JPH0882599A - Image forming apparatus and toner concentration detection device used therein - Google Patents

Image forming apparatus and toner concentration detection device used therein

Info

Publication number
JPH0882599A
JPH0882599A JP7114480A JP11448095A JPH0882599A JP H0882599 A JPH0882599 A JP H0882599A JP 7114480 A JP7114480 A JP 7114480A JP 11448095 A JP11448095 A JP 11448095A JP H0882599 A JPH0882599 A JP H0882599A
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving element
emitting element
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7114480A
Other languages
Japanese (ja)
Inventor
Noboru Sawayama
昇 沢山
Kouta Fujimori
仰太 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP7114480A priority Critical patent/JPH0882599A/en
Priority to US08/584,443 priority patent/US5630195A/en
Priority to GB9600665A priority patent/GB2300729B/en
Publication of JPH0882599A publication Critical patent/JPH0882599A/en
Priority to US08/815,733 priority patent/US5761570A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To detect the amt. of the color toner bonded to an image carrier which high optical accuracy especially in a high bonding region wherein the surface of the image carrier is perfectly covered with toner. CONSTITUTION: The toner pattern image formed on an image carrier 1 is irradiated with the light of a light emitting element 2 and an image forming condition is controlled by the result obtained by detecting the reflected light thereof by a photodetector 3. A light emitting element 2 and the photodetector 3 have directional characteristics and the point P where the optical axes of the light emitting element 2 and the photodetector 3 cross each other at a right angle is present in the vicinity of the surface of the image carrier 1 and the optical axis plane S1 containing an optical axis with respect to the normal line (h) at the point P is inclined by an angle ϕ under a predetermined condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、カラー複写機で代表
される画像形成装置、及びこれに用いられ、発光素子と
受光素子によって像担持体上のトナー濃度を検出し、そ
れに応じて作像条件を制御するトナー濃度検出装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image forming apparatus typified by a color copying machine, and is used for the same. The toner density on an image carrier is detected by a light emitting element and a light receiving element, and an image is formed accordingly. The present invention relates to a toner density detection device that controls conditions.

【0002】[0002]

【従来の技術】一般に、トナーを含む現像剤を用いて像
担持体たる感光体の表面に形成された静電潜像を現像す
る複写機やプリンタ等の画像形成装置においては、静電
潜像の現像に伴って現像器内に収容されている現像剤中
に含まれているトナーが消費されるため、複写画像の濃
度を常時一定に保つには、現像剤の消費量に応じて新た
なトナーが補給されなければならない。そのため、従
来、現像剤中のトナー濃度と現像濃度(感光体へのトナ
ー付着量)とが一定の比例関係にあることに着目して、
複写すべき原稿を載せるための原稿台ガラスの近傍に設
けた一定の濃度を有する基準チャートを、感光体上に露
光、現像してトナー濃度検出用の基準パターン像を形成
し、その濃度を光学的に検出して、検出値に応じてトナ
ーの補給量を制御するようにしている。具体的には、基
準パターン像の所定の9設定値の濃度と、トナー補給制
御のために検出された基準パターン像の濃度とを比較
し、後者の方が高ければトナー補給を止めるか補給量を
減少させ、低ければトナー補給の再開あるいは補給量を
増加させる。
2. Description of the Related Art Generally, in an image forming apparatus such as a copying machine or a printer, which develops an electrostatic latent image formed on a surface of a photoconductor as an image carrier using a developer containing toner, the electrostatic latent image is formed. Since the toner contained in the developer accommodated in the developing device is consumed with the development of the above, in order to keep the density of the copy image constant at all times, a new toner is added depending on the consumption amount of the developer. Toner must be replenished. Therefore, conventionally, paying attention to the fact that the toner concentration in the developer and the development concentration (toner adhesion amount to the photoconductor) have a fixed proportional relationship,
A reference chart having a certain density provided near the original glass for placing an original to be copied is exposed and developed on the photoconductor to form a reference pattern image for toner density detection, and the density is optically measured. The amount of replenishment of toner is controlled according to the detected value. Specifically, the density of the predetermined 9 set values of the reference pattern image is compared with the density of the reference pattern image detected for toner replenishment control. If the latter is higher, the toner replenishment is stopped or the replenishment amount is increased. If it is low, the toner supply is restarted or the supply amount is increased.

【0003】一方、近年においては、赤、青等のモノカ
ラーの複写器の開発が進められ、この種の複写機では、
黒トナーの現像器とカラートナーの現像器とを任意に交
換する方式、あるいは両現像器を併設してその作動を任
意に切り替え制御する方式が採用されている。従来、黒
トナーの複写機において使用されている基準パターン像
の濃度を検出する光学手段は、発光素子と受光素子とか
らなり、受光素子が発光素子からの正反射光を検出する
ように構成され、受発光光束の各光軸を含む光軸平面は
像担持体の法線を含む平面と一致しいる。しかし、カラ
ートナーでの現像に際しては、カラートナーは乱反射を
生じるため、像担持体としての感光体とカラートナーと
の反射率にほとんど差がなく、図13に示すように、破
線で示すカラートナー(実線は黒トナー)は、トナー濃
度と受光素子出力(正反射光量)との間で相関関係を得
ることができず、カラートナーによる基準パターン像の
濃度を検出することは不可能である。
On the other hand, in recent years, the development of mono-color copying machines for red, blue, etc. has been promoted.
A system in which a developing device for black toner and a developing device for color toner are arbitrarily replaced, or a system in which both developing devices are provided side by side and their operations are arbitrarily switched and controlled is adopted. Conventionally, an optical means for detecting the density of a reference pattern image used in a black toner copying machine is composed of a light emitting element and a light receiving element, and the light receiving element is configured to detect specularly reflected light from the light emitting element. The optical axis plane including the optical axes of the received and emitted luminous fluxes coincides with the plane including the normal line of the image carrier. However, during development with color toner, since the color toner causes diffuse reflection, there is almost no difference in the reflectance between the photoconductor as the image carrier and the color toner, and the color toner indicated by the broken line in FIG. The solid line (black toner) cannot obtain a correlation between the toner density and the light receiving element output (amount of regular reflection light), and it is impossible to detect the density of the reference pattern image by the color toner.

【0004】その対策として、特開昭61−20947
0号公報には、発光素子又は受光素子の少なくとも一方
を、現像に黒トナーを使用している場合には受光素子が
正反射光を受光するように、そして現像にカラートナー
を使用している場合には、受光素子が乱反射光を受光す
るように上記光軸平面内で回転させて切り替え可能とし
たトナー濃度検出装置が開示されている。また、特開昭
62−164066号公報には、像担持体上でのトナー
付着量に応じて2次曲線状の赤外線フォトセンサ出力特
性を有するモノカラートナーについて、画像濃度が増す
時に、センサ出力も増すようなカラー特性領域で制御
し、センサ出力が一定値を上まわるときはトナーの補給
を制限する方法が、また、特開昭62−209476号
公報には、受光素子を2個用い、一方を正反射光、他方
を乱反射光を受光するように配置し、両受光素子の出力
信号の差に対応して現像装置のトナー供給量を制御する
方法がそれぞれ開示されている。
As a countermeasure against this, Japanese Patent Laid-Open No. 61-20947
In JP-A-0, at least one of a light emitting element and a light receiving element is used so that the light receiving element receives specularly reflected light when black toner is used for development, and color toner is used for development. In this case, there is disclosed a toner concentration detecting device in which the light receiving element can rotate and switch in the optical axis plane so as to receive irregularly reflected light. Further, Japanese Patent Laid-Open No. 62-164066 discloses a monocolor toner having an infrared photosensor output characteristic of a quadratic curve in accordance with the amount of toner adhering on the image carrier, when the image density increases, the sensor output A method of controlling in a color characteristic region that increases even more, and limiting the replenishment of toner when the sensor output exceeds a certain value, and Japanese Patent Laid-Open No. Sho 62-209476 uses two light receiving elements, There is disclosed a method of arranging one to receive specularly reflected light and the other to receive irregularly reflected light, and controlling the toner supply amount of the developing device in accordance with the difference between the output signals of both light receiving elements.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来のカラー濃度検出方法または装置においては、何れに
しても、発光素子と受光素子の各光軸を含む光軸平面
は、像担持体の法線を含む構成となっており、この光軸
平面内で各素子の角度を変える方法を採っているため、
狭いスペース内に機構を組み込まなければならない点
や、構成が複雑になる等の問題点があり、さらなる簡単
な構成が望まれるところであった。そこで、この発明の
目的は、上述した従来の問題点を解消して、像担持体上
に付着したカラートナーの量(面密度)を光学的に高い
精度で検出することができる、特に、トナーが像担持体
表面を完全被覆するような高付着領域で高精度に検出で
きる簡単な構成のカラー濃度検出装置を提供することに
ある。
However, in any of the above-mentioned conventional color density detecting methods or devices, the optical axis plane including the optical axes of the light emitting element and the light receiving element is the normal line of the image carrier. Since it is configured to include, and adopts the method of changing the angle of each element in this optical axis plane,
Since there is a problem that the mechanism has to be incorporated in a narrow space and the structure is complicated, a simpler structure has been desired. Therefore, an object of the present invention is to solve the above-mentioned conventional problems and to detect the amount (area density) of color toner adhered on the image carrier with high optical accuracy. It is an object of the present invention to provide a color density detecting device having a simple structure capable of detecting with high accuracy in a high adhesion region such that the surface of the image carrier is completely covered.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、画像
形成装置において、像担持体上に形成されたトナーパタ
ーン像に発光素子の光を照射し、その反射光を受光素子
で検出した結果によって作像条件を制御するトナー濃度
検出装置において、前記発光素子と前記受光素子は、共
に指向特性を有し、且つ、発光素子と受光素子の光軸が
交わる点が、略前記像担持体表面上にあり、この交点に
おける法線と前記光軸を含む光軸平面の成す角ψが、1
5°≦ψ<90°の条件を満たすカラー濃度検出装置を
具備する。
According to a first aspect of the present invention, in an image forming apparatus, a toner pattern image formed on an image carrier is irradiated with light from a light emitting element, and the reflected light is detected by a light receiving element. In the toner concentration detecting device for controlling the image forming condition based on the result, the light emitting element and the light receiving element both have directional characteristics, and the point where the optical axes of the light emitting element and the light receiving element intersect is substantially the image carrier. The angle ψ formed on the surface and formed by the normal line at this intersection and the optical axis plane including the optical axis is 1
A color density detecting device satisfying the condition of 5 ° ≦ ψ <90 ° is provided.

【0007】請求項2の発明は、画像形成装置におい
て、像担持体上に形成されたトナーパターン像に発光素
子の光を照射し、その反射光を受光素子で検出した結果
によって作像条件を制御するトナー濃度検出装置におい
て、前記発光素子と前記受光素子は、共に比較的狭い指
向特性を有していて、その広がり角は各々φ1、φ2で
あり、且つ、発光素子と受光素子の光軸が交わる点が、
略前記像担持体表面上にあって、この交点における法線
と前記光軸を含む光軸平面の成す角ψは、ψ>(φ1+
φ2)/2の条件を満たすカラー濃度検出装置を具備す
る。
According to a second aspect of the invention, in the image forming apparatus, the toner pattern image formed on the image carrier is irradiated with the light of the light emitting element, and the reflected light is detected by the light receiving element to determine the image forming condition. In the toner concentration detecting device to be controlled, both the light emitting element and the light receiving element have relatively narrow directional characteristics, and their divergence angles are φ1 and φ2, respectively, and the optical axes of the light emitting element and the light receiving element. The point where
The angle ψ formed by the normal line at this intersection and the optical axis plane including the optical axis on the surface of the image carrier is ψ> (φ1 +
A color density detecting device satisfying the condition of φ2) / 2 is provided.

