JPH1051956A - Active filter control circuit - Google Patents

Active filter control circuit

Info

Publication number
JPH1051956A
JPH1051956A JP8215504A JP21550496A JPH1051956A JP H1051956 A JPH1051956 A JP H1051956A JP 8215504 A JP8215504 A JP 8215504A JP 21550496 A JP21550496 A JP 21550496A JP H1051956 A JPH1051956 A JP H1051956A
Authority
JP
Japan
Prior art keywords
current
icu
icv
active filter
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8215504A
Other languages
Japanese (ja)
Inventor
Junichi Inoue
純一 井上
Masakazu Kobata
雅一 木幡
Yoshitoshi Watanabe
良利 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP8215504A priority Critical patent/JPH1051956A/en
Publication of JPH1051956A publication Critical patent/JPH1051956A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the operation accuracy of an active filter control circuit by obtaining the integral multiple signals of inputted first and second detected digital values, by comparing a compensating current command obtained by computing higher harmonics contained in the first detected digital value with the second detected digital value which is the compensating current of an active filter. SOLUTION: In a CPUm 343', a compensating current computing section 3436 inputs signals through an integral multiplier 3439 and a subtractor 3438 generates compensating current commands ICU*' and ICV*'. In a CPUs 344', compensating currents ICU' and ICV' are supplied to a subtractor 3441 through an integral multiplier 3432. The subtractor 3441 compares the commands ICU*' and ICV*' with the currents ICU' and ICV' and generates a gate command Sg'. The integral multipliers 3439 and 3442 are signal generators which raise the signal levels of input digital values to signal levels which are 2n times as high as the original. levels. Thus, the level of a feedback signal which is compared with the signal of a higher harmonic component in an arithmetic circuit is raised.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電源系統と負荷と
の間に介在して高調波補償を行うアクティブフィルタに
係わり、特に制御回路内の演算精度の向上が図られたア
クティブフィルタ制御回路に、関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active filter which intervenes between a power supply system and a load to perform harmonic compensation, and more particularly to an active filter control circuit in which the calculation accuracy in a control circuit is improved. , It is about.

【0002】[0002]

【従来の技術】図2はアクティブフィルタの適用例を示
し、1は電源系統、2は負荷、3はアクティブフィルタ
(以下ACFと称する)、41は負荷電流検出用変流器、
42は電源電流検出用変流器である。また、ACF3にお
いて、31は電力用変圧器、32は交流リアクトル、33は電
力変換器、34は制御回路、35はリップルフィルタ、36は
電圧検出用変圧器、37は補償電流検出用変流器である。
さらにまた、VCDは電力変換器33より制御回路34に与え
られる直流電圧、Eu,Evは電圧検出用変圧器36によ
り検出された系統電圧、ILU,ILVは負荷電流検出用変
流器41により検出された負荷電流、ISU,ISVは電源電
流検出用変流器42により検出された電源電流、ICU,I
CVは補償電流検出用変流器37により検出された補償電流
である。かくの如きACF3は慣用されており、ここで
はその詳細説明を省略する。つぎに、かかるACFの制
御回路を、図3に示す。
2. Description of the Related Art FIG. 2 shows an application example of an active filter, 1 is a power supply system, 2 is a load, 3 is an active filter (hereinafter referred to as ACF), 41 is a current transformer for detecting load current,
Reference numeral 42 denotes a current transformer for detecting a power supply current. In the ACF 3, 31 is a power transformer, 32 is an AC reactor, 33 is a power converter, 34 is a control circuit, 35 is a ripple filter, 36 is a voltage detecting transformer, and 37 is a compensation current detecting current transformer. It is.
Furthermore, VCD is a DC voltage supplied from the power converter 33 to the control circuit 34, Eu and Ev are system voltages detected by the voltage detecting transformer 36, and ILU and ILV are detected by the load current detecting current transformer 41. The detected load currents ISU and ISV are the power supply currents ICU and ICU detected by the power supply current detection current transformer 42, respectively.
CV is a compensation current detected by the compensation current detection current transformer 37. Such an ACF 3 is commonly used, and a detailed description thereof is omitted here. Next, a control circuit of the ACF is shown in FIG.

