3aの両軸を含む平面S1とが角度ψを
なすように発光素子2と受光素子3とが配置され、この
実施例ではψ=30°に設定されている。この構成にお
いて、点Pにおける法線hと平面S1とのなす角度ψを
変化させていったときの受光素子3の出力電圧の変化を
図4に示す。図4において、転写ベルト1をカラートナ
ーが完全被覆している場合の特性を特性線40とトナー
付着がない場合の特性の特性線41で示す。この図4で
示すように、カラートナーは乱反射を生ずるため、発光
素子2と受光素子3の両光軸の含む平面の法線hに対す
る傾き角度ψが−10度〜10度の範囲では、カラート
ナーが完全被覆している場合とトナー付着がない場合と
で、受光素子3の出力電圧の変化の差は小さく、トナー
濃度の検出は、低感度となってしまっている。これに対
して、上記の範囲の外側では、その変化は2つの特性線
の値の差として最も顕著に表れている。すなわち、本実
施例では、角度ψを10度より大きくまたは−10度よ
り小さい角度になるように発光素子2と受光素子3の両
光軸の含む平面を傾けて配設することにより、カラート
ナーが完全被覆している場合とトナー付着がない場合と
で、受光素子3の出力電圧の差を大きくすることがで
き、トナー濃度の検出を高感度で検出することができ
る。ここで、発光素子2と受光素子3との指向性には、
各発光素子2と受光素子3毎に誤差がある。すなわち上
記発光素子2と受光素子3の指向性上の広がり角には、
微妙な誤差があるため、上記角度ψは実設計上では|ψ
|≧25°とすることが望ましい。
Here, the directivity of both elements means that the emission intensity and the sensitivity intensity in the emitted light or the received light of the elements are 1
It means the distribution area of light that becomes / 2. And arrow A in FIG.
As shown in FIG. 3 when viewed from the direction, the light emitting element 2 and the light receiving element 3 are arranged such that the normal line h at the point P and the plane S1 including both the optical axis 2a and the optical axis 3a form an angle ψ. In this embodiment, ψ = 30 ° is set. FIG. 4 shows changes in the output voltage of the light receiving element 3 when the angle ψ formed by the normal line h at the point P and the plane S1 is changed in this configuration. In FIG. 4, characteristics when the transfer belt 1 is completely covered with color toner are shown by a characteristic line 40 and a characteristic line 41 when the toner is not attached. As shown in FIG. 4, since the color toner causes irregular reflection, when the inclination angle ψ of the plane including the optical axes of the light emitting element 2 and the light receiving element 3 with respect to the normal line h is −10 degrees to 10 degrees, The difference in the change in the output voltage of the light receiving element 3 between the case where the toner is completely covered and the case where the toner is not adhered is small, and the detection of the toner concentration has low sensitivity. On the other hand, outside the above range, the change is most noticeable as a difference between the values of the two characteristic lines. That is, in this embodiment, the planes including both optical axes of the light emitting element 2 and the light receiving element 3 are tilted so that the angle ψ is larger than 10 degrees or smaller than −10 degrees. It is possible to increase the difference in the output voltage of the light receiving element 3 between the case where the toner is completely covered and the case where the toner is not adhered, and the toner concentration can be detected with high sensitivity. Here, in the directivity between the light emitting element 2 and the light receiving element 3,
There is an error between each light emitting element 2 and each light receiving element 3. That is, the directional spread angle between the light emitting element 2 and the light receiving element 3 is
Due to subtle errors, the above angle ψ is │ψ in the actual design.
It is desirable that | ≧ 25 °.

【0021】[0021]

【数1】 [Equation 1]

【0022】を意味する。Means

【0023】本実施例では、角度ψ=30°としている
から、前記発光素子2と受光素子3毎の誤差の影響を受
けることなく、高感度のトナー濃度検出装置を提供する
ことができる。
In this embodiment, since the angle ψ = 30 °, it is possible to provide a highly sensitive toner concentration detecting device without being affected by the error between the light emitting element 2 and the light receiving element 3.

【0024】以下、第2実施例を説明する。The second embodiment will be described below.

【0025】上記実施例では、像担持体として転写ベル
ト1を発光素子2と受光素子3として比較的広い指向性
を有する素子を用いた場合を説明したが、次に別の実施
例として、像担持体として感光体ドラムと、発光素子と
受光素子として中位の指向性を有する素子と用いた場合
について説明する。
In the above embodiment, the case where the transfer belt 1 is used as the image carrier and the light emitting element 2 and the light receiving element 3 are elements having a relatively wide directivity is described. Next, as another embodiment, an image is formed. A case will be described in which a photosensitive drum is used as a carrier, and a light emitting element and a light receiving element are used as elements having a medium directivity.

【0026】図5に示すように、発光素子2と受光素子
3が、感光体ドラム4C(図1に示す感光体ドラムB
K、4C、4M、4Yのうちの一例として用いる)上の
所定の点Pにおける感光体ドラム4Cに対する垂線sと
その光軸2aと3aとが成す角がそれぞれθ1とθ2とな
るように配置されている。この実施例で用いている発光
素子2と受光素子3は、共に比較的受発光光束の広がり
の中位に狭い指向性を有している。すなわち、発光素子
2の射出光の光量、又は受光素子3の受光域の感度が1
/2になる角度、発光素子の場合はφ1=8°、φ2=
12°となっている。(φ1,φはそれぞれ、広がり角
を示す。) そして、図5の矢印A方向から見た図6に示すように、
点Pにおける法線hと光軸2aと光軸3aの両光軸を含
む光軸平面S1とが角度ψをなすように発光素子2と受
光素子3とが配置されている。上記角度ψを変化させて
いったときの発光素子2の出力電圧の変化を図7に示
し、図8は、角度ψ=0°のときの像担持体のトナー付
着量に対する受光素子の出力電圧の変化を示している。
図7において、感光体ドラム4Cをカラートナーが完全
被覆している場合の出力特性を特性曲線42で、いくら
かトナー付着がある場合の出力特性を特性曲線43で、
トナー付着がない場合の特性を特性曲線44で示す。こ
の場合に角度ψ=0°近傍では、トナーの付着度合いに
かかわらずその出力電圧の差が顕著に現れる。しかしな
がら、図8に示すように角度ψ=0°の場合は、像担持
体上のトナーが0.5mg/cm2を越えて付着するころ
からは、像担持体上のトナー付着量が変化したとしても
受光素子の出力電圧の差は少なくなってしまう。
As shown in FIG. 5, the light emitting element 2 and the light receiving element 3 are connected to the photosensitive drum 4C (photosensitive drum B shown in FIG. 1).
K, 4C, 4M, and 4Y), so that the angles formed by the perpendicular line s to the photosensitive drum 4C and its optical axes 2a and 3a at a predetermined point P are θ 1 and θ 2 , respectively. It is arranged. Both the light emitting element 2 and the light receiving element 3 used in this embodiment have a narrow directivity in the middle of the spread of the received and emitted luminous flux. That is, the amount of light emitted from the light emitting element 2 or the sensitivity of the light receiving area of the light receiving element 3 is 1 or less.
Angle of 1/2, φ1 = 8 ° for light emitting element, φ2 =
It is 12 degrees. (Φ1 and φ respectively indicate the spread angle.) Then, as shown in FIG. 6 viewed from the direction of arrow A in FIG.
The light emitting element 2 and the light receiving element 3 are arranged so that the normal line h at the point P and the optical axis plane S1 including both optical axes of the optical axis 2a and the optical axis 3a form an angle ψ. FIG. 7 shows changes in the output voltage of the light emitting element 2 when the angle ψ is changed, and FIG. 8 shows the output voltage of the light receiving element with respect to the toner adhesion amount of the image carrier when the angle ψ = 0 °. Shows the change.
In FIG. 7, the output characteristic when the photosensitive drum 4C is completely covered with color toner is a characteristic curve 42, and the output characteristic when some toner is attached is a characteristic curve 43.
A characteristic curve 44 shows the characteristic when there is no toner adhesion. In this case, in the vicinity of the angle ψ = 0 °, the output voltage difference remarkably appears regardless of the degree of toner adhesion. However, as shown in FIG. 8, when the angle ψ = 0 °, the amount of toner adhered on the image carrier changed from the time when the toner adhered on the image carrier exceeded 0.5 mg / cm 2 . However, the difference in the output voltage of the light receiving element is reduced.