【0008】請求項3の発明は、画像形成装置におい
て、像担持体上に形成されたトナーパターン像に発光素
子の光を照射し、その反射光を受光素子で検出した結果
によって作像条件を制御するトナー濃度検出装置におい
て、前記発光素子と前記受光素子は、共に比較的狭い指
向特性を有していて、その広がり角は各々φ1、φ2で
あり、且つ、発光素子と受光素子の光軸が交わる点が、
略前記像担持体表面の近傍にあって、像担持体の回転軸
を含む平面と前記光軸を含む光軸平面の成す角ψは、ψ
>(φ1+φ2)/2の条件を満たすカラー濃度検出装
置を具備する。
According to a third aspect of the invention, in the image forming apparatus, the toner pattern image formed on the image carrier is irradiated with the light of the light emitting element, and the reflected light is detected by the light receiving element to determine the image forming condition. In the toner concentration detecting device to be controlled, both the light emitting element and the light receiving element have relatively narrow directional characteristics, and their divergence angles are φ1 and φ2, respectively, and the optical axes of the light emitting element and the light receiving element. The point where
The angle ψ formed by the plane including the rotation axis of the image carrier and the optical axis plane including the optical axis in the vicinity of the surface of the image carrier is ψ.
A color density detecting device satisfying the condition of> (φ1 + φ2) / 2 is provided.

【0009】請求項4の発明は、画像形成装置におい
て、像担持体上に形成されたトナーパターン像に発光素
子の光を照射し、その反射光を受光素子で検出した結果
によって作像条件を制御するトナー濃度検出装置におい
て、前記発光素子と前記受光素子は、共に比較的狭い指
向特性を有していて、その広がり角は各々φ1、φ2で
あり、且つ、発光素子と受光素子の光軸が交わる点が、
略前記像担持体表面の近傍にあって、像担持体の回転軸
に直交する平面と前記光軸を含む光軸平面の成す角ψ
は、ψ>(φ1+φ2)/2の条件を満たすカラー濃度
検出装置を具備する。
According to a fourth aspect of the invention, in the image forming apparatus, the toner pattern image formed on the image carrier is irradiated with the light of the light emitting element, and the reflected light is detected by the light receiving element to determine the image forming condition. In the toner concentration detecting device to be controlled, both the light emitting element and the light receiving element have relatively narrow directional characteristics, and their divergence angles are φ1 and φ2, respectively, and the optical axes of the light emitting element and the light receiving element. The point where
An angle ψ formed by a plane orthogonal to the rotation axis of the image carrier and an optical axis plane including the optical axis in the vicinity of the surface of the image carrier.
Is equipped with a color density detection device that satisfies the condition of ψ> (φ1 + φ2) / 2.

【0010】請求項5の発明は、画像形成装置のトナー
濃度検出装置であって、像担持体上に形成された着色粒
子パターンに発光素子の光を照射し、その反射光を受光
素子で検出した結果によって作像条件を制御するトナー
濃度検出装置において、上記発光素子の発光光束の広が
りである指向性をφ1、上記受光素子の受光光束の広が
りである指向性をφ2とし、上記発光光束と上記受光光
束の各光軸が略同一平面としての光軸平面S1上に在
り、かつ、上記発光素子と受光素子の光軸が互いに交わ
る交点Pが、上記像担持体表面上またはその近傍に在
り、交点Pにおける上記像担持体の面と垂直をなす面と
光軸平面S1のなす角をψとし、上記の受発光光束の広
がりの広い方の素子の受発光面の直径をd、上記発光素
子からの光が上記像担持体で反射され上記受光素子に到
るまでの最短の光路長をρとしたとき 、 ψ≧min(φ1,φ2)/2, 但し、min(φ1,φ2)はφ1,φ2の小さい方を表
わす。
According to a fifth aspect of the present invention, there is provided a toner density detecting device for an image forming apparatus, wherein a colored particle pattern formed on an image carrier is irradiated with light from a light emitting element and the reflected light is detected by a light receiving element. In the toner density detecting device for controlling the image forming condition based on the result, the directivity which is the spread of the luminous flux of the light emitting element is φ1, the directivity which is the spread of the luminous flux of the light receiving element is φ2, and the luminous flux The optical axes of the received light fluxes are on the optical axis plane S1 that is substantially the same plane, and the intersection P where the optical axes of the light emitting element and the light receiving element intersect each other is on the surface of the image carrier or in the vicinity thereof. The angle formed by the optical axis plane S1 and the surface perpendicular to the surface of the image carrier at the intersection P is ψ, and the diameter of the light receiving / emitting surface of the element having the wider spread of the light receiving / emitting light flux is d The light from the element carries the image In when the optical path length of the shortest up to the reflected said light receiving element ρ, ψ ≧ min (φ1, φ2) / 2, where, min (φ1, φ2) is .phi.1, represent smaller .phi.2.

【0011】かつ、 ψ≧ tan~ 1(d/2ρ)/2 を満たすように構成される。[0011] and configured so as to satisfy ψ ≧ tan ~ 1 (d / 2ρ) / 2.

【0012】請求項6の発明は、画像形成装置のトナー
濃度検出装置であって、円筒状の像担持体上に形成され
たトナーパターンに発光素子の光を照射し、その反射光
を受光素子で検出した結果によって作像条件を制御する
トナー濃度検出装置において、上記発光素子の発光光束
の広がりである指向性をφ1、上記受光素子の受光光束
の広がりである指向性をφ2とし、上記発光光束と上記
受光光束の各光軸が略同一平面としての光軸平面S1上
に在り、かつ、上記発光素子と受光素子の光軸が互いに
交わる交点Pが、上記像担持体表面上またはその近傍に
在り、前記像担持体の回転中心軸と前記点Pとを含む平
面をSa、平面S1とSaのなす角をψ、上記受発光光
束の広がりの広い方の素子の受発光面の直径をd、上記
発光素子からの光が上記像担持体で反射され上記受光素
子に到るまでの最短の光路長をρとしたとき、 ψ≧min(φ1,φ2)/2, 但し、min(φ1,φ2)はφ1,φ2の小さい方を表
わす。
According to a sixth aspect of the present invention, there is provided a toner density detecting device for an image forming apparatus, wherein a toner pattern formed on a cylindrical image carrier is irradiated with light from a light emitting element, and the reflected light is received by a light receiving element. In the toner density detecting device for controlling the image forming condition according to the result detected in step 1, the directivity which is the spread of the luminous flux of the light emitting element is φ1, the directivity which is the spread of the received luminous flux of the light receiving element is φ2, and the light emission is performed. The optical axes of the light beam and the received light beam are on the optical axis plane S1 as substantially the same plane, and the intersection point P where the optical axes of the light emitting element and the light receiving element intersect each other is on or near the surface of the image carrier. , Sa is a plane including the rotation center axis of the image carrier and the point P, ψ is an angle formed by the planes S1 and Sa, and a diameter of a light emitting / receiving surface of the element having a wider spread of the light receiving / emitting light flux. d, the light from the light emitting element Let ρ be the shortest optical path length that is reflected by the image bearing member and reaches the light receiving element. Ψ ≧ min (φ1, φ2) / 2, where min (φ1, φ2) is smaller than φ1 and φ2. Represents one.

【0013】かつ、 ψ≧ tan~ 1(d/2ρ)/2 を満たすように構成される。[0013] and configured so as to satisfy ψ ≧ tan ~ 1 (d / 2ρ) / 2.

【0014】請求項7の発明は、画像形成装置のトナー
濃度検出装置であって、円筒状の像担持体上に形成され
たトナーパターンに発光素子の光を照射し、その反射光
を受光素子で検出した結果によって作像条件を制御する
トナー濃度検出装置において、上記発光素子の発光光束
の広がりである指向性をφ1、上記受光素子の受光光束
の広がりである指向性をφ2とし、上記発光光束と上記
受光光束の各光軸が略同一平面としての光軸平面S1上
に在り、かつ、上記発光素子と受光素子の光軸が互いに
交わる交点Pが、上記像担持体表面上またはその近傍に
在り、前記像担持体の回転中心軸と直交する平面をS
t、平面S1とStとのなす角をψ、上記受発光光束の
広がりの広い方の素子の受発光面の直径をd、上記発光
素子からの光が上記像担持体で反射され上記受光素子に
到るまでの最短の光路長をρとしたとき、 ψ≧min(φ1,φ2)/2, 但し、min(φ1,φ2)はφ1,φ2の小さい方を表
わす。
According to a seventh aspect of the present invention, there is provided a toner density detecting device for an image forming apparatus, wherein a toner pattern formed on a cylindrical image carrier is irradiated with light from a light emitting element and the reflected light is received by a light receiving element. In the toner density detecting device for controlling the image forming condition according to the result detected in step 1, the directivity which is the spread of the luminous flux of the light emitting element is φ1, the directivity which is the spread of the received luminous flux of the light receiving element is φ2, and the light emission is performed. The optical axes of the light beam and the received light beam are on the optical axis plane S1 as substantially the same plane, and the intersection point P where the optical axes of the light emitting element and the light receiving element intersect each other is on or near the surface of the image carrier. And a plane perpendicular to the rotation center axis of the image carrier is S
t, the angle between the planes S1 and St is ψ, the diameter of the light receiving and emitting surface of the element having the wider spread of the light receiving and emitting light flux is d, and the light from the light emitting element is reflected by the image carrier to receive the light receiving element. Let ρ be the shortest optical path length up to, ψ ≧ min (φ1, φ2) / 2, where min (φ1, φ2) represents the smaller of φ1 and φ2.

【0015】かつ、 ψ≧ tan~ 1(d/2ρ)/2 を満たすように構成される。[0015] and configured so as to satisfy ψ ≧ tan ~ 1 (d / 2ρ) / 2.

【0016】請求項8の発明は、請求項5、6又は7記
載のトナー濃度検出装置において、発光素子と受光素子
の各光軸が一平面内に含まれるように発光素子と受光素
子とを支持部材でユニット化し、発光素子の前方に集光
光学素子を設けた構成を有する。請求項9の発明は、請
求項5、6又は7記載のトナー濃度検出装置において、
上記発光素子と受光素子の各光軸が一平面内に含まれる
ように発光素子と受光素子を支持部材でユニット化し、
受光素子の前方に集光光学素子を設けた構成を有する。
請求項10の発明は、請求項5、6、7又は8記載のト
ナー濃度検出装置において発光素子と受光素子の各光軸
が一平面内に含まれるように発光素子と受光素子を支持
部材でユニット化し、この受発光素子ユニットを像担持
体に対して回転可能に支持した構成を有する。
According to an eighth aspect of the present invention, in the toner concentration detecting device according to the fifth, sixth or seventh aspect, the light emitting element and the light receiving element are arranged so that the respective optical axes of the light emitting element and the light receiving element are included in one plane. It has a structure in which a support member is unitized and a condensing optical element is provided in front of the light emitting element. According to a ninth aspect of the present invention, in the toner concentration detecting device according to the fifth, sixth or seventh aspect,
The light emitting element and the light receiving element are unitized by a supporting member so that each optical axis of the light emitting element and the light receiving element is included in one plane,
It has a configuration in which a condensing optical element is provided in front of the light receiving element.
According to a tenth aspect of the invention, in the toner concentration detecting device according to the fifth, sixth, seventh or eighth aspect, the light emitting element and the light receiving element are supported by a supporting member so that each optical axis of the light emitting element and the light receiving element is included in one plane. The light emitting and receiving element unit is unitized and is rotatably supported with respect to the image carrier.