【0003】図3はACFの代表的な制御回路例を示
し、 341, 342はアナログ−ディジタル信号変換を行う
A/D変換器、 343はここで補償電流演算機能を有する
CPUであるCPUm、 344はここで比較演算機能をを
有するCPUであるCPUs、Sgは図2の電力変換器
33のためのゲ−ト指令である。CPUm 343において、
3431,3432は3φ/2φ変換器、3433は瞬時電力演算
部、3434はロ−パスフィルタ、3435は加算器、3436は補
償電流演算部、3437は2φ/3φ変換器、3438は減算器
である。CPUs 344において、3441は減算器である。
FIG. 3 shows an example of a typical control circuit of an ACF. Reference numerals 341 and 342 denote A / D converters for performing analog-to-digital signal conversion. Reference numeral 343 denotes a CPU m which is a CPU having a compensation current calculation function. Here, CPUs, which are CPUs having a comparison operation function, and Sg are power converters of FIG.
Gate command for 33. In CPUm 343,
Reference numerals 3431 and 3432 denote 3φ / 2φ converters, 3433 denotes an instantaneous power calculation unit, 3434 denotes a low-pass filter, 3435 denotes an adder, 3436 denotes a compensation current calculation unit, 3437 denotes a 2φ / 3φ converter, and 3438 denotes a subtractor. . In the CPUs 344, 3441 is a subtractor.

【0004】すなわち、このような制御回路も公知であ
るが、直流電圧VCDと系統電圧Eu,Evと負荷電流I
LU,ILV(または電源電流ISU,ISV)とがA/D変換
器341を介しディジタル信号変換されてCPUm 343に
取り入れられ、CPUm343にて、概略、補償対象の負
荷電流(または電源電流)と系統電圧とより瞬時電力演
算が行われ、さらに基本波分が取り除かれた高調波分に
よる補償電流演算が行われ、補償電流指令ICU*,ICV
*が得られる。また、補償電流ICU,ICVがA/D変換
器 342を介しディジタル信号変換されてCPUs 344に
取り入れられ、減算器3441にて補償電流指令ICU*,I
CV*と補償電流ICU,ICVとが比較され、ゲ−ト指令S
gが得られる。かようにして、ACF3は電源系統1,
負荷2間に介在して、その制御回路34がゲ−ト指令Sg
を電力変換器33に信号発生し、また電力変換器33が補償
電流指令ICU*,ICV*になるように補償電流ICU,I
CVを制御して、高調波を補償するものである。
That is, although such a control circuit is also known, the DC voltage VCD, the system voltages Eu and Ev and the load current
The LU and ILV (or power supply currents ISU and ISV) are converted into digital signals via the A / D converter 341 and taken in by the CPU m 343. The CPU m 343 roughly indicates the load current (or power supply current) to be compensated and the system. Voltage and instantaneous power calculations are performed, and compensation current calculations are performed using harmonic components from which fundamental components have been removed. Compensation current commands ICU * and ICV
* Is obtained. Further, the compensation currents ICU and ICV are converted into digital signals via the A / D converter 342 and taken into the CPUs 344, and the subtractor 3441 compensates for the compensation current commands ICU * and ICU *.
CV * is compared with compensation currents ICU and ICV, and gate command S
g is obtained. Thus, the ACF 3 is connected to the power supply system 1,
The control circuit 34 intervenes between the loads 2 and the gate command Sg
Is generated in the power converter 33, and the compensation currents ICU, ICU * and ICV * are adjusted so that the power converter 33 becomes the compensation current commands ICU *, ICV *.
It controls CV to compensate for harmonics.

【0005】[0005]