【0027】これに対して、発光素子2と受光素子3の
両光軸を含む平面S1を像担持体の法線に対して角度ψ
=10°傾けて配置した場合、像担持体上のトナーの付
着量の変化に対する受光素子3の出力電圧の変化は図9
に示すように、顕著に現れる。したがって、角度ψを1
0度より大きくまたは−10度より小さい角度になるよ
うに発光素子2と受光素子3とを傾けて配設することに
より、上記の出力特性間で受光素子の出力電圧の差が顕
著に現れて、カラートナー付着量を高感度で検出するこ
とができる。本実施例の場合は、角度ψ=30°に設定
している。
On the other hand, the plane S1 including both optical axes of the light emitting element 2 and the light receiving element 3 is set at an angle ψ with respect to the normal line of the image carrier.
= 10 °, the change in the output voltage of the light receiving element 3 with respect to the change in the amount of adhered toner on the image carrier is as shown in FIG.
It appears remarkably as shown in. Therefore, the angle ψ is 1
By arranging the light emitting element 2 and the light receiving element 3 so as to be inclined at an angle larger than 0 degree or smaller than -10 degrees, the difference in the output voltage of the light receiving element between the above output characteristics becomes remarkable. The amount of adhered color toner can be detected with high sensitivity. In the case of this embodiment, the angle ψ = 30 ° is set.

【0028】次に第3実施例を説明する。上記2つの実
施例では、発光素子2の光軸2aと受光素子3の光軸3
aとが交わる点Pが、像担持体表面上にある場合を説明
したが、別の実施例として、発光素子2の光軸2aと受
光素子3の光軸3aとが交わる点P′が、像担持体の表
面から内側にずれた位置、すなわち像担持体表面の近傍
に設定されている場合について説明する。
Next, a third embodiment will be described. In the above two embodiments, the optical axis 2a of the light emitting element 2 and the optical axis 3 of the light receiving element 3 are used.
The case where the point P where a intersects with the image bearing member is on the surface of the image carrier has been described, but as another embodiment, the point P ′ where the optical axis 2a of the light emitting element 2 and the optical axis 3a of the light receiving element 3 intersect is described. A case will be described where the image carrier is set to a position displaced inward from the surface of the image carrier, that is, in the vicinity of the surface of the image carrier.

【0029】図10において、発光素子2の光軸2aと
受光素子3の光軸3aとが交わる点P′は、感光体ドラ
ム4C上の法線h上であって、感光体ドラム4Cの内側
にずれた位置にあり、この点P′と通る法線hと発光素
子2の光軸2aと、光受光素子3の光軸3aとの角度を
それぞれθ1,θ2となるように配置されている。そし
て、この実施例で用いている発光素子2と受光素子3と
は、いずれも比較的狭い指向性を有している。すなわ
ち、発光素子2の出射光の光量、または受光素子3の受
光感度が、発光素子2の場合は、φ1=8°、受光素子
3の場合はφ2=12°となっている(角θ1,θ2は
それぞれ広がり角を示す。) そして、図10の矢印A方向見た図12に示すように、
点P′を含む感光体ドラム4Cの回転軸に直交する平面
(すなわち、点P′を通過する感光体ドラム4Cの表面
を通る法線を含む平面)Stと、発光素子2と受光素子
3の両光軸の含む平面Sとのなす角度ψが角度ψ=30
°をなすように発光素子2と受光素子3とが配置されて
いる。
In FIG. 10, a point P'where the optical axis 2a of the light emitting element 2 and the optical axis 3a of the light receiving element 3 intersect is on the normal line h on the photosensitive drum 4C and inside the photosensitive drum 4C. The optical axis 2a of the light emitting element 2 and the optical axis 3a of the light receiving element 3 and the normal line h passing through the point P ′ are arranged so as to be θ1 and θ2, respectively. . The light emitting element 2 and the light receiving element 3 used in this embodiment both have relatively narrow directivity. That is, the amount of light emitted from the light emitting element 2 or the light receiving sensitivity of the light receiving element 3 is φ1 = 8 ° for the light emitting element 2 and φ2 = 12 ° for the light receiving element 3 (angle θ1, θ2 indicates the spread angle, respectively.) Then, as shown in FIG. 12 viewed in the direction of arrow A in FIG.
A plane St that includes the point P ′ and is orthogonal to the rotation axis of the photoconductor drum 4C (that is, a plane that includes a normal line passing through the surface of the photoconductor drum 4C that passes through the point P ′) St and the light emitting element 2 and the light receiving element 3 The angle ψ formed by the plane S including both optical axes is the angle ψ = 30.
The light emitting element 2 and the light receiving element 3 are arranged so as to form an angle of °.

【0030】この場合でも、発光素子2と受光素子3と
からなるトナー濃度検出装置におけるカラートナーの乱
反射光の検出には、支障がない。その理由を以下に述べ
る。
Even in this case, there is no problem in detecting irregularly reflected light of the color toner in the toner density detecting device including the light emitting element 2 and the light receiving element 3. The reason is described below.

【0031】図12は発光素子2と受光素子3とを像担
持体の法線に対して、両素子とも傾けて配置している状
態を像担持体の潜像形成面(被検知面)を基準に発光素
子2と受光素子3とを相対象の位置に仮想して配置した
図に基づいて説明する。
FIG. 12 shows a state in which the light-emitting element 2 and the light-receiving element 3 are arranged so as to be inclined with respect to the normal line of the image carrier so that the latent image forming surface (detected surface) of the image carrier is shown. The light emitting element 2 and the light receiving element 3 will be described with reference to a diagram in which the light emitting element 2 and the light receiving element 3 are virtually arranged at the positions of the phase targets.

【0032】図12において、発光素子2と受光素子3
の指向性をそれぞれ2φ1,2φ2とした場合、両素子の
指向性の広がり2φ1,2φ2の内側では、発光素子2の
光量と受光素子3の感度が“1”で、その外側が“0”
とする。
In FIG. 12, the light emitting element 2 and the light receiving element 3
, 2φ1 and 2φ2 respectively, the light amount of the light emitting element 2 and the sensitivity of the light receiving element 3 are "1" inside the directivity spread 2φ1 and 2φ2 of both elements, and the outside is "0".
And

【0033】被検知面Lの反射面が図12の第1の位置
L1から図12の第2の位置L2の位置に変化した場合
に、被検知面から受光素子が受光する光の面積は、発光
素子2の第1の被検知面L1の発光領域SIから第2の
被検知面の発光領域S2に縮小変化する。その検知面の
発光領域S2内の照度は、SI/S2倍となる。それ
は、第1の被検知面L1から受光素子3の受光点PDiま
での距離r1と第2の被検知面L2から受光素子3の受
光点PDiまでの距離r2の関係に等しくなり、結局、被
検知面での照度の変化は、受光素子からの被検知面まで
の距離の2乗に反比例して変化することになる。すなわ
ち、次の式が成り立つ。
When the reflecting surface of the detected surface L changes from the first position L1 in FIG. 12 to the second position L2 in FIG. 12, the area of the light received by the light receiving element from the detected surface is: The light emitting area SI of the first detected surface L1 of the light emitting element 2 is reduced and changed to the light emitting area S2 of the second detected surface. The illuminance in the light emitting area S2 on the detection surface is SI / S2 times. It becomes equal to the relationship between the distance r1 from the first detected surface L1 to the light receiving point PDi of the light receiving element 3 and the distance r2 from the second detected surface L2 to the light receiving point PDi of the light receiving element 3, and in the end, The change in illuminance on the detection surface changes in inverse proportion to the square of the distance from the light receiving element to the detection surface. That is, the following equation holds.

【0034】[0034]

【数2】 [Equation 2]

【0035】このことは、被検知面が第1の被検知面L
1から第2の被検知面L2に変化しても受光素子への受
光感度は低下するが、発光素子2と受光素子3とによる
トナー濃度検出装置は、発光素子からの発光光を被検出
面で反射させその反射光を受光素子で受光してその受光
度の変化を読み取って、トナー濃度を行うものであるの
で、その反射光に変化があっても測定に支障はない。
This means that the detected surface is the first detected surface L.
Although the light receiving sensitivity to the light receiving element is lowered even if the light receiving element changes from 1 to the second detected surface L2, the toner concentration detecting device including the light emitting element 2 and the light receiving element 3 detects the light emitted from the light emitting element on the detected surface. Since the reflected light is reflected by the light receiving element and the light receiving element receives the change in the light receiving degree to determine the toner density, even if the reflected light changes, the measurement is not hindered.