【0017】[0017]

【作用】請求項1の発明では、発光素子と受光素子は、
共に指向特性を有していて、発光素子と受光素子の光軸
が交わる点が、像担持体の略表面上にあり、この交点に
おける法線と前記各光軸を含む光軸平面の成す角をψと
すると、受光素子のカラートナーからの乱反射光に対す
る感度は、15°≦ψ<90°の範囲で顕著に表れる。
このため、前記光軸平面を回転させて、ψをこの範囲、
例えば30°以内に設定することにより、像担持体上に
付着したカラートナーの量が光学的に高い精度で検出さ
れる。
According to the invention of claim 1, the light emitting element and the light receiving element are
Both have directional characteristics, and the point where the optical axes of the light emitting element and the light receiving element intersect is substantially on the surface of the image carrier, and the angle formed by the normal line at this intersection and the optical axis plane including each optical axis. Is defined as ψ, the sensitivity of the light receiving element to diffused reflection light from the color toner remarkably appears in the range of 15 ° ≦ ψ <90 °.
Therefore, the optical axis plane is rotated so that ψ is in this range,
For example, by setting it within 30 °, the amount of color toner adhering to the image carrier can be detected with high optical accuracy.

【0018】請求項2の発明では、発光素子と受光素子
は、共に比較的狭い指向特性を有していて、その広がり
角は各々φ1、φ2であり、発光素子と受光素子の光軸
が交わる点が、像担持体の略表面上にあり、この交点に
おける法線と光軸平面なす角をψとすると、受光素子の
カラートナーからの乱反射光に対する感度は、ψ>(φ
1+φ2)/2の条件を満たす範囲で顕著に表れる。こ
のため、前記光軸平面を回転させて、ψをこの範囲、例
えば30°内に設定することにより、像担持体上に付着
したカラートナーの量が光学的に高い精度で検出され
る。
According to the second aspect of the invention, both the light emitting element and the light receiving element have relatively narrow directional characteristics, and the spread angles are φ1 and φ2, respectively, and the optical axes of the light emitting element and the light receiving element intersect. If the point is almost on the surface of the image carrier, and the angle formed by the normal to this intersection and the plane of the optical axis is ψ, the sensitivity of the light receiving element to diffused reflection light from the color toner is ψ> (φ
It appears remarkably in the range satisfying the condition of 1 + φ2) / 2. Therefore, by rotating the optical axis plane and setting ψ within this range, for example, 30 °, the amount of color toner adhering to the image carrier can be detected with high optical accuracy.

【0019】請求項3の発明は、発光素子と受光素子
は、共に指向特性を有していて、その広がり角は各々φ
1、φ2であり、発光素子と受光素子の光軸が交わる点
が、像担持体の略表面の近傍にあって、像担持体の回転
軸を含む平面と前記光軸を含む光軸平面のなす角をψと
すると、受光素子のカラートナーからの乱反射光に対す
る感度は、ψ>(φ1+φ2)/2の条件を満たす範囲
で顕著に表れる。このため、前記光軸平面を回転させ
て、ψをこの範囲、例えば30°内に設定することによ
り、像担持体上に付着したカラートナーの量が光学的に
高い精度で検出される。
According to a third aspect of the invention, both the light emitting element and the light receiving element have directional characteristics, and their divergence angles are φ.
1, φ2, and the point where the optical axes of the light emitting element and the light receiving element intersect is in the vicinity of the substantially surface of the image carrier, and a plane including the rotation axis of the image carrier and an optical axis plane including the optical axis. When the angle formed is ψ, the sensitivity of the light receiving element to diffused reflection light from the color toner is remarkably exhibited in the range where ψ> (φ1 + φ2) / 2 is satisfied. Therefore, by rotating the optical axis plane and setting ψ within this range, for example, 30 °, the amount of color toner adhering to the image carrier can be detected with high optical accuracy.

【0020】請求項4の発明は、前記発光素子と前記受
光素子は、共に指向特性を有していて、その広がり角は
各々φ1、φ2であり、発光素子と受光素子の光軸が交
わる点が、略前記像担持体表面の近傍にあって、像担持
体の回転軸に直交する平面と前記光軸を含む光軸平面の
成す角をψとすると、前記受光素子のカラートナーから
の乱反射光に対する感度は、ψ>(φ1+φ2)/2の
条件を満たす範囲で顕著に表れる。このため、前記光軸
平面を回転させて、ψをこの範囲内に設定(例えば30
°)することにより、像担持体上に付着したカラートナ
ーの量を光学的に高い精度で検出できる。
According to a fourth aspect of the present invention, both the light emitting element and the light receiving element have directional characteristics, and the spread angles are φ1 and φ2, respectively, and the optical axes of the light emitting element and the light receiving element intersect. Is approximately in the vicinity of the surface of the image carrier, and an angle formed by a plane orthogonal to the rotation axis of the image carrier and an optical axis plane including the optical axis is ψ, diffuse reflection from the color toner of the light receiving element The sensitivity to light is remarkably exhibited in the range where ψ> (φ1 + φ2) / 2 is satisfied. Therefore, the optical axis plane is rotated to set ψ within this range (for example, 30
By doing so, the amount of color toner adhering to the image carrier can be detected optically with high accuracy.

【0021】請求項5の発明は、発光素子の発光光束の
広がり角をφ1、受光素子の受光光束の広がり角をφ2
とし、上記発光光束と上記受光光束の各光軸が同一平面
S1上に在り、かつ、上記各光軸が互いに交わる交点
が、像担持体表近傍に在り、上記交点における像担持体
の面と垂直をなす面と平面S1のなす角をψとし、受発
光光束の広がりの広い方の素子の受発光面の直径をd、
発光素子からの光が像担持体で反射され受光素子に到る
までの最短の光路長をρとしたとき、 ψ≧min(φ1,φ2)/2, 但し、min(φ1,φ2)はφ1,φ2の小さい方を表
わす。
According to a fifth aspect of the present invention, the spread angle of the luminous flux of the light emitting element is φ1, and the spread angle of the received luminous flux of the light receiving element is φ2.
The optical axes of the emitted light beam and the received light beam are on the same plane S1, and the intersection point where the optical axes intersect with each other is near the surface of the image carrier, and the surface of the image carrier at the intersection point. The angle between the plane perpendicular to the plane S1 is ψ, the diameter of the light receiving / emitting surface of the element having the wider spread of the light receiving / emitting light flux is d,
Let ρ be the shortest optical path length until the light from the light emitting element is reflected by the image carrier to reach the light receiving element. Ψ ≧ min (φ1, φ2) / 2, where min (φ1, φ2) is φ1 , Φ2 is smaller.

【0022】かつ、 ψ≧ tan~ 1(d/2ρ)/2 を満たすように構成されているので、像担持体表面によ
る正反射光を受光することなく、像担持体上に付着した
カラートナーの量が光学的に高い精度で検出される。
Further, since it is constructed so as to satisfy ψ ≧ tan to 1 (d / 2ρ) / 2, the color toner adhered on the image carrier does not receive the specularly reflected light from the surface of the image carrier. Is detected with high optical accuracy.

【0023】請求項6の発明は、発光素子の発光光束の
広がりφ1、受光素子の受光光束の広がりをφ2とし、
発光光束と受光光束の各光軸が同一平面S1上に在り、
かつ、上記各光軸が互いに交わる交点Pが、円筒状の像
担持体表面上近傍に在り、像担持体の回転中心軸と点P
とを含む平面をSa、平面S1とSaのなす角をψ、受
発光光束の広がりの広い方の素子の受発光面の直径を
d、発光素子からの光が上記像担持体で反射され上記受
光素子に到るまでの最短の光路長をρとしたとき、 ψ≧min(φ1,φ2)/2, 但し、min(φ1,φ2)はφ1,φ2の小さい方を表
わす。
According to a sixth aspect of the invention, the spread of the luminous flux of the light emitting element is φ1, and the spread of the received luminous flux of the light receiving element is φ2.
The optical axes of the emitted light beam and the received light beam are on the same plane S1,
An intersection point P where the optical axes intersect with each other is located near the surface of the cylindrical image carrier, and the rotation center axis of the image carrier and the point P.
Sa is the plane including and the angle between the planes S1 and Sa is ψ, the diameter of the light receiving / emitting surface of the element with the wider spread of the light emitting / receiving light flux is d, and the light from the light emitting element is reflected by the image carrier. When the shortest optical path length to reach the light receiving element is ρ, ψ ≧ min (φ1, φ2) / 2, where min (φ1, φ2) represents the smaller one of φ1 and φ2.

【0024】かつ、 ψ≧ tan~ 1(d/2ρ)/2 を満たすように構成されているので、円筒状の像担持体
表面による正反射光を受光することなく、像担持体上に
付着したカラートナーの量が光学的に高い精度で検出さ
れる。
[0024] and which is configured so as to satisfy the ψ ≧ tan ~ 1 (d / 2ρ) / 2, without receiving the regular reflection light by cylindrical image bearing member surface, deposited on an image carrier The amount of the formed color toner is optically detected with high accuracy.

【0025】請求項7の発明は、発光素子の発光光束の
広がりをφ1、受光素子の受光光束の広がりをφ2と
し、発光光束と受光光束の各光軸が同一平面S1上に在
り、かつ、上記各光軸が互いに交わる交点Pが、円筒状
の像担持体表面近傍に在り、像担持体の回転中心軸と直
交する平面をSt、平面S1とStとのなす角をψ、上
記受発光光束の広がりの広い方の素子の受発光面の直径
をd、発光素子からの光が像担持体で反射され受光素子
に到るまでの最短の光路長をρとしたとき、 ψ≧min(φ1,φ2)/2, 但し、min(φ1,φ2)はφ1,φ2の小さい方を表
わす。
According to a seventh aspect of the present invention, the spread of the luminous flux of the light emitting element is φ1, the spread of the received luminous flux of the light receiving element is φ2, and the optical axes of the luminous flux and the received luminous flux are on the same plane S1, and An intersection point P where the respective optical axes intersect with each other is located near the surface of the cylindrical image carrier, the plane orthogonal to the rotation center axis of the image carrier is St, the angle formed by the planes S1 and St is ψ, and the light reception / emission is performed. When the diameter of the light receiving / emitting surface of the element with the wider spread of the light flux is d and the shortest optical path length from the light emitting element to the light receiving element after being reflected by the image carrier is ρ, ψ ≧ min ( φ1, φ2) / 2, where min (φ1, φ2) represents the smaller of φ1 and φ2.

【0026】かつ、 ψ≧ tan~ 1(d/2ρ)/2 を満たすように構成されているので、円筒状の像担持体
表面による正反射光を受光することなく、像担持体上に
付着したカラートナーの量が光学的に高い精度で検出さ
れる。
[0026] and which is configured so as to satisfy the ψ ≧ tan ~ 1 (d / 2ρ) / 2, without receiving the regular reflection light by cylindrical image bearing member surface, deposited on an image carrier The amount of the formed color toner is optically detected with high accuracy.