【発明が解決しようとする課題】この種のACF、すな
わち系統電流の変流器出力より補償電流指令を得て系統
に補償電流を注入するACFにおいては、その制御回路
にて負荷電流を得る場合、負荷電流の検出値を信号変換
するA/D変換器の変換比が、基本波を基準としてアナ
ログ入力(±2V)とすると、8bit時の出力は(±
128)ステップとなる。そこで、負荷電流内の高調波
成分が基本波に対して5%と小さいときには、基本波に
対しては変換比出力が(±100)ステップ,高調波分
に対しては(±5)ステップとなって、かなり荒い制御
レベルとなる。したがって、このような値により演算す
ると、ACFの補償性能は検出精度の誤差により悪化し
てしまう。また、電源電流を得る場合はACFにて補償
した後の系統電流を検出するために、同様にして変換比
出力の高調波分のステップ数が低くなつて、ACFの補
償性能は悪化する。さらには、かように信号レベルが小
さいとノイズの影響を受けやすく、演算誤差を増大させ
ることになる。
In this type of ACF, that is, an ACF in which a compensation current command is obtained from an output of a current transformer of a system current and a compensation current is injected into the system, a case where a load current is obtained by a control circuit thereof. If the conversion ratio of the A / D converter that converts the detected value of the load current is an analog input (± 2 V) with reference to the fundamental wave, the output at the time of 8 bits is (±
128) Steps. Therefore, when the harmonic component in the load current is as small as 5% of the fundamental wave, the conversion ratio output is (± 100) steps for the fundamental wave and (± 5) steps for the harmonic component. The result is a fairly rough control level. Therefore, when the calculation is performed using such values, the compensation performance of the ACF deteriorates due to an error in detection accuracy. In addition, when the power supply current is obtained, since the system current after compensation by the ACF is detected, similarly, the number of steps corresponding to the harmonic of the conversion ratio output decreases, and the compensation performance of the ACF deteriorates. Further, when the signal level is low, the signal level is liable to be affected by noise, and the calculation error increases.

【0006】しかして本発明の目的とするところは、電
流検出用変流器出力に基づくA/D変換比出力が低くて
も、制御回路内の演算精度を向上させて補償性能が改善
された格別な装置を提供する、ことにある。
An object of the present invention is to improve the operation accuracy in the control circuit and improve the compensation performance even when the A / D conversion ratio output based on the current detection current transformer output is low. To provide a special device.

【0007】[0007]

【課題を解決するための手段】本発明は上述したような
点に鑑みなされたものであって、つぎの如くに構成した
ものである。すなわち、系統電流の変流器出力より補償
電流指令を得て系統に補償電流を注入するACFの制御
回路において、負荷電流または電源電流である第1の検
出ディジタル値に含まれる高調波成分を演算して補償電
流指令を得る補償電流演算手段と、補償電流指令と比較
するACFの補償電流である第2の検出ディジタル値を
得る比較手段とに、第1の検出ディジタル値および第2
の検出ディジタル値入力の整数倍信号を得る信号発生手
段を具備して構成したものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has the following structure. That is, a control circuit of an ACF that obtains a compensation current command from a current transformer output of a system current and injects a compensation current into the system calculates a harmonic component included in a first detection digital value that is a load current or a power supply current. And a comparing means for obtaining a second detected digital value which is a compensation current of the ACF to be compared with the compensated current command.
And a signal generating means for obtaining an integer multiple signal of the detected digital value input.

【0008】かかる解決手段により、具体的には補償電
流演算手段の高調波成分入力および比較手段の補償電流
入力を、それぞれ2n倍に信号レベルを上げる整数倍器
が設けられ、高い信号レベルによる補償電流指令と補償
電流との比較より、電力変換器へのゲ−ト指令を得るも
のとすることができる。
According to this solution, an integer multiplier for increasing the signal level of each of the harmonic component input of the compensation current calculation means and the compensation current input of the comparison means by 2n times is provided. By comparing the current command with the compensation current, a gate command to the power converter can be obtained.

【0009】[0009]