【0036】上記の第1の被検出面L1から、第3の被
検出面L3に被検出面が変化しても今度は、被検知面か
ら受光素子が受光する光の面積は、発光素子2の第1の
被検知面L1の発光領域SI′から第3の被検知面の発
光領域S3に縮小変化する。その検知面の発光領域S3
内の照度は、SI′/S3倍となる。それは、第1の被
検知面L1から受光素子3の受光点PDiまでの距離r1
と第3の被検知面L3から受光素子3の受光点PDiまで
の距離r3の関係に等しくなり、結局、被検知面での照
度の変化は、受光素子からの被検知面までの距離の2乗
に反比例して変化することになる。すなわち、次の式が
成り立つ。
Even if the detected surface changes from the first detected surface L1 to the third detected surface L3, the area of the light received by the light receiving element from the detected surface is now the light emitting element 2 The light emitting area SI 'on the first detected surface L1 is reduced to the light emitting area S3 on the third detected surface. Light emitting area S3 on the detection surface
The illuminance inside is SI '/ S3 times. It is the distance r1 from the first detected surface L1 to the light receiving point PDi of the light receiving element 3.
And the distance r3 from the third detected surface L3 to the light receiving point PDi of the light receiving element 3 are equal, and eventually, the change in illuminance on the detected surface is 2 times the distance from the light receiving element to the detected surface. It will change in inverse proportion to the power. That is, the following equation holds.

【0037】[0037]

【数3】 (Equation 3)

【0038】このことは、受光素子3の受光感度は逆に
増大するが、被検知面が第3の被検出面L3に変化する
ことは、反射光が受光素子の受光範囲外にも拡散するこ
とになり、受光領域内の反射光の受光光は逆に総合的に
低下することになる。しかしながら、上記第2の被検知
面L2に検知面がずれたときと同様に、受光素子3での
受光能力の変化には影響がない。
This means that the light receiving sensitivity of the light receiving element 3 increases conversely, but the fact that the detected surface changes to the third detected surface L3 means that the reflected light diffuses outside the light receiving range of the light receiving element. As a result, the received light of the reflected light in the light receiving area will be totally reduced. However, similarly to the case where the detection surface is displaced from the second detection surface L2, the change in the light receiving ability of the light receiving element 3 is not affected.

【0039】次に第4実施例を説明する。発光素子2と
受光素子3は、図13に示すように、受発光素子ユニッ
ト60の支持部材61に固定支持されている。発光素子
2の前方には集光光学系としてのフレネルレンズ62
が、そして受光素子3の前方には防塵ガラス63がそれ
ぞれ配置されている。フレネルレンズ62は、像担持体
1の表面に細く絞った光束をP点に照射し、P点におけ
る光スポットを受光素子3が防塵ガラス63を介して受
光するように配置されている。この受発光素子ユニット
60はフレネルレンズ62を発光素子2側に設けた例を
示したが、受光素子3側に設けてもよい。
Next, a fourth embodiment will be described. As shown in FIG. 13, the light emitting element 2 and the light receiving element 3 are fixed and supported by a supporting member 61 of the light emitting and receiving element unit 60. A Fresnel lens 62 as a condensing optical system is provided in front of the light emitting element 2.
However, dust-proof glass 63 is arranged in front of the light receiving element 3. The Fresnel lens 62 irradiates a light beam which is narrowed down on the surface of the image carrier 1 to the point P, and the light receiving element 3 is arranged so that the light receiving element 3 receives the light spot at the point P through the dustproof glass 63. In the light emitting / receiving element unit 60, the example in which the Fresnel lens 62 is provided on the light emitting element 2 side is shown, but it may be provided on the light receiving element 3 side.

【0040】図14は発光素子2と受光素子3とを像担
持体の法線に対して、両素子とも傾けて配置している状
態を像担持体の潜像形成面(被検知面)を基準に発光素
子2と受光素子3とを相対象の位置に仮想して配置した
図である。
FIG. 14 shows a state in which the light-emitting element 2 and the light-receiving element 3 are arranged so as to be inclined with respect to the normal line of the image carrier, and the latent image forming surface (detected surface) of the image carrier is shown. It is the figure which virtually arranged the light emitting element 2 and the light receiving element 3 in the position of a phase object as a reference.

【0041】図14において、発光素子2の発光光束の
広がりである指向性をφ1とし、受光素子の受光光束の
広がりである指向性φ2とし、発光素子2と受光素子3
の両光軸の交わる交点Pを通る法線hと、発光素子2と
受光素子3の両光軸を含む光軸平面S1とのなす角度を
角度ψとし、発光素子2の発光面2bの直径をD1と
し、発光素子2の発光面2bの中心Psと、受光素子3の
受光面3bの中心PDとを結ぶ光路長をρとしたとき
に、次の式が成立するように発光素子2と受光素子3の
両光軸の含む平面S1を法線hに対して、角度ψだけ傾
けて配置する。
In FIG. 14, the directivity which is the spread of the luminous flux of the light emitting element 2 is φ1 and the directivity which is the spread of the received luminous flux of the light receiving element is φ2, and the light emitting element 2 and the light receiving element 3 are shown.
The angle between the normal line h passing through the intersection point P where the two optical axes intersect and the optical axis plane S1 including both optical axes of the light emitting element 2 and the light receiving element 3 is an angle ψ, and the diameter of the light emitting surface 2b of the light emitting element 2 is Is D1 and the optical path length connecting the center Ps of the light emitting surface 2b of the light emitting element 2 and the center PD of the light receiving surface 3b of the light receiving element 3 is ρ, the light emitting element 2 and the light emitting element 2 satisfy the following equation. The plane S1 including both optical axes of the light receiving element 3 is arranged so as to be inclined by an angle ψ with respect to the normal line h.

【0042】ψ>φ1+tan~1(D2/2ρ) この場合、発光素子2の発光光軸から指向性φ1の出射
光の発光強度は、光軸方向の1/2である。
[0042] ψ> φ1 + tan ~ 1 ( D2 / 2ρ) In this case, the emission intensity of the light emitted directional .phi.1 from the light emitting element 2 emission optical axis is half the optical axis direction.

【0043】ここで、発光素子2の指向性φ1の出射光
の発光強度と、正反射光および乱反射光の強度との関係
について説明する。
Here, the relationship between the emission intensity of the emitted light having the directivity φ1 of the light emitting element 2 and the intensities of specular reflection light and irregular reflection light will be described.

【0044】図14において、発光素子2の発光の中心
点Psiから反射面Lまでの線分LA0、LA1およびL
A2は、発光素子2からの発光光を示し、この線分LA
1′、LA2およびLA0′の延長線であって、反射面L
より受光素子3側にある線分LA1′、LA2およびLA
0′は、発光光LA0、LA1およびLA2がそれぞれ反射
面Lで正反射された光を示す。
In FIG. 14, line segments LA0, LA1 and L from the center point Psi of light emission of the light emitting element 2 to the reflecting surface L are shown.
A2 indicates the light emitted from the light emitting element 2, and this line segment LA
1 ', LA2 and LA0', which are extensions of the reflecting surface L
Line segments LA1 ', LA2 and LA located closer to the light receiving element 3 side
Reference numeral 0'indicates the lights LA0, LA1 and LA2 that are specularly reflected by the reflecting surface L, respectively.

【0045】ここで、正反射光の強度は、発光素子の発
光強度分布に比例して変化することが知られている。一
方、乱反射光の強度は、点Pから見た受光素子3の受光
面の立体角に比例することが知られているから、発光素
子3の受光面の大きさが一定であれば乱反射光の強度
は、点Pから受光素子3までの距離が一定であれば、変
化しない。
Here, it is known that the intensity of specularly reflected light changes in proportion to the light emission intensity distribution of the light emitting element. On the other hand, it is known that the intensity of the diffusely reflected light is proportional to the solid angle of the light receiving surface of the light receiving element 3 viewed from the point P. Therefore, if the size of the light receiving surface of the light emitting element 3 is constant, The intensity does not change if the distance from the point P to the light receiving element 3 is constant.

【0046】線分LA1′、LA2′上の領域は、指向性
φ1の領域と一致するから、この領域では、正反射光の
強度が発光素子2の光軸LA0′(最も正反射光の強度
が強い領域)上の強度の1/2の強さとなる。したがっ
て、受光素子3の受光面の線分LA1′とLA2′で囲ま
れる領域より外側に配置すれば、この受光素子3は、1
/2以下の強度を持つ正反射光しか検出せず、かつ、乱
反射光について強度を弱めることなく検出できる。
Since the areas on the line segments LA1 'and LA2' coincide with the area of the directivity φ1, in this area, the intensity of the specularly reflected light is the optical axis LA0 '(the intensity of the most specularly reflected light) of the light emitting element 2. Is a half of the strength on the (higher area). Therefore, if the light receiving element 3 is arranged outside the region surrounded by the line segments LA1 'and LA2' on the light receiving surface of the light receiving element 3, the light receiving element 3 is
Only specular reflection light having an intensity of / 2 or less can be detected, and diffuse reflection light can be detected without weakening the intensity.