【0027】[0027]

【実施例】以下、この発明の実施例を図面を参照して説
明する。図1は、この発明が適用されるカラー画像形成
装置を示しており、同図において、図示しないスキャナ
部において、デジタル信号に変換された画像情報は、顕
像パターンを形成する書込みユニット22に送られる。
この書込みユニット22は、各色の画像情報を含むレー
ザ光22Y、22M、22C、22BKを記録ユニット
23Y、23M、23C、23BKに射出するものであ
り、記録ユニット23Y、23M、23C、23BKは
同一平面上に一定の間隔で配置されている。各記録ユニ
ット23Y、23M、23C、23BKは、それぞれ現
像色が異なるものの電子写真方式の同一構成を有してお
り、例えば、記録ユニット23Cは、感光体ドラム24
Cを帯電チャージャ25Cによって何れかの階調に対応
する電位で一様帯電し、書込みユニット22からのレー
ザ光22Cにより画像情報に応じた変調光を照射して感
光体ドラム4Cを露光し、これによって感光体ドラム4
Cに形成したシアン光像の静電潜像に対して、現像ユニ
ット26Cにより現像を行って顕像化する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a color image forming apparatus to which the present invention is applied. In FIG. 1, image information converted into a digital signal in a scanner unit (not shown) is sent to a writing unit 22 that forms a visible image pattern. To be
The writing unit 22 emits laser light 22Y, 22M, 22C, 22BK including image information of each color to the recording units 23Y, 23M, 23C, 23BK, and the recording units 23Y, 23M, 23C, 23BK are on the same plane. They are arranged at regular intervals on the top. Each of the recording units 23Y, 23M, 23C, and 23BK has the same electrophotographic system configuration although the developing colors are different. For example, the recording unit 23C includes the photosensitive drum 24.
C is uniformly charged by a charger 25C at a potential corresponding to any gradation, and laser light 22C from the writing unit 22 irradiates modulated light according to image information to expose the photosensitive drum 4C. By photoconductor drum 4
The electrostatic latent image of the cyan light image formed on C is developed by the developing unit 26C and visualized.

【0028】図示しない給紙部より送られた転写紙は、
レジストローラ30によりタイミングを合わせて駆動ロ
ーラ34と従動ローラ35に支張された転写ベルト1に
送り出され、図中左方向に搬送されながら、感光体ドラ
ム4BK、4C、4M、4Yによって順にトナー像が転
写された後、定着ローラ32によって定着されて排紙さ
れる。この転写ベルト1において、図2に示すように、
発光素子2と受光素子3が、同ベルト1上の所定の点P
における垂線sとその光軸2aと3aとがなす角がそれ
ぞれθ1とθ2となるように配置されている。この実施例
で用いている発光素子2と受光素子3は、共に比較的広
い指向性を有し、発光素子2の射出光の光量、又は受光
素子3の受光域の感度が1/2になる角、つまり広がり
角を各々φ1,φ2(例えば、φ1=30°、φ2=2
0°)としたとき、 (φ1+φ2)/2=25° の関係を持っている。
The transfer paper sent from the paper supply unit (not shown) is
The registration roller 30 sends the toner image to the transfer belt 1 supported by the driving roller 34 and the driven roller 35 at the same timing and the toner images in order by the photoconductor drums 4BK, 4C, 4M, and 4Y while being conveyed leftward in the drawing. After being transferred, it is fixed by the fixing roller 32 and discharged. In this transfer belt 1, as shown in FIG.
The light emitting element 2 and the light receiving element 3 have a predetermined point P on the belt 1.
Are arranged so that the angles formed by the perpendicular line s and the optical axes 2a and 3a thereof are θ 1 and θ 2 , respectively. The light emitting element 2 and the light receiving element 3 used in this embodiment both have a relatively wide directivity, and the amount of light emitted from the light emitting element 2 or the sensitivity of the light receiving area of the light receiving element 3 is halved. The angles, that is, the divergence angles are respectively φ1 and φ2 (for example, φ1 = 30 °, φ2 = 2
0 °), the relationship of (φ1 + φ2) / 2 = 25 °.

【0029】そして、図2の矢印A方向から見た図3に
示すように、点Pにおける法線hと光軸2a(3a)を
含む平面S1とが角度ψをなすように発光素子2と受光
素子3とが配置され、この実施例ではψ=30°に設定
されている。この構成において、点Pにおける法線hと
平面S1とのなす角度ψを変化させていったとき、図4
に示すように、転写ベルト1をカラートナーが完全被覆
している場合の特性線40とトナー付着がない場合の特
性線41の比較から分かるように、カラートナーは乱反
射であるため、角度ψが−10度〜10度の範囲では受
光素子3の出力電圧の変化はあまり見られないが、上記
の範囲の外側では、その変化は2つの特性線の値の差と
して最も顕著に表れている。したがって、この実施例の
ように、例えば、角度ψ=30°とすることにより、転
写ベルト1上のトナー濃度が高感度に検知される。ま
た、黒トナーを用いた場合は、正反射光であるので、角
度ψ=0°で最も感度良く検知できるため、黒トナーを
用いた場合とカラートナーを用いた場合とで、ψの値を
0°と30°とで必要に応じて切り替える構成にするこ
ともできる。
Then, as shown in FIG. 3 viewed from the direction of arrow A in FIG. 2, the light emitting element 2 and the normal line h at the point P and the plane S1 including the optical axis 2a (3a) form an angle ψ. The light receiving element 3 is arranged, and in this embodiment, ψ = 30 °. In this configuration, when the angle ψ formed by the normal line h at the point P and the plane S1 is changed,
As can be seen from the comparison between the characteristic line 40 in the case where the transfer belt 1 is completely covered with the color toner and the characteristic line 41 in the case where there is no toner adhesion, as shown in FIG. In the range of −10 degrees to 10 degrees, the output voltage of the light receiving element 3 hardly changes, but outside the above range, the change is most noticeable as a difference between the values of the two characteristic lines. Therefore, as in this embodiment, for example, by setting the angle ψ = 30 °, the toner density on the transfer belt 1 is detected with high sensitivity. In addition, when black toner is used, since it is specularly reflected light, it can be detected with the highest sensitivity at an angle ψ = 0 °. Therefore, the value of ψ can be changed between when black toner is used and when color toner is used. A configuration can be switched between 0 ° and 30 ° as required.

【0030】請求項2に基づく実施例について説明す
る。図5に示すように、発光素子2と受光素子3が、感
光体ドラム4C(図1に示す感光体ドラムBK、4C、
4M、4Yのうちの一例として用いる)上の所定の点P
における感光体ドラム4Cに対する垂線sとその光軸2
aと3aとが成す角がそれぞれθ1とθ2となるように配
置されている。この実施例で用いている発光素子2と受
光素子3は、共に比較的受発光光束の広がりの狭い、つ
まり狭い指向性を有し、発光素子2の射出光の光量、又
は受光素子3の受光域の感度が1/2になる角、すなわ
ち広がり角を各々φ1,φ2(例えば、φ1=8°、φ
2=12°)としたとき、 (φ1+φ2)/2=10° の関係を持っている。
An embodiment based on claim 2 will be described. As shown in FIG. 5, the light emitting element 2 and the light receiving element 3 are connected to the photosensitive drum 4C (photosensitive drums BK, 4C,
4M, 4Y) used as an example)
Perpendicular to the photoconductor drum 4C and its optical axis 2 at
They are arranged so that the angles formed by a and 3a are θ 1 and θ 2 , respectively. The light emitting element 2 and the light receiving element 3 used in this embodiment both have a relatively narrow spread of the light receiving and emitting light flux, that is, have a narrow directivity, and the amount of light emitted from the light emitting element 2 or the light receiving element 3 receives light. The angles at which the sensitivity of the range is halved, that is, the spread angles are φ1 and φ2 (for example, φ1 = 8 °, φ
2 = 12 °), there is a relationship of (φ1 + φ2) / 2 = 10 °.

【0031】そして、図5の矢印A方向から見た図6に
示すように、点Pにおける法線(接線に垂直な直線)h
と光軸2a(3a)を含む平面S1とが角度ψをなすよ
うに発光素子2と受光素子3とが配置され、この実施例
ではψ=30°に設定されている。この構成において、
点Pにおける法線hと平面S1とが成す角度ψを変化さ
せていったとき、図7に示すように、感光体ドラム4C
をカラートナーが完全被覆している場合の特性曲線4
2、いくらかトナー付着がある場合の特性曲線43、及
びトナー付着がない場合の特性曲線44の比較からわか
るように、カラートナーは乱反射であるため、角度ψが
0゜近傍、あるいは±30°の近傍では受光素子3の出
力電圧の変化は3つの特性曲線の値の差として顕著に表
れているが、±10°近傍では、その変化はあまり見ら
れない。角度ψ=0°の時の受光素子3の出力とトナー
濃度との関係は、図8に示すように、トナー付着量が
0.5mg/cm2以上の多い所では、カラートナーの特
性線50と黒トナーの特性線51から分かるように、受
光素子3の出力はほとんど変化せず感度を持たない。し
たがって、この実施例のように、例えば、角度ψ=30
°とすることにより、感光体ドラム4C上のトナー濃度
が感度良く検知される。
Then, as shown in FIG. 6 viewed from the direction of arrow A in FIG. 5, a normal line (a straight line perpendicular to the tangent line) h at the point P
The light emitting element 2 and the light receiving element 3 are arranged such that the angle S and the plane S1 including the optical axis 2a (3a) form an angle ψ, and in this embodiment, ψ = 30 °. In this configuration,
When the angle ψ formed by the normal line h at the point P and the plane S1 is changed, as shown in FIG. 7, the photosensitive drum 4C
Characteristic curve 4 when color toner is completely covered
2. As can be seen from the comparison between the characteristic curve 43 with some toner adhesion and the characteristic curve 44 with no toner adhesion, since the color toner is diffusely reflected, the angle ψ is close to 0 ° or ± 30 °. In the vicinity, the change in the output voltage of the light receiving element 3 is noticeable as a difference between the values of the three characteristic curves, but in the vicinity of ± 10 °, the change is hardly seen. As shown in FIG. 8, the relationship between the output of the light receiving element 3 and the toner density when the angle ψ = 0 ° is as shown in FIG. 8, where the toner adhesion amount is 0.5 mg / cm 2 or more, the characteristic line of the color toner is 50. As can be seen from the black toner characteristic line 51, the output of the light receiving element 3 hardly changes and has no sensitivity. Therefore, as in this embodiment, for example, the angle ψ = 30
By setting the angle to °, the toner density on the photoconductor drum 4C is detected with high sensitivity.

【0032】請求項3に基づく実施例について説明す
る。この実施例の構成は、請求項2の実施例と略同様で
ある。異なっている点は、図10に示すように、発光素
子2の光軸2aと受光素子3の光軸3aを含む平面S1
が、感光体ドラム4Cの回転軸を含む平面Saに対して
角度ψをなすように限定されている点である。図9に示
すように、発光素子2と受光素子3が、感光体ドラム4
C上の所定の点Pにおける垂線sとその光軸2aと3a
とがなす角がそれぞれθ1とθ2となるように配置されて
いる。この実施例に用いられている発光素子2と受光素
子3は、共に比較的狭い指向性を有し、発光素子2の射
出光の光量、又は受光素子3の受光域の感度が1/2に
なる角、つまり広がり角を各々φ1,φ2(例えば、φ
1=8°、φ2=12°)としたとき、 (φ1+φ2)/2=10° の関係を持っている。そして、図9の矢印A方向から見
た図10に示すように、感光体ドラム4Cの回転軸を含
む平面Saと光軸2a(3a)を含む平面S1とが角度
ψをなすように発光素子2と受光素子3とが配置され、
この実施例ではψ=30°に設定している。動作の説明
は、請求項2と同様であるので省略する。
An embodiment based on claim 3 will be described. The configuration of this embodiment is substantially the same as the embodiment of claim 2. As shown in FIG. 10, the difference lies in a plane S1 including the optical axis 2a of the light emitting element 2 and the optical axis 3a of the light receiving element 3.
However, it is limited to form an angle ψ with respect to the plane Sa including the rotation axis of the photoconductor drum 4C. As shown in FIG. 9, the light emitting element 2 and the light receiving element 3 are connected to the photosensitive drum 4
A perpendicular line s at a predetermined point P on C and its optical axes 2a and 3a
Are arranged so that the angles formed by and are respectively θ 1 and θ 2 . Both the light emitting element 2 and the light receiving element 3 used in this embodiment have a relatively narrow directivity, and the light amount of the emitted light of the light emitting element 2 or the sensitivity of the light receiving area of the light receiving element 3 is halved. , The divergence angle is φ1 and φ2 (for example, φ
When 1 = 8 ° and φ2 = 12 °), there is a relation of (φ1 + φ2) / 2 = 10 °. Then, as shown in FIG. 10 when viewed from the direction of arrow A in FIG. 9, the light emitting element is such that the plane Sa including the rotation axis of the photosensitive drum 4C and the plane S1 including the optical axis 2a (3a) form an angle ψ. 2 and the light receiving element 3 are arranged,
In this embodiment, ψ = 30 ° is set. The description of the operation is the same as that of claim 2 and will not be repeated.