【0047】以上の関係は、発光素子2を基準に説明し
たが、図15に基づいて後述する受光素子3を基準にし
た場合でも、受光素子2の指向性φ2の領域外に発光面
を配置するようにすれば、受光素子3が受ける正反射光
の強度は1/2以下となり、一方、乱反射光の強度は変
化しないことは、発光素子2を基準にして説明した場合
と同様である。
Although the above relationship has been described with reference to the light emitting element 2, the light emitting surface is arranged outside the region of the directivity φ2 of the light receiving element 2 even when the light receiving element 3 described later based on FIG. 15 is used as a reference. By doing so, the intensity of the specularly reflected light received by the light receiving element 3 becomes 1/2 or less, while the intensity of the irregularly reflected light does not change, as in the case where the light emitting element 2 is used as a reference.

【0048】発光素子2と受光素子3の光路長ρは、発
光素子2の光軸の発光素子面上の点Psから受光素子3
の光軸の受光素子面上の点PDまでの被検知面を通る光
の最短距離を表す。
The optical path length ρ of the light emitting element 2 and the light receiving element 3 is determined from the point Ps on the light emitting element surface of the optical axis of the light emitting element 2 to the light receiving element 3
Represents the shortest distance of light passing through the surface to be detected up to the point P D on the light receiving element surface of the optical axis.

【0049】そして、この場合、一般に発光素子2の指
向性を規定するときの発光の中心点Psiは、素子の表面
より少し発光素子2の表面より内側に位置した位置にな
る。
In this case, the center point Psi of light emission when defining the directivity of the light emitting element 2 is generally positioned slightly inside the surface of the light emitting element 2 from the surface of the element.

【0050】したがって、発光素子の発光の中心点Ps
iから受光素子3の光軸の受光素子面上の点PDまでの
距離が発光素子2の光軸の発光素子面の点Psから受光
素子3の光軸の受光素子面上の点PDまでの距離より長
い。すなわち、
Therefore, the central point Ps of light emission of the light emitting element is
The distance from i to the point P D on the light receiving element surface of the light receiving element 3 is from the point Ps on the light emitting element surface of the light emitting element 2 to the point P D on the light receiving element surface of the light receiving element 3. Longer than the distance to. That is,

【0051】[0051]

【数4】 (Equation 4)

【0052】になる。It becomes

【0053】発光素子2の発光の中心点から見た受光素
子3の中心と、受光素子3の端部3Aとのなす角度ψ
は、次式を満たす。
The angle ψ formed by the center of the light receiving element 3 and the end 3A of the light receiving element 3 viewed from the center point of the light emission of the light emitting element 2.
Satisfies the following equation.

【0054】[0054]

【数5】 (Equation 5)

【0055】[0055]

【数6】 (Equation 6)

【0056】ただし、D2:受光素子3の受光面の直径 受光素子3は、受光面が発光素子2の発光光束φ1より
も外側に位置するように配置する。
However, D 2 is the diameter of the light-receiving surface of the light-receiving element 3. The light-receiving element 3 is arranged such that the light-receiving surface is located outside the luminous flux φ1 of the light-emitting element 2.

【0057】したがって、Therefore,

【0058】[0058]

【数7】 (Equation 7)

【0059】が成立し、発光素子2および受光素子3の
両光軸の光軸平面S1の法線h対する傾け角度ψが上記
式を満足するように発光素子2および受光素子3の両光
軸の光軸平面S1を法線hに対して傾けて配置すれば、
発光素子2から発せられる正反射光LAの大部分は図1
4に示すように、受光素子3の受光面よりも外側に発光
されて、受光素子3に入光されることがない。
And the tilt angles ψ with respect to the normal line h of the optical axis plane S1 of both optical axes of the light emitting element 2 and the light receiving element 3 satisfy the above expression, both optical axes of the light emitting element 2 and the light receiving element 3 are satisfied. If the optical axis plane S1 of is inclined with respect to the normal line h,
Most of the regular reflection light LA emitted from the light emitting element 2 is shown in FIG.
As shown in FIG. 4, the light is not emitted to the outside of the light receiving surface of the light receiving element 3 and does not enter the light receiving element 3.

【0060】以上は発光素子を基準して、発光素子2お
よび受光素子3の両光軸の光軸平面S1の法線h対する
傾け角度ψを説明したが、受光素子3を基準にしても上
記発光素子と同様なことが言える。
The tilt angle ψ with respect to the normal line h of the optical axis plane S1 of both optical axes of the light emitting element 2 and the light receiving element 3 has been described above with reference to the light emitting element. The same applies to the light emitting element.

【0061】図15において、受光素子3の受光光束の
広がりである指向性φ2とし、発光素子2の発光面2b
の直径をD1とする。
In FIG. 15, the directivity φ2 which is the spread of the light beam received by the light receiving element 3 is set, and the light emitting surface 2b of the light emitting element 2 is set.
Let D1 be the diameter of.

【0062】この場合、受光素子3の受光光軸から指向
性φ2の受光の受光強度は、光軸方向の1/2である。
発光素子2と受光素子3の光路長ρは、受光素子3の光
軸の受光素子面上の点PDから発光素子2の光軸の発光
素子の発光面上のPsまでの被検知面を通る光の最短距
離を表す。
In this case, the light receiving intensity of the light received with the directivity φ2 from the light receiving optical axis of the light receiving element 3 is ½ of the optical axis direction.
The optical path length ρ of the light emitting element 2 and the light receiving element 3 passes through a detected surface from a point PD on the light receiving element surface of the optical axis of the light receiving element 3 to Ps on the light emitting surface of the light emitting element of the optical axis of the light emitting element 2. Indicates the shortest distance of light.

【0063】そして、この場合、一般に受光素子3の指
向性を規定するときの受光の中心点PDiは、素子の表面
より少し受光素子3の表面より内側に位置した位置にな
る。したがって、発光素子の発光の中心点Psから受光
素子3の光軸の受光素子面上の点PDまでの距離より受
光素子3の光軸の受光素子面の点PDiから発光素子2の
光軸の発光素子面上のPSまでの距離が長い。すなわ
ち、
In this case, generally, the center point PDi of light reception when defining the directivity of the light receiving element 3 is located slightly inside the surface of the light receiving element 3 from the surface of the element. Therefore, from the distance from the center point Ps of light emission of the light emitting element to the point PD on the light receiving element surface of the light receiving element 3 from the point PDi on the light receiving element surface of the light receiving element 3 to the optical axis of the light emitting element 2. The distance to PS on the light emitting element surface is long. That is,

【0064】[0064]

【数8】 (Equation 8)

【0065】になる。It becomes

【0066】そして、受光素子の受光の中心点PDiから
見た場合、発光素子2の光軸の発光素子面上のPDiと発
光素子2の法線h側の先端部の端部2Aとのなす角度δ
が、次の式を満たすように受光素子3は配置されてい
る。
When viewed from the light receiving center point PDi of the light receiving element, PDi on the light emitting element surface of the optical axis of the light emitting element 2 and the end 2A of the tip of the light emitting element 2 on the normal line h side are formed. Angle δ
However, the light receiving element 3 is arranged so as to satisfy the following equation.

【0067】[0067]

【数9】 [Equation 9]

【0068】[0068]

【数10】 (Equation 10)

【0069】発光素子2は、発光面が受光素子3の発光
光束φ2よりも外側に位置するように配置する。したが
って、
The light emitting element 2 is arranged so that the light emitting surface is located outside the light emitting beam φ2 of the light receiving element 3. Therefore,

【0070】[0070]

【数11】 [Equation 11]

【0071】が成立し、発光素子2および受光素子3の
両光軸の光軸平面S1の法線h対する傾け角度ψが上記
式を満足するように発光素子2および受光素子3の両光
軸の光軸平面S1を法線hに対して傾けて配置すれば、
発光素子2からの正反射光LAの大部分は図15に示す
ように、受光素子3の受光面よりも外側に発光されて、
受光素子3に入光されることがない。
And the tilt angles ψ with respect to the normal line h of the optical axis plane S1 of both optical axes of the light emitting element 2 and the light receiving element 3 satisfy the above expression, both optical axes of the light emitting element 2 and the light receiving element 3 are satisfied. If the optical axis plane S1 of is inclined with respect to the normal line h,
Most of the regular reflection light LA from the light emitting element 2 is emitted to the outside of the light receiving surface of the light receiving element 3, as shown in FIG.
Light is not incident on the light receiving element 3.

【0072】以上の説明から明らかなように、受光素子
3の受光面の発光素子2の発光光束φ1よりも外側に位
置するように受光素子3を配置するか、または発光素子
2の発光面が受光素子3の受光光束φ2よりも外側に位
置するように発光素子2を配置するようにする。すなわ
ち、
As is clear from the above description, the light-receiving element 3 is arranged such that the light-receiving surface of the light-receiving element 3 is located outside of the luminous flux φ1 of the light-emitting element 2, or the light-emitting surface of the light-emitting element 2 is arranged so that The light emitting element 2 is arranged so as to be located outside the received light beam φ2 of the light receiving element 3. That is,

【0073】[0073]

【数12】 (Equation 12)

【0074】または、Or

【0075】[0075]

【数13】 (Equation 13)

【0076】のどちらか一方を満足するように発光素子
2および受光素子3を配置するようにすれば、受光素子
3は正反射光の大部分を受光せずに乱反射光を受光する
から、正反射光のノイズに惑わされることなく、正確に
カラートナー付着量を検出することができる。
If the light emitting element 2 and the light receiving element 3 are arranged so as to satisfy either one of the above, the light receiving element 3 does not receive most of the specularly reflected light but receives the irregularly reflected light. The amount of adhered color toner can be accurately detected without being confused by the noise of reflected light.

【0077】上記の実施例におけるトナー濃度検出装置
の具体的例を以下に示す。図16において、トナー濃度
検出装置は、直径4mmの受光面積を有する受光素子3
と、指向性φ1が20°である発光素子2とを使用し、
発光素子の発光面の中心から受光素子3の受光面の中心
までの距離が被検知面を中心に等間隔の4mmであるもの
である。すなわち、発光素子のの発光面の中心から受光
素子3の受光面の中心までの距離ρは、ρ=8mmとな
る。このトナー濃度検出装置において、発光素子2と受
光素子3の両光軸の含む平面S1の法線hに対する傾き
角ψを像担持体(被検出体)の反射面からの正反射光の
大部分が受光素子3に直接入力しない傾きは、
A specific example of the toner concentration detecting device in the above embodiment will be shown below. In FIG. 16, the toner concentration detecting device is a light receiving element 3 having a light receiving area of 4 mm in diameter.
And a light emitting element 2 having a directivity φ1 of 20 °,
The distance from the center of the light emitting surface of the light emitting element to the center of the light receiving surface of the light receiving element 3 is 4 mm, which is equidistant from the surface to be detected. That is, the distance ρ from the center of the light emitting surface of the light emitting element to the center of the light receiving surface of the light receiving element 3 is ρ = 8 mm. In this toner concentration detecting device, the inclination angle ψ with respect to the normal line h of the plane S1 including both optical axes of the light-emitting element 2 and the light-receiving element 3 is defined as a large part of specular reflection light from the reflection surface of the image carrier (detection target). Is not input to the light receiving element 3

【0078】[0078]

【数14】 [Equation 14]

【0079】でもとめられ、これに実際の数値を代入す
ると
However, if the actual numerical value is substituted for this,

【0080】[0080]

【数15】 (Equation 15)

【0081】となり、この値を、φ1+tan~1(D2/
2ρ)の式に代入すると
And this value is φ1 + tan ~ 1 (D2 /
2ρ)

【0082】[0082]

【数16】 (Equation 16)

【0083】ここでいま、発光素子2と受光素子3の両
光軸の含む平面S1の法線hに対する傾き角ψ´を、仮
Here, the inclination angle ψ'with respect to the normal line h of the plane S1 including both optical axes of the light emitting element 2 and the light receiving element 3 is temporarily

【0084】[0084]

【数17】 [Equation 17]

【0085】に設定したとすると、 その値と
上記の像担持体(被検出体)の反射面からの正反射光が
受光素子3に直接の入力しない発光素子2と受光素子3
の両光軸の含む平面S1の法線hに対する傾き角ψとを
比較すると、 ψ′≒37°>ψ=34° になり、上記の像担持体(被検出体)の反射面からの正
反射光の大部分が受光素子3に直接の入力しない発光素
子2と受光素子3の両光軸の含む平面S1の法線hに対
する傾き角ψより実際の発光素子2と受光素子3の両光
軸の含む平面S1の法線hに対する傾き角ψ´を大きく
設定しているので、正反射光のノイズに惑わされること
なく、トナー濃度が検出することができる。
If set to, the value and the light regularly reflected from the reflecting surface of the image carrier (detection object) are not directly inputted to the light receiving element 3 and the light receiving element 2 and the light receiving element 3.
Comparing with the inclination angle ψ with respect to the normal line h of the plane S1 including both optical axes, ψ′≈37 °> ψ = 34 °, which is the positive angle from the reflection surface of the image carrier (detection target). Most of the reflected light is not directly input to the light receiving element 3, and both light beams of the light emitting element 2 and the light receiving element 3 are actually obtained from the inclination angle ψ with respect to the normal line h of the plane S1 including both optical axes of the light emitting element 2 and the light receiving element 3. Since the inclination angle ψ'with respect to the normal line h of the plane S1 including the axis is set to be large, the toner density can be detected without being confused by the noise of the specular reflection light.

【0086】図17は、発光素子2の指向性が狭い場
合、具体的には、φ1=2°の場合の図13ないし15
の像担持体1の交点Pにおける法線hと発光素子2と受
光素子3の両光軸の含む平面S1のなす角ψとセンサ出
力電圧(検出光量に対応する)の関係を示す。ここでφ
2=30°となっている。曲線70は、トナーがないと
きの出力電圧の特性曲線であって、B'ABは像担持体
1の正反射が主に検知できる領域であり、C'B'及びB
Cは像担持体1の乱反射のみが検知でできている領域で
ある。曲線71は、トナーが全面に付着しているときの
特性を示す。出力電圧の特性曲線71は、角ψにほとん
ど依存しない。トナーがないときの像担持体1の乱反射
光成分も同様である。
FIG. 17 shows a case where the light emitting element 2 has a narrow directivity, specifically, FIGS. 13 to 15 when φ1 = 2 °.
The relationship between the normal line h at the intersection point P of the image carrier 1, the angle ψ formed by the plane S1 including both optical axes of the light emitting element 2 and the light receiving element 3 and the sensor output voltage (corresponding to the detected light amount) is shown. Where φ
2 = 30 °. A curve 70 is a characteristic curve of the output voltage when there is no toner, and B′AB is a region where the regular reflection of the image carrier 1 can be mainly detected, and C′B ′ and B
C is an area in which only irregular reflection of the image carrier 1 can be detected. A curve 71 shows the characteristic when the toner adheres to the entire surface. The output voltage characteristic curve 71 has little dependence on the angle ψ. The same applies to the diffused reflection light component of the image carrier 1 when there is no toner.

【0087】図17において、角度ψ=0°近傍では、
トナーの付着度合いにかかわらず、その出力電圧の差が
顕著に現れる。しかしながら、図8に示すように、角度
ψ=0°の場合は、像担持体上のトナー付着量が変化と
しても受光素子3の出力電圧の差は、少なくなってしま
う。
In FIG. 17, in the vicinity of the angle ψ = 0 °,
The output voltage difference remarkably appears regardless of the degree of toner adhesion. However, as shown in FIG. 8, when the angle ψ = 0 °, the difference in the output voltage of the light receiving element 3 becomes small even if the toner adhesion amount on the image carrier changes.

【0088】これに対して、発光素子2および受光素子
3の両光軸を含む平面を像担持体の法線に対して角度ψ
=±1°よりも大きく傾けて配置した場合、図18に示
すように像担持体上のトナーの付着量が多い領域まで充
分な感度を有する。
On the other hand, the plane including both the optical axes of the light emitting element 2 and the light receiving element 3 is angle ψ with respect to the normal line of the image carrier.
When it is arranged at an angle larger than ± 1 °, it has sufficient sensitivity up to a region where a large amount of toner adheres on the image carrier as shown in FIG.

【0089】したがって、発光素子2および受光素子3
の角度ψを±1°より大きく、本実施例では、角度ψ=
2°に傾けて配置することにより、正反射光のノイズに
惑わされることなくトナーカラーの付着量を高感度で検
出することができる。
Therefore, the light emitting element 2 and the light receiving element 3
Is larger than ± 1 °, and in this embodiment, the angle ψ =
By arranging at an angle of 2 °, the toner color adhesion amount can be detected with high sensitivity without being disturbed by noise of specular reflection light.

【0090】ここで、発光素子2と受光素子3とにおけ
る指向性の違いに対する受光素子の出力特性の違いにつ
いて説明する。
Now, the difference in the output characteristics of the light receiving element with respect to the difference in directivity between the light emitting element 2 and the light receiving element 3 will be described.