【0033】請求項4に基づく実施例について説明す
る。この実施例の構成は、請求項2の実施例と略同様で
あるが、異なっているのは、図12に示すように、発光
素子2の光軸2aと受光素子3の光軸3aを含む平面S
1が、感光体ドラム4Cの回転軸に直交する平面Stに
対して角度ψを成すように限定し、且つ、発光素子2の
光軸2aと受光素子3の光軸3aとが交わる点P’は、
感光体ドラム1表面上の点Pに限定されず、この点Pよ
り感光体ドラム1の表面から内側にずれた位置、すなわ
ち感光体ドラム1表面の近傍に設定されている点であ
る。
An embodiment based on claim 4 will be described. The configuration of this embodiment is substantially the same as that of the embodiment of claim 2, except that it includes an optical axis 2a of the light emitting element 2 and an optical axis 3a of the light receiving element 3 as shown in FIG. Plane S
1 is limited to form an angle ψ with respect to a plane St orthogonal to the rotation axis of the photoconductor drum 4C, and a point P ′ at which the optical axis 2a of the light emitting element 2 and the optical axis 3a of the light receiving element 3 intersect. Is
The point is not limited to the point P on the surface of the photosensitive drum 1, but is a position set inward from the surface of the photosensitive drum 1 from this point P, that is, a point set near the surface of the photosensitive drum 1.

【0034】図11において、発光素子2と受光素子3
の光軸2aと3aとが交わる点P’は、感光体ドラム4
C上の法線hとの交点Pより感光体ドラム1の内側にず
れた位置にあり、この点Pを通る法線hとその光軸2a
と3aがなす角がそれぞれθ1とθ2となるように配置さ
れている。この実施例で用いている発光素子2と受光素
子3は、共に比較的狭い指向性を有し、発光素子2の射
出光の光量、又は受光素子3の受光域の感度が1/2に
なる角、つまり広がり角を各々φ1,φ2(例えば、φ
1=8°、φ2=12°)としたとき、 (φ1+φ2)/2=10° の関係を持っている。
In FIG. 11, the light emitting element 2 and the light receiving element 3
The point P ′ where the optical axes 2a and 3a of the
It is located at a position displaced from the intersection P with the normal line h on C to the inside of the photosensitive drum 1, and the normal line h passing through this point P and its optical axis 2a.
And 3a are arranged so that the angles formed by them are θ 1 and θ 2 , respectively. The light emitting element 2 and the light receiving element 3 used in this embodiment both have a relatively narrow directivity, and the amount of light emitted from the light emitting element 2 or the sensitivity of the light receiving area of the light receiving element 3 is halved. The angles, that is, the divergence angles are φ1 and φ2 (eg φ
When 1 = 8 ° and φ2 = 12 °), there is a relation of (φ1 + φ2) / 2 = 10 °.

【0035】そして、図11の矢印A方向から見た図1
2に示すように、点Pを含む感光体ドラム4Cの回転軸
に直交する平面Stと光軸2a(3a)を含む平面Sと
が角度ψを成すように発光素子2と受光素子3とが配置
され、この実施例では、例えば、ψ=30°に設定して
いる。動作の説明は請求項2と同様であるので省略す
る。この場合、光軸2aと3aとが交わる点がP’の位
置にずれているが、乱反射光を受光するので、受光素子
3の感度には問題ない。但し、正反射センサとしては使
用することができない。
FIG. 1 seen from the direction of arrow A in FIG.
As shown in FIG. 2, the light emitting element 2 and the light receiving element 3 are arranged so that the plane St including the point P and orthogonal to the rotation axis of the photosensitive drum 4C and the plane S including the optical axis 2a (3a) form an angle ψ. Are arranged, and in this embodiment, for example, ψ = 30 ° is set. The description of the operation is the same as that of claim 2, and therefore will be omitted. In this case, the point where the optical axes 2a and 3a intersect is deviated to the position P ', but since the diffusely reflected light is received, there is no problem in the sensitivity of the light receiving element 3. However, it cannot be used as a regular reflection sensor.

【0036】請求項5に基づく実施例について説明す
る。発光素子2と受光素子3は、図14に示すように、
受発光素子ユニット60の支持部材61に固定支持され
ている。発光素子2の前方には集光光学系としてのフレ
ネルレンズ62が、そして受光素子3の前方には防塵ガ
ラス63がそれぞれ配置されている。フレネルレンズ6
2は、像担持体1の表面に細く絞った光束をP点に照射
し、P点における光スポットを受光素子3が防塵ガラス
63を介して受光する。ここで、発光素子2の指向性φ
1を2°、受光素子3の指向性φ2を30°、受光素子
3の円形受光面の直径dを1.2mm、発光素子2から
の光が像担持体1上の点Pで反射され受光素子3に到る
までの最短の光路長ρを16mmとすると、 φ1<φ2 であるから、 min(φ1,φ2)/2=φ1/2=1° 但し、min(φ1,φ2)はφ1,φ2の小さい方を意
味する。であり、また、 tan~ 1(d/2ρ)/2=tan~ 1(1.2/2×16)/2 =1° である。
An embodiment based on claim 5 will be described. The light emitting element 2 and the light receiving element 3 are, as shown in FIG.
It is fixedly supported by a support member 61 of the light emitting / receiving element unit 60. A Fresnel lens 62 as a condensing optical system is arranged in front of the light emitting element 2, and a dustproof glass 63 is arranged in front of the light receiving element 3. Fresnel lens 6
In FIG. 2, the surface of the image bearing member 1 is irradiated with a light beam that is narrowed down at point P, and the light receiving element 3 receives the light spot at point P through the dustproof glass 63. Here, the directivity φ of the light emitting element 2
1 is 2 °, the directivity φ2 of the light receiving element 3 is 30 °, the diameter d of the circular light receiving surface of the light receiving element 3 is 1.2 mm, and the light from the light emitting element 2 is reflected at a point P on the image carrier 1 to be received. If the shortest optical path length ρ to reach the element 3 is 16 mm, then φ1 <φ2, so min (φ1, φ2) / 2 = φ1 / 2 = 1 ° where min (φ1, φ2) is φ1, It means the smaller φ2. , And the addition, a tan ~ 1 (d / 2ρ) / 2 = tan ~ 1 (1.2 / 2 × 16) / 2 = 1 °.

【0037】図15に、図3の像担持体1の交点Pにお
ける法線hと平面S1のなす角ψとセンサ出力電圧(検
出光量に対応する)の関係を示す。曲線70は、トナー
がないときの出力電圧の特性曲線であって、B'ABは
像担持体1の正反射が主に検知できる領域であり、C'
B'及びBCは像担持体1の乱反射のみが検知でできて
いる領域である。曲線71は、トナーが全面に付着して
いるときの特性を示す。出力電圧の特性曲線71は、角
ψにほとんど依存しない。トナーがないときの像担持体
1の乱反射光成分も同様である。
FIG. 15 shows the relationship between the normal line h at the intersection point P of the image carrier 1 of FIG. 3 and the angle ψ formed by the plane S1 and the sensor output voltage (corresponding to the detected light amount). A curve 70 is a characteristic curve of the output voltage when there is no toner, B′AB is a region where the regular reflection of the image carrier 1 can be mainly detected, and C ′.
B ′ and BC are areas where only diffuse reflection of the image carrier 1 is detected. A curve 71 shows the characteristic when the toner adheres to the entire surface. The output voltage characteristic curve 71 has little dependence on the angle ψ. The same applies to the diffused reflection light component of the image carrier 1 when there is no toner.

【0038】ここで、角ψを1°よりも大きい値である
2°に設定とすることで、発光素子2からの光が像担持
体1で正反射して受光素子3に入ることはない。従っ
て、図13に示すような、既に説明した特性を得ること
ができる。
By setting the angle ψ to 2 °, which is a value larger than 1 °, the light from the light emitting element 2 is not specularly reflected by the image carrier 1 and enters the light receiving element 3. . Therefore, the characteristics already described as shown in FIG. 13 can be obtained.

【0039】請求項6に基づく実施例について説明す
る。
An embodiment based on claim 6 will be described.

【0040】発光素子2と受光素子3は、図16に示す
ように、受発光素子ユニット160の支持部材161に
固定支持されている。発光素子2の前方には防塵ガラス
163が、そして受光素子3の前方には集光光学系とし
てのフレネルレンズ162がそれぞれ配置されている。
フレネルレンズ162は、発光素子2により防塵ガラス
163を介して像担持体1の表面に照射された光束の狭
い領域からの光のみを受光素子3に入射させる。ここ
で、発光素子2の円形発光面の直径dを1.6mm、指
向性φ1を30°、そして受光素子3の指向性φ2を2
°、発光素子2からの光が像担持体1上の点Pで反射さ
れ受光素子3に到るまでの最短の光路長ρを20mmと
すると、 φ1>φ2 であるから、 min(φ1,φ2)/2=φ1/2=1° 但し、min(φ1,φ2)はφ1,φ2の小さい方を意
味する。
As shown in FIG. 16, the light emitting element 2 and the light receiving element 3 are fixedly supported by a supporting member 161 of the light emitting and receiving element unit 160. A dustproof glass 163 is arranged in front of the light emitting element 2, and a Fresnel lens 162 as a condensing optical system is arranged in front of the light receiving element 3.
The Fresnel lens 162 allows only the light from the narrow region of the light flux irradiated onto the surface of the image carrier 1 by the light emitting element 2 through the dustproof glass 163 to enter the light receiving element 3. Here, the diameter d of the circular light emitting surface of the light emitting element 2 is 1.6 mm, the directivity φ1 is 30 °, and the directivity φ2 of the light receiving element 3 is 2
If the shortest optical path length ρ until the light from the light emitting element 2 is reflected at the point P on the image carrier 1 to reach the light receiving element 3 is 20 mm, then φ1> φ2, so min (φ1, φ2 ) / 2 = φ1 / 2 = 1 ° However, min (φ1, φ2) means the smaller of φ1 and φ2.

【0041】であり、また、 tan~ 1(d/2ρ)/2=tan~ 1(1.6/2×20)/2 =1.2° である。[0041] a and, also, a tan ~ 1 (d / 2ρ) / 2 = tan ~ 1 (1.6 / 2 × 20) / 2 = 1.2 °.

【0042】図18に、図3の像担持体1の交点Pにお
ける法線hと平面S1のなす角ψとセンサ出力電圧(検
出光量に対応する)の関係を示す。曲線170は、トナ
ーがないときの出力電圧の特性曲線であって、B'AB
は像担持体1の正反射が主に検知できる領域であり、
C'B'及びBCは像担持体1の乱反射のみが検知ででき
ている領域である。曲線171は、トナーが全面に付着
しているときの特性を示す。ここで、角ψ(図3の像担
持体1の交点Pにおける法線hと平面S1のなす角)を
1.2°よりも大きい値である2°に設定とすること
で、発光素子2からの光が像担持体1で正反射して受光
素子3に入ることはない。従って、図13に示すよう
な、既に説明した特性を得ることができる。
FIG. 18 shows the relationship between the normal line h at the intersection point P of the image carrier 1 of FIG. 3 and the angle ψ formed by the plane S1 and the sensor output voltage (corresponding to the amount of detected light). A curve 170 is a characteristic curve of the output voltage when there is no toner, and is B′AB.
Is an area where the regular reflection of the image carrier 1 can be mainly detected,
C'B 'and BC are areas where only diffused reflection of the image carrier 1 can be detected. A curve 171 shows the characteristic when the toner adheres to the entire surface. Here, the angle ψ (the angle between the normal line h at the intersection point P of the image carrier 1 in FIG. 3 and the plane S1) is set to 2 °, which is a value larger than 1.2 °, so that the light emitting element 2 The light from is not specularly reflected by the image carrier 1 and does not enter the light receiving element 3. Therefore, the characteristics already described as shown in FIG. 13 can be obtained.

【0043】また、図17に示すように、センサーとし
ての受発光素子ユニット160を像担持体1に関して回
転可能に支持し、これを像担持体1に対して回転させ、
正反射光と乱反射光をそれぞれ検知するようにすること
もできる。図18の特性曲線171は、像担持体1の法
線hに対するセンサー光軸面(発光素子と受光素子の光
軸を含む平面)の角度ηを回転させた時の受光素子出力
特性を示す。図15の特性曲線71に対して、角度の大
きいところでセンサ出力が下がる。これは、像担持体1
とセンサーの距離が大きくなるからである。すなわち、
センサ角度ηが変わると像担持体と受発光素子との距離
も変化するため、角度ηの絶対値の大きい所でトナーが
全面に付着している時の出力電圧が低下する。図18か
らみて、η=0°で正反射光を、η>2°で乱反射光を
検知すると良い。
Further, as shown in FIG. 17, a light emitting / receiving element unit 160 as a sensor is rotatably supported with respect to the image carrier 1, and is rotated with respect to the image carrier 1.
It is also possible to detect specular reflection light and diffuse reflection light, respectively. A characteristic curve 171 in FIG. 18 shows the light receiving element output characteristic when the angle η of the sensor optical axis plane (the plane including the optical axes of the light emitting element and the light receiving element) with respect to the normal line h of the image carrier 1 is rotated. With respect to the characteristic curve 71 in FIG. 15, the sensor output decreases at a large angle. This is the image carrier 1
And the distance between the sensor and the sensor becomes large. That is,
When the sensor angle η changes, the distance between the image carrier and the light emitting / receiving element also changes, so that the output voltage when toner adheres to the entire surface decreases at a position where the absolute value of the angle η is large. From FIG. 18, it is preferable to detect specularly reflected light when η = 0 ° and irregularly reflected light when η> 2 °.

【0044】請求項7に基づく実施例について説明す
る。
An embodiment based on claim 7 will be described.

【0045】発光素子2と受光素子3は、図14に示す
ように、受発光素子ユニット60の支持部材61に固定
支持されている。発光素子2の前方にはフレネルレンズ
62が、そして受光素子3の前方には防塵ガラス63が
それぞれ配置されている。フレネルレンズ62は、円筒
状の像担持体4c(図11)の表面に細く絞った光束を
P点に照射し、P点における光スポットを受光素子3が
受光する。
The light emitting element 2 and the light receiving element 3 are fixedly supported by a support member 61 of the light emitting and receiving element unit 60, as shown in FIG. A Fresnel lens 62 is arranged in front of the light emitting element 2, and a dustproof glass 63 is arranged in front of the light receiving element 3. The Fresnel lens 62 irradiates point P with a light beam that is narrowed down on the surface of the cylindrical image carrier 4c (FIG. 11), and the light receiving element 3 receives the light spot at point P.

【0046】ここで、発光素子2の指向性φ1を2°、
受光素子3の指向性φ2を30°、受光素子3の円形受
光面の直径dを1.2mm、発光素子2からの光が像担
持体4cの表面で反射され受光素子3に到るまでの最短
の光路長ρを16mmとすると、 φ1<φ2 であるから、 min(φ1,φ2)/2=φ1/2=1° 但し、min(φ1,φ2)はφ1,φ2の小さい方を意
味する。
Here, the directivity φ1 of the light emitting element 2 is 2 °,
The directivity φ2 of the light receiving element 3 is 30 °, the diameter d of the circular light receiving surface of the light receiving element 3 is 1.2 mm, and the light from the light emitting element 2 is reflected by the surface of the image carrier 4c and reaches the light receiving element 3. If the shortest optical path length ρ is 16 mm, then φ1 <φ2, so min (φ1, φ2) / 2 = φ1 / 2 = 1 ° However, min (φ1, φ2) means the smaller of φ1 and φ2. .

【0047】であり、また、 tan~ 1(d/2ρ)/2=tan~ 1(1.2/2×16)/2 =1.1° である。図15に、図12に示す像担持体4cの点Pに
おいて、回転中心軸と直交する平面Stと平面S1のな
す角ψとセンサ出力電圧の関係を示す。ここで、角ψを
1.1°よりも大きい値である2°に設定とすること
で、発光素子2からの光が像担持体で正反射して受光素
子3に入ることはない。
[0047] a and, also, a tan ~ 1 (d / 2ρ) / 2 = tan ~ 1 (1.2 / 2 × 16) / 2 = 1.1 °. FIG. 15 shows the relationship between the sensor output voltage and the angle ψ formed by the plane St and the plane S1 orthogonal to the rotation center axis at the point P of the image carrier 4c shown in FIG. Here, by setting the angle ψ to 2 °, which is a value larger than 1.1 °, the light from the light emitting element 2 is not specularly reflected by the image carrier to enter the light receiving element 3.

【0048】[0048]

【発明の効果】以上説明したように、請求項1の発明に
よれば、発光素子と受光素子は、共に指向特性を有し、
且つ、発光素子と受光素子の光軸が交わる点が、略前記
像担持体表面上にあり、この交点における法線と光軸平
面の成す角ψが15°≦ψ>90°の条件を満たす構成
としたので、簡単な構成により、像担持体上に付着した
カラートナーの量を光学的に高い精度で検出することが
でき、特に、トナーが像担持体表面を完全被覆するよう
な高付着領域でも高精度に検出することができる。 ま
た、従来のように、発光素子と受光素子を光軸平面内で
回転させるのにに比べて、光軸平面自体を回転させるの
で、比較的大きいスペースが取れて、しかも簡単な構成
であり、組立て作業が容易になる。さらに、ψ=0°で
正反射センサ、ψ=x°(xは上記範囲内)で乱反射セ
ンサとして、光軸平面を回転させるだけで使い分けるこ
とにより、正反射センサと乱反射センサの機能を同じ素
子に兼ね備えさせることができる。
As described above, according to the invention of claim 1, the light emitting element and the light receiving element both have directional characteristics,
Moreover, the point where the optical axes of the light emitting element and the light receiving element intersect is substantially on the surface of the image carrier, and the angle ψ formed by the normal line and the optical axis plane at this intersection satisfies the condition of 15 ° ≦ ψ> 90 °. Because of the simple structure, the amount of color toner adhering to the image carrier can be detected with high optical accuracy, and in particular, high adhesion such that the toner completely covers the surface of the image carrier can be detected. It is possible to detect with high accuracy even in a region. Further, as compared with the conventional method of rotating the light emitting element and the light receiving element in the optical axis plane, the optical axis plane itself is rotated, so that a relatively large space can be taken and the configuration is simple. Assembly work becomes easy. Furthermore, the function of the specular reflection sensor and that of the diffuse reflection sensor are the same by using the specular reflection sensor when ψ = 0 ° and the diffuse reflection sensor when ψ = x ° (x is in the above range) by simply rotating the optical axis plane. Can be combined.

【0049】請求項2の発明によれば、発光素子と受光
素子は、共に比較的狭い指向特性を有していて、その広
がり角は各々φ1、φ2であり、且つ、発光素子と受光
素子の光軸が交わる点が、略前記像担持体表面上にあっ
て、この交点における法線と前記光軸を含む光軸平面の
成す角ψは、ψ>(φ1+φ2)/2の条件を満たすの
で、請求項1と同様の効果を奏する。
According to the second aspect of the present invention, both the light emitting element and the light receiving element have relatively narrow directional characteristics, and the divergence angles are φ1 and φ2, respectively, and the light emitting element and the light receiving element are both. Since the point where the optical axes intersect is approximately on the surface of the image carrier, and the angle ψ formed by the normal line at this intersection and the optical axis plane including the optical axis satisfies the condition of ψ> (φ1 + φ2) / 2. The same effect as that of claim 1 is achieved.

【0050】請求項3の発明によれば、発光素子と受光
素子は、共に比較的狭い指向特性を有していて、その広
がり角は各々φ1、φ2であり、且つ、発光素子と受光
素子の光軸が交わる点が、略前記像担持体表面の近傍に
あって、像担持体の回転軸を含む平面と前記光軸を含む
光軸平面の成す角ψは、ψ>(φ1+φ2)/2の条件
を満たすので、請求項1と同様の効果を奏するものであ
る。
According to the third aspect of the present invention, both the light emitting element and the light receiving element have relatively narrow directional characteristics, and the spread angles are φ1 and φ2, respectively, and the light emitting element and the light receiving element are both. The point where the optical axes intersect is approximately in the vicinity of the surface of the image carrier, and the angle ψ formed by the plane including the rotation axis of the image carrier and the plane of the optical axis including the optical axis is ψ> (φ1 + φ2) / 2. Since the condition (1) is satisfied, the same effect as that of claim 1 can be obtained.

【0051】請求項4の発明によれば、発光素子と受光
素子は、共に比較的狭い指向特性を有していて、その広
がり角は各々φ1、φ2であり、且つ、発光素子と受光
素子の光軸が交わる点が、略前記像担持体表面の近傍に
あって、像担持体の回転軸に直交する平面と前記光軸を
含む光軸平面の成す角ψは、ψ>(φ1+φ2)/2の
条件を満たすので、請求項1と同様の効果を奏するも。
According to the invention of claim 4, both the light emitting element and the light receiving element have relatively narrow directional characteristics, and the spread angles thereof are φ1 and φ2, respectively, and the light emitting element and the light receiving element are both. The point where the optical axes intersect is approximately in the vicinity of the surface of the image carrier, and the angle ψ formed by the plane orthogonal to the rotation axis of the image carrier and the plane of the optical axis including the optical axis is ψ> (φ1 + φ2) / Since the condition 2 is satisfied, the same effect as that of claim 1 can be obtained.

【0052】請求項5、6、7の発明によれば、発光素
子の指向性をφ1、受光素子のそれをφ2、受発光素子
の円形受発光面の直径をd、発光素子からの光が像担持
体で反射され受光素子に到るまでの最短の光路長をρ、
像担持体表面に対して垂直をなす面と受発光素子の光軸
平面とのなす傾き角をψとしたとき、傾き角ψの値を、
min(φ1,φ2)/2(但し、min(φ1,φ2)はφ
1,φ2の小さい方を意味する。)とtan~ 1(d/2
ρ)/2との大きい方の値よりもら大きく設定すること
により、発光素子からの光が像担持体で正反射して受光
素子に入ることはなく、高精度でカラートナー濃度を検
出することができる。
According to the fifth, sixth and seventh aspects of the invention, the directivity of the light emitting element is φ1, that of the light receiving element is φ2, the diameter of the circular light receiving and emitting surface of the light receiving and emitting element is d, and the light from the light emitting element is The shortest optical path length from the image carrier to the light receiving element is ρ,
When the inclination angle formed by the plane perpendicular to the surface of the image carrier and the optical axis plane of the light emitting / receiving element is ψ, the value of the inclination angle ψ is
min (φ1, φ2) / 2 (however, min (φ1, φ2) is φ
It means the smaller of 1 and φ2. ) And tan ~ 1 (d / 2
ρ) / 2 is set to be larger than the larger value, so that the light from the light emitting element is not specularly reflected by the image carrier to enter the light receiving element, and the color toner density can be detected with high accuracy. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る実施例のカラー画像形成装置を
示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a color image forming apparatus of an embodiment according to the present invention.