【0091】図4は受光素子3および発光素子2の指向
性が比較的広い場合、具体的には、φ1=30°,φ2
=20°の場合の発光素子2と受光素子3の両光軸の含
む平面S1の法線hの傾き角度ψの変化に対する受光素
子の出力特性を示す図であり、図7は受光素子3および
発光素子2の指向性が中位の広さの場合、具体的には、
φ1=8°,φ2=12°の場合の発光素子2と受光素
子3の両光軸の含む平面S1の法線hの傾き角度ψの変
化に対する受光素子の出力特性を示す図である。また、
図17は受光素子3または発光素子2の指向性が狭い場
合、具体的には、φ1=2°の場合の発光素子2と受光
素子3の両光軸の含む平面S1の法線hの傾き角度ψの
変化に対する受光素子の出力特性を示す図である。
FIG. 4 shows that when the directivity of the light receiving element 3 and the light emitting element 2 is relatively wide, specifically, φ1 = 30 °, φ2.
FIG. 7 is a diagram showing the output characteristics of the light receiving element with respect to changes in the inclination angle ψ of the normal line h of the plane S1 including both optical axes of the light emitting element 2 and the light receiving element 3 in the case of 20 °, and FIG. When the light emitting element 2 has a medium directivity, specifically,
FIG. 7 is a diagram showing output characteristics of a light receiving element with respect to changes in an inclination angle ψ of a normal line h of a plane S1 including both optical axes of the light emitting element 2 and the light receiving element 3 when φ1 = 8 ° and φ2 = 12 °. Also,
FIG. 17 shows the inclination of the normal line h of the plane S1 including both optical axes of the light emitting element 2 and the light receiving element 3 when the directivity of the light receiving element 3 or the light emitting element 2 is narrow, specifically, φ1 = 2 °. It is a figure which shows the output characteristic of a light receiving element with respect to the change of angle (psi).

【0092】[0092]

【発明の効果】以上説明したように、請求項1の発明に
よれば、発光素子と受光素子は、共に指向性を有し、且
つ前記発光素子と前記受光素子の光軸が交わる点が、像
担持体表面上、または像担持体表面の近傍にあって、前
記発光素子と前記受光素子の両光軸を含む光軸平面が、
前記交点を通過する前記担持体表面からの法線に対して
所定角度傾いた角度に、前記発光素子と前記受光素子と
が配設したので、像担持体の被検知面上に形成された乱
反射するカラートナーの反射特性光を正反射光のノイズ
をカットさせて取り込むようにすることができ、正確な
カラートナー濃度検出ができる画像形成装置を提供する
ことができる。また、本発明では、発光素子と受光素子
の両光軸の含む平面光軸平面を法線に対して傾けて配置
するという簡単な構成で濃度が検出できるので、従来の
検出装置のように検出結果を電気処理するような面倒な
機構が必要ない。
As described above, according to the invention of claim 1, the light emitting element and the light receiving element both have directivity, and the point where the optical axes of the light emitting element and the light receiving element intersect with each other, On the surface of the image carrier, or in the vicinity of the surface of the image carrier, an optical axis plane including both optical axes of the light emitting element and the light receiving element,
Since the light emitting element and the light receiving element are arranged at an angle inclined by a predetermined angle with respect to a normal line from the surface of the carrier passing through the intersection, irregular reflection formed on the surface to be detected of the image carrier. It is possible to provide the image forming apparatus capable of capturing the reflection characteristic light of the color toner by cutting the noise of the regular reflection light and accurately detecting the color toner density. Further, in the present invention, the concentration can be detected with a simple configuration in which the plane optical axis planes including both the optical axes of the light emitting element and the light receiving element are inclined with respect to the normal line, so that the concentration can be detected like a conventional detection device. There is no need for a cumbersome mechanism to process the results electronically.

【0093】請求項2の発明によれば、発光素子と受光
素子は、共に指向性を有し、且つ前記発光素子と前記受
光素子の光軸が交わる点が、前記被測定体表面上、また
は前記被測定体表面の近傍にあって、前記発光素子と前
記受光素子の両光軸を含む光軸平面が、前記交点を通過
する前記被測定体表面からの法線に対して所定角度傾い
た角度に、前記発光素子と前記受光素子とが配設してト
ナー濃度を検出したので、被測定体の検知面上に形成さ
れた乱反射するカラートナーの反射特性光を正反射光の
ノイズをカットさせて取り込むようにすることができ、
正確なカラートナー濃度検出ができる。また、本発明で
は、発光素子と受光素子の両光軸の含む平面光軸平面を
法線に対して傾けて配置するという簡単な構成で濃度が
検出できるので、従来の検出装置のように検出結果を電
気処理するような面倒な機構が必要ない。
According to the second aspect of the invention, the light emitting element and the light receiving element both have directivity, and the point where the optical axes of the light emitting element and the light receiving element intersect is on the surface of the object to be measured, or An optical axis plane including both optical axes of the light emitting element and the light receiving element in the vicinity of the surface of the object to be measured is inclined at a predetermined angle with respect to a normal line from the surface of the object to be measured passing through the intersection. Since the light emitting element and the light receiving element are arranged at an angle to detect the toner density, the reflection characteristic light of the diffusely reflected color toner formed on the detection surface of the object to be measured is cut into the noise of the specular reflection light. You can make it take in,
Accurate detection of color toner density is possible. Further, in the present invention, the concentration can be detected with a simple configuration in which the plane optical axis planes including both the optical axes of the light emitting element and the light receiving element are inclined with respect to the normal line, so that the concentration can be detected like a conventional detection device. There is no need for a cumbersome mechanism to process the results electronically.

【0094】請求項3の発明によれば、発光素子の発光
光束の広がりである指向性をφ1とし、受光素子の受光
光束の広がりである指向性をφ2とし、前記法線と前記
光軸平面とのなす角度をψとし、上記受光素子の発光面
の直径をD1とし、上記前記受光素子の受光面の直径を
D2とし、前記発光面の中心と前記受光面の中心とを結
ぶ光路長をρとしたとき、 ψ>φ1+tan~1(D2/2ρ) または、 ψ>φ2+tan~1(D1/2ρ) のいずれか一方を満足するように、前記発光素子と前記
受光素子を配設したので、像担持体の被検知面上に形成
された乱反射するカラートナーの反射特性光を正反射光
のノイズをカットさせて取り込むようにすることがで
き、正確なカラートナー濃度検出ができる。
According to the third aspect of the present invention, the directivity which is the spread of the luminous flux of the light emitting element is φ1, the directivity which is the spread of the received luminous flux of the light receiving element is φ2, and the normal line and the optical axis plane are set. Is defined as ψ, the diameter of the light emitting surface of the light receiving element is D1, the diameter of the light receiving surface of the light receiving element is D2, and the optical path length connecting the center of the light emitting surface and the center of the light receiving surface is When ρ, the light emitting element and the light receiving element are arranged so that either ψ> φ1 + tan ~ 1 (D2 / 2ρ) or ψ> φ2 + tan ~ 1 (D1 / 2ρ) is satisfied. The reflection characteristic light of the color toner that is diffusely reflected and formed on the surface to be detected of the image carrier can be taken in by cutting the noise of the specular reflection light, and the color toner density can be accurately detected.

【0095】請求項4の発明によれば、前記発光素子の
発光光束の広がりである指向性をφ1とし、上記受光素
子の受光光束の広がりである指向性をφ2とし、前記法
線と前記光軸平面とのなす角度をψとし、上記受光素子
の発光面の直径をD1とし、上記前記受光素子の受光面
の直径をD2とし、前記発光面の中心と前記受光面の中
心とを結ぶ光路長をρとしたとき、 ψ>φ1+tan~1(D2/2ρ) または、 ψ>φ2+tan~1(D1/2ρ) のいずれか一方を満足するように、前記発光素子と前記
受光素子を配設し他ので、被測定体の被検知面上に形成
された乱反射するカラートナーの反射特性光を正反射光
のノイズをカットさせて取り込むようにすることがで
き、正確なカラートナー濃度検出ができる。
According to the fourth aspect of the invention, the directivity which is the spread of the luminous flux of the light emitting element is φ1, the directivity which is the spread of the received luminous flux of the light receiving element is φ2, and the normal line and the light An angle formed with the axial plane is ψ, a diameter of a light emitting surface of the light receiving element is D1, a diameter of a light receiving surface of the light receiving element is D2, and an optical path connecting a center of the light emitting surface and a center of the light receiving surface. When the length is ρ, the light emitting element and the light receiving element are arranged so that either ψ> φ1 + tan ~ 1 (D2 / 2ρ) or ψ> φ2 + tan ~ 1 (D1 / 2ρ) is satisfied. In addition, it is possible to cut the noise of the specular reflection light into the reflection characteristic light of the color toner that is diffusely reflected and is formed on the surface to be detected of the object to be measured, and to accurately detect the color toner concentration.

【0096】請求項5の発明によれば、光素子と受光素
子の両光軸が同一平面内に含まれるように前記発光素子
と前記受光素子を支持部材でユニット化し、前記発光素
子または受光素子の少なくとも一方の前方に集光光学素
子を設けたので、発射光または反射光を集光させて検出
に使用させられので検出精度を向上させることができ
る。
According to the invention of claim 5, the light emitting element and the light receiving element are unitized by a supporting member so that both optical axes of the optical element and the light receiving element are included in the same plane, and the light emitting element or the light receiving element is united. Since the condensing optical element is provided in front of at least one of the above, the emitted light or the reflected light is condensed and used for detection, so that the detection accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る実施例のカラー画像形成装置を
示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a color image forming apparatus of an embodiment according to the present invention.