【図2】請求項1に基づく実施例のカラー濃度検出装置
を構成する発光素子と受光素子を示す構成図である。
FIG. 2 is a configuration diagram showing a light emitting element and a light receiving element constituting a color density detecting device of an embodiment based on claim 1.

【図3】図2をA方向から見たカラー濃度検出装置を示
す構成図である。
FIG. 3 is a configuration diagram showing a color density detection device when FIG. 2 is viewed from the A direction.

【図4】像担持体の法線と光軸平面の成す角と受光素子
の出力電圧の関係を示す特性線図である。
FIG. 4 is a characteristic diagram showing the relationship between the angle formed by the normal line of the image carrier and the plane of the optical axis and the output voltage of the light receiving element.

【図5】請求項2に基づく実施例の発光素子と受光素子
を示す構成図である。
FIG. 5 is a configuration diagram showing a light emitting element and a light receiving element of an embodiment according to claim 2.

【図6】図5をA方向から見たカラー濃度検出装置を示
す構成図である。
FIG. 6 is a configuration diagram showing a color density detection device when FIG. 5 is viewed from the direction A.

【図7】像担持体の法線と光軸平面の成す角と受光素子
の出力電圧の関係を示す特性線図である。
FIG. 7 is a characteristic diagram showing the relationship between the angle formed by the normal line of the image carrier and the plane of the optical axis and the output voltage of the light receiving element.

【図8】像担持体上のトナー付着量と受光素子からの出
力電圧の関係を示す特性線図である。
FIG. 8 is a characteristic diagram showing the relationship between the toner adhesion amount on the image carrier and the output voltage from the light receiving element.

【図9】請求項3に基づく実施例の発光素子と受光素子
を示す構成図である。
FIG. 9 is a configuration diagram showing a light emitting element and a light receiving element of an embodiment according to claim 3;

【図10】図9をA方向から見た発光素子と受光素子を
示す構成図である。
10 is a configuration diagram showing a light emitting element and a light receiving element when FIG. 9 is viewed from the direction A. FIG.

【図11】請求項4に基づく実施例の発光素子と受光素
子を示す構成図である。
FIG. 11 is a configuration diagram showing a light emitting element and a light receiving element of an embodiment according to claim 4.

【図12】図11をA方向から見た発光素子と受光素子
を示す構成図である。
12 is a configuration diagram showing a light emitting element and a light receiving element when FIG. 11 is viewed from the direction A. FIG.

【図13】従来の受光素子の出力電圧と像担持体上のト
ナー付着量との関係を示す特性線図である。
FIG. 13 is a characteristic diagram showing a relationship between an output voltage of a conventional light receiving element and a toner adhesion amount on an image carrier.

【図14】発光素子と受光素子とを支持部材で一体化し
た受発光素子ユニットの一例を示す側面図である。
FIG. 14 is a side view showing an example of a light emitting / receiving element unit in which a light emitting element and a light receiving element are integrated by a supporting member.

【図15】濃度検知センサの像担持体表面に対する傾き
角ψとセンサ出力電圧の関係を示す特性曲線である。
FIG. 15 is a characteristic curve showing the relationship between the inclination angle ψ of the density detection sensor with respect to the surface of the image carrier and the sensor output voltage.

【図16】発光素子と受光素子とを支持部材で一体化し
た受発光素子ユニットの他の例を示す側面図である。
FIG. 16 is a side view showing another example of a light emitting / receiving element unit in which a light emitting element and a light receiving element are integrated by a supporting member.

【図17】像担持体表面に対して回転させる受発光素子
ユニットの一例を示す側面図である。
FIG. 17 is a side view showing an example of a light emitting / receiving element unit rotated with respect to the surface of an image carrier.

【図18】濃度検知センサの像担持体表面に対する傾き
角ψとセンサ出力電圧の関係を示す特性曲線である。
FIG. 18 is a characteristic curve showing the relationship between the inclination angle ψ of the density detection sensor with respect to the surface of the image carrier and the sensor output voltage.

【符号の説明】[Explanation of symbols]

1、4c 像担持体 2 発光素子 3 受光素子 4C,4M,4Y,4BK 像担持体 60、160 受発光素子ユニット 61、161 支持部材 62、162 フレネルレンズ 63、163 防塵ガラス ψ 濃度検知センサの傾き角 S1 光軸平面 d 受発光素子の受発光面の直径 ρ 像担持体から受光素子までの最短距離 1, 4c Image carrier 2 Light emitting element 3 Light receiving element 4C, 4M, 4Y, 4BK Image carrier 60, 160 Light emitting and receiving element unit 61, 16 1 Support member 62, 162 Fresnel lens 63, 163 Dustproof glass ψ Concentration detection sensor inclination Angle S1 Optical axis plane d Diameter of light emitting / receiving surface of light emitting / receiving element ρ Shortest distance from image carrier to light receiving element

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】像担持体上に形成されたトナーパターン像
に発光素子の光を照射し、その反射光を受光素子で検出
した結果によって作像条件を制御するトナー濃度検出装
置を具備する画像形成装置において、 前記発光素子と前記受光素子は、共に指向特性を有し、
且つ、発光素子と受光素子の光軸が交わる点が、略前記
像担持体表面上にあり、この交点における法線と前記光
軸を含む光軸平面の成す角ψが 15°≦ψ<90° の条件を満たすトナー濃度検出装置を具備した画像形成
装置。
1. An image provided with a toner density detecting device for irradiating light of a light emitting element on a toner pattern image formed on an image carrier and detecting the reflected light by a light receiving element to control an image forming condition. In the forming apparatus, the light emitting element and the light receiving element both have directional characteristics,
Moreover, the point where the optical axes of the light emitting element and the light receiving element intersect is substantially on the surface of the image carrier, and the angle ψ formed by the normal line at this intersection and the optical axis plane including the optical axis is 15 ° ≦ ψ <90. An image forming apparatus equipped with a toner density detecting device satisfying the condition of °.
【請求項2】像担持体上に形成されたトナーパターン像
に発光素子の光を照射し、その反射光を受光素子で検出
した結果によって作像条件を制御するトナー濃度検出装
置を具備する画像形成装置において、 前記発光素子と前記受光素子は、共に比較的狭い指向特
性を有していて、その広がり角は各々φ1、φ2であ
り、且つ、発光素子と受光素子の光軸が交わる点が、略
前記像担持体表面上にあって、この交点における法線と
前記光軸を含む光軸平面の成す角ψは、 ψ>(φ1+φ2)/2 の条件を満たすトナー濃度検出装置を具備した画像形成
装置。
2. An image provided with a toner density detecting device for controlling an image forming condition by irradiating light of a light emitting element on a toner pattern image formed on an image carrier and detecting the reflected light by a light receiving element. In the forming apparatus, both the light emitting element and the light receiving element have relatively narrow directional characteristics, the divergence angles are φ1 and φ2, respectively, and the point where the optical axes of the light emitting element and the light receiving element intersect with each other. An angle ψ formed between the normal line at this intersection and the optical axis plane including the optical axis substantially on the surface of the image bearing member is equipped with a toner concentration detecting device satisfying the condition of ψ> (φ1 + φ2) / 2. Image forming apparatus.
【請求項3】像担持体上に形成されたトナーパターン像
に発光素子の光を照射し、その反射光を受光素子で検出
した結果によって作像条件を制御するトナー濃度検出装
置を具備する画像形成装置において、 前記発光素子と前記受光素子は、共に比較的狭い指向特
性を有していて、その広がり角は各々φ1、φ2であ
り、且つ、発光素子と受光素子の光軸が交わる点が、略
前記像担持体表面の近傍にあって、像担持体の回転軸を
含む平面と前記光軸を含む光軸平面の成す角ψは、 ψ>(φ1+φ2)/2 の条件を満たすトナー濃度検出装置を具備した画像形成
装置。
3. An image provided with a toner density detecting device for irradiating a toner pattern image formed on an image carrier with light from a light emitting element and controlling an image forming condition according to a result of detecting the reflected light by a light receiving element. In the forming apparatus, both the light emitting element and the light receiving element have relatively narrow directional characteristics, the divergence angles are φ1 and φ2, respectively, and the point where the optical axes of the light emitting element and the light receiving element intersect with each other. An angle ψ formed by a plane including the rotation axis of the image carrier and the optical axis plane including the optical axis, which is approximately in the vicinity of the surface of the image carrier, has a toner density satisfying the condition of ψ> (φ1 + φ2) / 2. An image forming apparatus equipped with a detection device.
【請求項4】像担持体上に形成されたトナーパターン像
に発光素子の光を照射し、その反射光を受光素子で検出
した結果によって作像条件を制御するトナー濃度検出装
置において、 前記発光素子と前記受光素子は、共に比較的狭い指向特
性を有していて、その広がり角は各々φ1、φ2であ
り、且つ、発光素子と受光素子の光軸が交わる点が、略
前記像担持体表面の近傍にあって、像担持体の回転軸に
直交する平面と前記光軸を含む光軸平面の成す角ψは、 ψ>(φ1+φ2)/2 の条件を満たすことを特徴とするトナー濃度検出装置。
4. A toner density detecting device for irradiating a toner pattern image formed on an image carrier with light from a light emitting element, and controlling the image forming condition according to the result of detection of the reflected light by a light receiving element. The element and the light receiving element both have relatively narrow directional characteristics, the divergence angles are φ1 and φ2, respectively, and the point where the optical axes of the light emitting element and the light receiving element intersect is approximately the image carrier. The toner density is characterized in that an angle ψ formed by a plane orthogonal to the rotation axis of the image carrier and an optical axis plane including the optical axis in the vicinity of the surface satisfies a condition of ψ> (φ1 + φ2) / 2. Detection device.
【請求項5】像担持体上に形成された着色粒子パターン
に発光素子の光を照射し、その反射光を受光素子で検出
した結果によって作像条件を制御する装置において、上
記発光素子の発光光束の広がりである指向性をφ1、上
記受光素子の受光光束の広がりである指向性をφ2と
し、上記発光光束と上記受光光束の各光軸が略同一平面
としての光軸平面S1上に在り、かつ、上記発光素子と
受光素子の光軸が互いに交わる交点Pが、上記像担持体
表面上またはその近傍に在り、交点Pにおける上記像担
持体の面と垂直をなす面と光軸平面S1のなす角をψと
し、上記の受発光光束の広がりの広い方の素子の受発光
面の直径をd、上記発光素子からの光が上記像担持体で
反射され上記受光素子に到るまでの最短の光路長をρと
したとき、 ψ≧min(φ1,φ2)/2, 但し、min(φ1,φ2)はφ1,φ2の小さい方を表
わす。かつ、 ψ≧ tan~ 1(d/2ρ)/2 を満たすことを特徴とするトナー濃度検出装置。
5. A device for irradiating the colored particle pattern formed on an image carrier with light from a light emitting element and controlling the image forming condition according to the result of detection of the reflected light by the light receiving element. The directivity that is the spread of the light flux is φ1, the directivity that is the spread of the received light flux of the light receiving element is φ2, and the optical axes of the emitted light flux and the received light flux are on the optical axis plane S1 that is substantially the same plane. An intersection point P where the optical axes of the light emitting element and the light receiving element intersect with each other is on or near the surface of the image carrier, and a plane perpendicular to the plane of the image carrier at the intersection point P and the optical axis plane S1. Is defined as ψ, the diameter of the light receiving / emitting surface of the element having the wider spread of the light receiving / emitting light flux is d, and the light from the light emitting element is reflected by the image carrier to reach the light receiving element. When the shortest optical path length is ρ, ψ ≧ min (φ1 , Φ2) / 2, where min (φ1, φ2) represents the smaller of φ1 and φ2. And toner concentration detecting apparatus characterized by satisfying ψ ≧ tan ~ 1 (d / 2ρ) / 2.
【請求項6】円筒状の像担持体上に形成されたトナーパ
ターンに発光素子の光を照射し、その反射光を受光素子
で検出した結果によって作像条件を制御する装置におい
て、上記発光素子の発光光束の広がりである指向性をφ
1、上記受光素子の受光光束の広がりである指向性をφ
2とし、上記発光光束と上記受光光束の各光軸が略同一
平面としての光軸平面S1上に在り、かつ、上記発光素
子と受光素子の光軸が互いに交わる交点Pが、上記像担
持体表面上またはその近傍に在り、前記像担持体の回転
中心軸と前記点Pとを含む平面をSa、平面S1とSa
のなす角をψ、上記受発光光束の広がりの広い方の素子
の受発光面の直径をd、上記発光素子からの光が上記像
担持体で反射され上記受光素子に到るまでの最短の光路
長をρとしたとき、 ψ≧min(φ1,φ2)/2, 但し、min(φ1,φ2)はφ1,φ2の小さい方を表
わす。かつ、 ψ≧ tan~ 1(d/2ρ)/2 を満たすことを特徴とするトナー濃度検出装置。
6. An apparatus for irradiating light of a light emitting element on a toner pattern formed on a cylindrical image carrier and controlling the image forming condition according to the result of detecting the reflected light by the light receiving element. The directivity that is the spread of the luminous flux of
1. Set the directivity, which is the spread of the received light flux of the light receiving element, to φ
2, the optical axes of the emitted light beam and the received light beam are on the optical axis plane S1 that is substantially the same plane, and the intersection P where the optical axes of the light emitting element and the light receiving element intersect with each other is the image carrier. A plane located on or near the surface and including the rotation center axis of the image carrier and the point P is Sa, and planes S1 and Sa are planes.
Is defined by ψ, the diameter of the light receiving and emitting surface of the element having the wider spread of the light receiving and emitting light flux is d, and the shortest time until the light from the light emitting element is reflected by the image carrier to reach the light receiving element When the optical path length is ρ, ψ ≧ min (φ1, φ2) / 2, where min (φ1, φ2) represents the smaller one of φ1 and φ2. And toner concentration detecting apparatus characterized by satisfying ψ ≧ tan ~ 1 (d / 2ρ) / 2.
【請求項7】円筒状の像担持体上に形成されたトナーパ
ターンに発光素子の光を照射し、その反射光を受光素子
で検出した結果によって作像条件を制御する装置におい
て、上記発光素子の発光光束の広がりである指向性をφ
1、上記受光素子の受光光束の広がりである指向性をφ
2とし、上記発光光束と上記受光光束の各光軸が略同一
平面としての光軸平面S1上に在り、かつ、上記発光素
子と受光素子の光軸が互いに交わる交点Pが、上記像担
持体表面上またはその近傍に在り、前記像担持体の回転
中心軸と直交する平面をSt、平面S1とStとのなす
角をψ、上記受発光光束の広がりの広い方の素子の受発
光面の直径をd、上記発光素子からの光が上記像担持体
で反射され上記受光素子に到るまでの最短の光路長をρ
としたとき、 ψ≧min(φ1,φ2)/2, 但し、min(φ1,φ2)はφ1,φ2の小さい方を表
わす。かつ、 ψ≧ tan~ 1(d/2ρ)/2 を満たすことを特徴とするトナー濃度検出装置。
7. An apparatus for irradiating light from a light emitting element onto a toner pattern formed on a cylindrical image carrier, and controlling the image forming condition according to the result of detection of the reflected light by the light receiving element. The directivity that is the spread of the luminous flux of
1. Set the directivity, which is the spread of the received light flux of the light receiving element, to φ
2, the optical axes of the emitted light beam and the received light beam are on the optical axis plane S1 that is substantially the same plane, and the intersection P where the optical axes of the light emitting element and the light receiving element intersect with each other is the image carrier. A plane which is on or near the surface and is orthogonal to the central axis of rotation of the image carrier is St, an angle formed by the planes S1 and St is ψ, and The diameter is d, and the shortest optical path length until the light from the light emitting element is reflected by the image carrier to reach the light receiving element is ρ.
Then, ψ ≧ min (φ1, φ2) / 2, where min (φ1, φ2) represents the smaller of φ1 and φ2. And toner concentration detecting apparatus characterized by satisfying ψ ≧ tan ~ 1 (d / 2ρ) / 2.
【請求項8】上記発光素子と受光素子の各光軸が一平面
内に含まれるように上記発光素子と受光素子を支持部材
でユニット化し、上記発光素子の前方に集光光学素子を
設けた請求項5、6又は7記載のトナー濃度検出装置。
8. The light emitting element and the light receiving element are unitized by a supporting member so that the respective optical axes of the light emitting element and the light receiving element are included in one plane, and a condensing optical element is provided in front of the light emitting element. The toner concentration detecting device according to claim 5, 6, or 7.
【請求項9】上記発光素子と受光素子の各光軸が一平面
内に含まれるように上記発光素子と受光素子を支持部材
でユニット化し、上記受光素子の前方に集光光学素子を
設けた請求項5、6又は7記載のトナー濃度検出装置。
9. The light emitting element and the light receiving element are unitized by a supporting member so that each optical axis of the light emitting element and the light receiving element is included in one plane, and a condensing optical element is provided in front of the light receiving element. The toner concentration detecting device according to claim 5, 6, or 7.
【請求項10】上記発光素子と受光素子の各光軸が一平
面内に含まれるように上記発光素子と受光素子を支持部
材でユニット化し、この受発光素子ユニットを上記像担
持体に対して回転可能に支持した請求項5、6、7又は
8記載のトナー濃度検出装置。
10. The light emitting element and the light receiving element are unitized by a supporting member so that the respective optical axes of the light emitting element and the light receiving element are included in one plane, and the light receiving and emitting element unit is attached to the image carrier. 9. The toner concentration detecting device according to claim 5, 6, 7 or 8, which is rotatably supported.
JP7114480A 1994-07-15 1995-05-12 Image forming apparatus and toner concentration detection device used therein Pending JPH0882599A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7114480A JPH0882599A (en) 1994-07-15 1995-05-12 Image forming apparatus and toner concentration detection device used therein
US08/584,443 US5630195A (en) 1995-05-12 1996-01-11 Color toner density sensor and image forming apparatus using the same
GB9600665A GB2300729B (en) 1995-05-12 1996-01-12 Color toner density sensor and image forming apparatus using the same
US08/815,733 US5761570A (en) 1995-05-12 1997-03-12 Color toner density sensor and image forming apparatus using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16409894 1994-07-15
JP6-164098 1994-07-15
JP7114480A JPH0882599A (en) 1994-07-15 1995-05-12 Image forming apparatus and toner concentration detection device used therein

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003193168A Division JP2004004919A (en) 1994-07-15 2003-07-07 Image forming device and toner pattern image density detecting device used for same

Publications (1)

Publication Number Publication Date
JPH0882599A true JPH0882599A (en) 1996-03-26

Family

ID=26453213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7114480A Pending JPH0882599A (en) 1994-07-15 1995-05-12 Image forming apparatus and toner concentration detection device used therein

Country Status (1)

Country Link
JP (1) JPH0882599A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194851A (en) * 2000-01-11 2001-07-19 Matsushita Electric Ind Co Ltd Color image forming device
JP2005024459A (en) * 2003-07-04 2005-01-27 Ricoh Co Ltd Optical sensor and image forming apparatus
JP2007024575A (en) * 2005-07-13 2007-02-01 Sharp Corp Color data measuring instrument
JP2008249714A (en) * 2008-04-28 2008-10-16 Ricoh Co Ltd Photosensor and image forming apparatus
JP2008261864A (en) * 2008-04-28 2008-10-30 Ricoh Co Ltd Photosensor, and image formation device
US7821677B2 (en) 2005-05-10 2010-10-26 Ricoh Company, Ltd. Method and apparatus for image forming capable of accurately detecting displacement of transfer images and image density
JP2011133483A (en) * 2011-01-25 2011-07-07 Ricoh Co Ltd Photosensor and image forming apparatus
JP2011186093A (en) * 2010-03-06 2011-09-22 Ricoh Co Ltd Mark detecting device and printing device
JP2017194408A (en) * 2016-04-22 2017-10-26 京セラドキュメントソリューションズ株式会社 Toner amount detection sensor and image formation device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194851A (en) * 2000-01-11 2001-07-19 Matsushita Electric Ind Co Ltd Color image forming device
JP2005024459A (en) * 2003-07-04 2005-01-27 Ricoh Co Ltd Optical sensor and image forming apparatus
US7821677B2 (en) 2005-05-10 2010-10-26 Ricoh Company, Ltd. Method and apparatus for image forming capable of accurately detecting displacement of transfer images and image density
JP2007024575A (en) * 2005-07-13 2007-02-01 Sharp Corp Color data measuring instrument
JP2008249714A (en) * 2008-04-28 2008-10-16 Ricoh Co Ltd Photosensor and image forming apparatus
JP2008261864A (en) * 2008-04-28 2008-10-30 Ricoh Co Ltd Photosensor, and image formation device
JP4639244B2 (en) * 2008-04-28 2011-02-23 株式会社リコー Optical sensor and image forming apparatus
JP4732482B2 (en) * 2008-04-28 2011-07-27 株式会社リコー Optical sensor and image forming apparatus
JP2011186093A (en) * 2010-03-06 2011-09-22 Ricoh Co Ltd Mark detecting device and printing device
JP2011133483A (en) * 2011-01-25 2011-07-07 Ricoh Co Ltd Photosensor and image forming apparatus
JP2017194408A (en) * 2016-04-22 2017-10-26 京セラドキュメントソリューションズ株式会社 Toner amount detection sensor and image formation device

Similar Documents

Publication Publication Date Title
US7610004B2 (en) Apparatus for detecting amount of toner deposit and controlling density of image, method of forming misalignment correction pattern, and apparatus for detecting and correcting misalignment of image
US5630195A (en) Color toner density sensor and image forming apparatus using the same
JPS60260967A (en) Developing device
JP2000250304A (en) Photosensor device of image forming device
JPH05249787A (en) Image forming device
JPH0882599A (en) Image forming apparatus and toner concentration detection device used therein
US8989631B2 (en) Image-forming apparatus and method
JPH04149572A (en) Image forming device
JP2004004919A (en) Image forming device and toner pattern image density detecting device used for same
US6381421B1 (en) Image forming apparatus having improved developer filling capability
JPH09185191A (en) Toner concentration detector and image forming device provided with the same
JPS61254961A (en) Color image forming device
US7580662B2 (en) Image forming apparatus with sensing member that senses reflection of light rays from an intermediate transfer belt
JP4343079B2 (en) Image forming apparatus
JP2001100481A (en) Image forming device
JP2005189704A (en) Image forming apparatus
JPH11174753A (en) Image forming device
JP3357470B2 (en) Image forming method and apparatus
JPS63304281A (en) Detection of image density
JP2003330232A (en) Image controlling method
JPH0830047A (en) Image forming device
JPH10221959A (en) Liquid image forming device
JPH10319669A (en) Image forming device
JPH11258901A (en) Image forming device
JP2001066874A (en) Image forming device