【図2】第1実施例のカラー濃度検出装置を構成する発
光素子と受光素子を像担持体の正面より見た構成図であ
る。
FIG. 2 is a configuration diagram of a light emitting element and a light receiving element that constitute the color density detection device of the first embodiment as seen from the front of an image carrier.

【図3】図2をA方向から発光素子2と受光素子3を見
た状態のカラー濃度検出装置の構成図である。
FIG. 3 is a configuration diagram of a color density detection device in a state where the light emitting element 2 and the light receiving element 3 are viewed from the direction A in FIG.

【図4】受光素子および発光素子の指向性が比較的広い
場合の発光素子と受光素子の両光軸の含む平面の法線の
傾き角度の変化に対する像担持体上のトナー付着量と受
光素子からの出力電圧の関係を示す特性線図である。
FIG. 4 is a diagram illustrating a case where the light receiving element and the light emitting element have a relatively wide directivity, the amount of toner adhered to the image carrier and the light receiving element with respect to a change in an inclination angle of a normal line of a plane including both optical axes of the light emitting element and the light receiving element. It is a characteristic diagram which shows the relationship of the output voltage from.

【図5】第2実施例に基づく実施例の発光素子と受光素
子を示す構成図である。
FIG. 5 is a configuration diagram showing a light emitting element and a light receiving element of an example based on the second example.

【図6】図5をA方向から見たカラー濃度検出装置を示
す構成図である。
FIG. 6 is a configuration diagram showing a color density detection device when FIG. 5 is viewed from the direction A.

【図7】受光素子および発光素子の指向性が中位の広さ
の場合の発光素子と受光素子の両光軸の含む平面の法線
の傾き角度の変化に対する像担持体上のトナー付着量と
受光素子からの出力電圧の関係を示す特性線図である。
FIG. 7 shows the amount of toner adhering to the image carrier with respect to the change in the inclination angle of the normal line of the plane including both the optical axes of the light emitting element and the light receiving element when the directivity of the light receiving element and the light emitting element is medium. FIG. 4 is a characteristic diagram showing the relationship between the output voltage from the light receiving element and the output voltage.

【図8】像担持体上のトナー付着量と受光素子からの出
力電圧の関係を示す特性線図である。
FIG. 8 is a characteristic diagram showing the relationship between the toner adhesion amount on the image carrier and the output voltage from the light receiving element.

【図9】発光素子と受光素子の両光軸の含む平面を法線
に対して角度ψ傾けて配置したときの像担持体上のトナ
ー付着量と受光素子からの出力電圧の関係を示す特性線
図であるである。
FIG. 9 is a characteristic showing the relationship between the toner adhesion amount on the image carrier and the output voltage from the light receiving element when the planes including both the optical axes of the light emitting element and the light receiving element are arranged at an angle ψ with respect to the normal line. It is a diagram.

【図10】第3実施例に基づく実施例の発光素子と受光
素子を示す構成図である。
FIG. 10 is a configuration diagram showing a light emitting element and a light receiving element of an example based on the third example.

【図11】第3実施例に基づく実施例の発光素子と受光
素子の両光軸の含む平面を法線に対して角度傾けて配置
した状態のトナー濃度検出装置の構成図である。
FIG. 11 is a configuration diagram of a toner concentration detecting device in a state in which planes including both optical axes of a light emitting element and a light receiving element of an example based on the third example are arranged with an inclination with respect to a normal line.

【図12】発光素子および受光素子を像担持体の法線に
対して、両素子とも傾けて配置している状態を像担持体
の潜像形成面を基準に発光素子と受光素子とを相対象の
位置に仮想して配置して、前記像担持体の位置をずらし
た状態を説明する発光素子および受光素子の構成図であ
る。
FIG. 12 shows a state in which a light emitting element and a light receiving element are arranged so as to be inclined with respect to a normal line of an image carrier, and the light emitting element and the light receiving element are matched with each other with reference to the latent image forming surface of the image carrier. FIG. 3 is a configuration diagram of a light emitting element and a light receiving element, which is virtually arranged at a target position and illustrates a state in which the position of the image carrier is displaced.

【図13】第4実施例に基づく発光素子と受光素子とを
支持部材で一体化した受発光素子ユニットの一例を示す
側面図である。
FIG. 13 is a side view showing an example of a light emitting / receiving element unit in which a light emitting element and a light receiving element according to the fourth embodiment are integrated by a supporting member.

【図14】第4実施例に基づく実施例の発光素子および
受光素子を像担持体の法線に対して、両素子とも傾けて
配置している状態を像担持体の潜像形成面を基準に発光
素子と受光素子とを相対象の位置に仮想して配置し、発
光素子を基準に傾き具合を説明する説明構成図である。
FIG. 14 is a state in which a light emitting element and a light receiving element of an example based on the fourth example are arranged so as to be inclined with respect to a normal line of the image carrier, with reference to the latent image forming surface of the image carrier. FIG. 3 is an explanatory configuration diagram for explaining a degree of inclination with a light emitting element and a light receiving element virtually arranged at positions of phase symmetry, and the light emitting element as a reference.

【図15】第4実施例に基づく実施例の発光素子および
受光素子を像担持体の法線に対して、両素子とも傾けて
配置している状態を像担持体の潜像形成面を基準に発光
素子と受光素子とを相対象の位置に仮想して配置し、受
光素子を基準に傾き具合を説明する説明構成図である。
FIG. 15 is a state in which the light emitting element and the light receiving element of the embodiment based on the fourth embodiment are arranged so as to be inclined with respect to the normal line of the image carrier, with reference to the latent image forming surface of the image carrier. FIG. 7 is an explanatory configuration diagram for explaining a degree of inclination with a light emitting element and a light receiving element virtually arranged at positions of phase symmetry, and the light receiving element as a reference.

【図16】第4実施例に基づく実施例の発光素子および
受光素子を具体的な数値を当てはめて説明した説明構成
図である。
FIG. 16 is an explanatory configuration diagram explaining a light emitting element and a light receiving element of an example based on the fourth example by applying specific numerical values.

【図17】指向性の狭い発光素子および受光素子を使用
した状態の濃度検知センサの像担持体表面に対する傾き
角とセンサ出力電圧の関係を示す特性曲線である。
FIG. 17 is a characteristic curve showing the relationship between the inclination angle of the density detection sensor with respect to the surface of the image carrier and the sensor output voltage when a light emitting element and a light receiving element having narrow directivity are used.

【図18】発光素子と受光素子の両光軸の含む平面を法
線に対して角度ψ傾けて配置したときの像担持体上のト
ナー付着量と受光素子からの出力電圧の関係を示す特性
線図であるである。
FIG. 18 is a characteristic showing the relationship between the toner adhesion amount on the image carrier and the output voltage from the light receiving element when the planes including both the optical axes of the light emitting element and the light receiving element are arranged at an angle ψ with respect to the normal line. It is a diagram.

【図19】従来の受光素子の出力電圧と像担持体上のト
ナー付着量との関係を示す特性線図である。
FIG. 19 is a characteristic diagram showing a relationship between an output voltage of a conventional light receiving element and a toner adhesion amount on an image carrier.

【符号の説明】[Explanation of symbols]

1 感光体ドラム 4C 転写ベルト 62 フレネルレンズ φ1 発光素子の発光光束の広がりである指向性 φ2 受光素子の受光光束の広がりである指向
性 d 受発光素子の受発光面の直径 D1 受光素子の発光面の直径 D2 前記受光素子の受光面の直径 ψ 法線と前記光軸平面とのなす角度 ρ 発光面の中心と前記受光面の中心とを結ぶ
光路長
1 Photoconductor drum 4C Transfer belt 62 Fresnel lens φ1 Directivity that is the spread of the luminous flux of the light emitting element φ2 Directivity that is the spread of the received luminous flux of the light receiving element d Diameter of the light receiving and emitting surface of the light receiving and emitting element D1 Light emitting surface of the light receiving element Diameter D2 diameter of the light receiving surface of the light receiving element ψ angle between the normal line and the optical axis plane ρ optical path length connecting the center of the light emitting surface and the center of the light receiving surface

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】像担持体上に形成されたトナーパターン像
に発光素子の光を照射し、その反射光を受光素子で検出
した結果によって作像条件を制御するトナー濃度検出装
置を具備する画像形成装置において、 前記発光素子と前記受光素子は、共に指向性を有し、且
つ前記発光素子と前記受光素子の光軸が交わる点が、前
記像担持体表面上、または前記担持体表面の近傍にあっ
て、前記発光素子と前記受光素子の両光軸を含む光軸平
面が、前記交点を通過する前記担持体表面からの法線に
対して所定角度傾いた角度に、前記発光素子と前記受光
素子とが配設されていることを特徴とする画像形成装
置。
1. An image provided with a toner density detecting device for irradiating light of a light emitting element on a toner pattern image formed on an image carrier and detecting the reflected light by a light receiving element to control an image forming condition. In the forming apparatus, the light emitting element and the light receiving element both have directivity, and the point where the optical axes of the light emitting element and the light receiving element intersect is on the surface of the image carrier or in the vicinity of the surface of the carrier. Where the optical axis plane including both optical axes of the light emitting element and the light receiving element is inclined at a predetermined angle with respect to a normal line from the surface of the carrier passing through the intersection, An image forming apparatus comprising: a light receiving element.
【請求項2】被測定体上に形成されたトナーパターン像
に発光素子の光を照射し、その反射光を受光素子で検出
するトナー濃度検出装置において、 前記発光素子と前記受光素子は、共に指向性を有し、且
つ前記発光素子と前記受光素子の光軸が交わる点が、前
記被測定体表面上、または前記担持体表面の近傍にあっ
て、前記発光素子と前記受光素子の両光軸を含む光軸平
面が、前記交点を通過する前記被測定体表面からの法線
に対して所定角度傾いた角度に、前記発光素子と前記受
光素子とが配設されていることを特徴とするトナー濃度
検出装置。
2. A toner concentration detecting device for irradiating a toner pattern image formed on an object to be measured with light from a light emitting element and detecting the reflected light with a light receiving element, wherein both the light emitting element and the light receiving element are Both the light emitting element and the light receiving element have directivity, and the point where the optical axes of the light emitting element and the light receiving element intersect is on the surface of the object to be measured or in the vicinity of the surface of the carrier. An optical axis plane including an axis is characterized in that the light emitting element and the light receiving element are arranged at an angle inclined by a predetermined angle with respect to a normal line from the surface of the measured object passing through the intersection. Toner concentration detecting device.
【請求項3】前記発光素子の発光光束の広がりである指
向性をφ1とし、上記受光素子の受光光束の広がりであ
る指向性をφ2とし、前記法線と前記光軸平面とのなす
角度をψとし、上記受光素子の発光面の直径をD1と
し、上記前記受光素子の受光面の直径をD2とし、前記
発光面の中心と前記受光面の中心とを結ぶ光路長をρと
したとき、 ψ>φ1+tan~1(D2/2ρ) または、 ψ>φ2+tan~1(D1/2ρ) のいずれか一方を満足するように、前記発光素子と前記
受光素子を配設してなることを特徴とする請求項1記載
の画像形成装置。
3. The directivity which is the spread of the luminous flux of the light emitting element is φ1, the directivity which is the spread of the received luminous flux of the light receiving element is φ2, and the angle formed by the normal and the plane of the optical axis is set. ψ, the diameter of the light emitting surface of the light receiving element is D1, the diameter of the light receiving surface of the light receiving element is D2, and the optical path length connecting the center of the light emitting surface and the center of the light receiving surface is ρ, The light emitting element and the light receiving element are arranged so as to satisfy either ψ> φ1 + tan ~ 1 (D2 / 2ρ) or ψ> φ2 + tan ~ 1 (D1 / 2ρ). The image forming apparatus according to claim 1.
【請求項4】前記発光素子の発光光束の広がりである指
向性をφ1とし、上記受光素子の受光光束の広がりであ
る指向性をφ2とし、前記法線と前記光軸平面とのなす
角度をψとし、上記受光素子の発光面の直径をD1と
し、上記前記受光素子の受光面の直径をD2とし、前記
発光面の中心と前記受光面の中心とを結ぶ光路長をρと
したとき、 ψ>φ1+tan~1(D2/2ρ) または、 ψ>φ2+tan~1(D1/2ρ) のいずれか一方を満足するように、前記発光素子と前記
受光素子を配設してなることを特徴とする請求項2記載
のトナー濃度検出装置。
4. The directivity which is the spread of the luminous flux of the light emitting element is φ1, the directivity which is the spread of the received luminous flux of the light receiving element is φ2, and the angle between the normal and the plane of the optical axis is set. ψ, the diameter of the light emitting surface of the light receiving element is D1, the diameter of the light receiving surface of the light receiving element is D2, and the optical path length connecting the center of the light emitting surface and the center of the light receiving surface is ρ, The light emitting element and the light receiving element are arranged so as to satisfy either ψ> φ1 + tan ~ 1 (D2 / 2ρ) or ψ> φ2 + tan ~ 1 (D1 / 2ρ). The toner concentration detecting device according to claim 2.
【請求項5】前記発光素子と前記受光素子の両光軸が同
一平面内に含まれるように前記発光素子と前記受光素子
を支持部材でユニット化し、前記発光素子または受光素
子の少なくとも一方の前方に集光光学素子を設けたこと
を特徴とする請求項1、2、3または4記載の画像形成
装置。
5. The light emitting element and the light receiving element are unitized by a supporting member so that both optical axes of the light emitting element and the light receiving element are included in the same plane, and at least one of the light emitting element and the light receiving element is provided in front of the light emitting element and the light receiving element. The image forming apparatus according to claim 1, 2, 3, or 4, wherein a condensing optical element is provided in the.
JP7342647A 1995-05-12 1995-12-28 Toner concentration detector and image forming device provided with the same Pending JPH09185191A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7342647A JPH09185191A (en) 1995-12-28 1995-12-28 Toner concentration detector and image forming device provided with the same
US08/584,443 US5630195A (en) 1995-05-12 1996-01-11 Color toner density sensor and image forming apparatus using the same
GB9600665A GB2300729B (en) 1995-05-12 1996-01-12 Color toner density sensor and image forming apparatus using the same
US08/815,733 US5761570A (en) 1995-05-12 1997-03-12 Color toner density sensor and image forming apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7342647A JPH09185191A (en) 1995-12-28 1995-12-28 Toner concentration detector and image forming device provided with the same

Publications (1)

Publication Number Publication Date
JPH09185191A true JPH09185191A (en) 1997-07-15

Family

ID=18355402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7342647A Pending JPH09185191A (en) 1995-05-12 1995-12-28 Toner concentration detector and image forming device provided with the same

Country Status (1)

Country Link
JP (1) JPH09185191A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089540A (en) * 1998-09-11 2000-03-31 Matsushita Electric Ind Co Ltd Color image forming device
JP2001194851A (en) * 2000-01-11 2001-07-19 Matsushita Electric Ind Co Ltd Color image forming device
US7443535B2 (en) 2002-03-25 2008-10-28 Ricoh Company, Limited Misalignment correction pattern formation method and misalignment correction method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089540A (en) * 1998-09-11 2000-03-31 Matsushita Electric Ind Co Ltd Color image forming device
JP2001194851A (en) * 2000-01-11 2001-07-19 Matsushita Electric Ind Co Ltd Color image forming device
US7443535B2 (en) 2002-03-25 2008-10-28 Ricoh Company, Limited Misalignment correction pattern formation method and misalignment correction method
US8279491B2 (en) 2002-03-25 2012-10-02 Ricoh Company, Limited Color image formation apparatus for forming a reference pattern with a plurality of lines having a black color as reference color and for correcting misalignment with respect to the reference pattern

Similar Documents

Publication Publication Date Title
US5630195A (en) Color toner density sensor and image forming apparatus using the same
US7027139B2 (en) Photosensor apparatus and image forming apparatus
JP3027161B2 (en) Image density detecting device in image forming apparatus
JPH11258872A (en) Electrophotographic device
JP2000250304A (en) Photosensor device of image forming device
KR20000047934A (en) Developing device and image forming apparatus
JP4841389B2 (en) Image forming apparatus
JPH0882599A (en) Image forming apparatus and toner concentration detection device used therein
JP2010190685A (en) Reflected light intensity detecting sensor and image forming apparatus employing the same
JPH04149572A (en) Image forming device
JP3254244B2 (en) Image forming device
JPH09185191A (en) Toner concentration detector and image forming device provided with the same
JPH08327331A (en) Apparatus for measuring adhering amount of toner and apparatus for controlling density of image
JPH10288880A (en) Image forming device
US6381421B1 (en) Image forming apparatus having improved developer filling capability
JP3951517B2 (en) Image forming apparatus
JP2004004919A (en) Image forming device and toner pattern image density detecting device used for same
US20010007617A1 (en) Image forming apparatus
JPH11174753A (en) Image forming device
JPH11258901A (en) Image forming device
JP3172170B2 (en) Image forming device
JPH0830047A (en) Image forming device
JP2002040726A (en) Image forming device
JPH10319669A (en) Image forming device
JPH11326059A (en) Optical measuring method, optical measuring device and image forming device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040727