【発明の実施の形態】図1は本発明の一実施例の要部構
成を図3に類して示したものであって、343’はCPU
m、 344’はCPUs、Sg’は図2の電力変換器33の
ためのゲ−ト指令である。すなわち、CPUm 343’に
て補償電流演算部3436は整数倍器3439を介して信号入力
し、結局、減算器3438は補償電流指令ICU*’,ICV
*’を発生してなる。またCPUs 344’にて、整数倍
器3442を介して補償電流ICU’,ICV’が減算器3441に
与えられ、減算器3441にて補償電流指令ICU*’,ICV
*’と補償電流ICU’,ICVとが比較され、ゲ−ト指令
Sg’が信号発生してなる。ここで、整数倍器3439およ
び整数倍器3442は、それぞれ入力ディジタル値を2n倍
に信号レベルを上げる信号発生器である。かようにし
て、図1例においては、演算回路内の高調波成分の信号
レベルを上げ、さらにはそれと比較する帰還信号レベル
を上げることにより、演算精度が向上され、結果として
補償性能が良くなることは明らかである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a main part of an embodiment of the present invention in a manner similar to FIG.
m and 344 'are CPUs and Sg' is a gate command for the power converter 33 of FIG. That is, in the CPU m 343 ′, the compensation current calculation unit 3436 inputs a signal via the integer multiplier 3439, and eventually, the subtractor 3438 outputs the compensation current commands ICU * ′, ICV
* 'Occurs. In the CPUs 344 ', compensation currents ICU' and ICV 'are given to the subtractor 3441 via the integer multiplier 3442, and the subtractor 3441 generates compensation current commands ICU *' and ICV.
* 'And the compensation currents ICU' and ICV are compared, and a gate command Sg 'is generated. Here, the integer multiplier 3439 and the integer multiplier 3442 are signal generators for increasing the signal level by 2n times the input digital value. Thus, in the example of FIG. 1, by increasing the signal level of the harmonic component in the arithmetic circuit and further increasing the level of the feedback signal to be compared with it, the arithmetic accuracy is improved, and as a result, the compensation performance is improved. It is clear.

【0010】[0010]

【発明の効果】以上詳述したように本発明によれば、電
流検出用変流器出力に基づくA/D変換比出力が低くて
も、制御回路内の演算精度を向上し補償性能が改善され
た簡便な構成の装置を提供できる。
As described in detail above, according to the present invention, even if the A / D conversion ratio output based on the current detection current transformer output is low, the calculation accuracy in the control circuit is improved and the compensation performance is improved. Thus, it is possible to provide an apparatus having a simple configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の一実施例の要部構成を示す系統
図である。
FIG. 1 is a system diagram showing a configuration of a main part of an embodiment of the present invention.

【図2】図2はアクティブフィルタの適用例を示す系統
図である。
FIG. 2 is a system diagram showing an application example of an active filter.

【図3】図3はアクティブフィルタの代表的な制御回路
の従来例を示す系統図である。
FIG. 3 is a system diagram showing a conventional example of a typical control circuit of an active filter.

【符号の説明】[Explanation of symbols]

1 電源系統 2 負荷 3 アクティブフィルタ 31 電力用変圧器 32 交流リアクトル 33 電力変換器 34 制御回路 341 A/D変換器 343’ CPUm 3431 3φ/2φ変換器 3433 瞬時電力演算部 3434 ロ−パスフィルタ 3436 補償電流演算部 3437 2φ/3φ変換器 3439 整数倍器 344’ CPUs 3442 整数倍器 35 リップルフィルタ 36 電圧検出用変圧器 37 補償電流検出用変流器 41 負荷電流検出用変流器 42 電源電流検出用変流器 VCD 直流電圧 Eu 系統電圧 ILU 負荷電流 ISU 電源電流 ICU 補償電流 ICU’ 補償電流 ICU* 補償電流指令 ICU*’ 補償電流指令 Sg ゲ−ト指令 Sg’ ゲ−ト指令 DESCRIPTION OF SYMBOLS 1 Power supply system 2 Load 3 Active filter 31 Power transformer 32 AC reactor 33 Power converter 34 Control circuit 341 A / D converter 343 'CPUm 3431 3φ / 2φ converter 3433 Instantaneous power calculator 3434 Low-pass filter 3436 Compensation Current calculation part 3437 2φ / 3φ converter 3439 Integer multiplier 344 'CPUs 3442 Integer multiplier 35 Ripple filter 36 Voltage detection transformer 37 Compensation current detection current transformer 41 Load current detection current transformer 42 Power supply current detection Current transformer VCD DC voltage Eu System voltage ILU Load current ISU Power supply current ICU Compensation current ICU 'Compensation current ICU * Compensation current command ICU *' Compensation current command Sg Gate command Sg 'Gate command

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電源系統と負荷との間に介在して電力変
換器により高調波を補償するアクティブフィルタにおい
て、 負荷電流または電源電流である第1の検出ディジタル値
に含まれる高調波成分を演算して補償電流指令を得る補
償電流演算手段と、該補償電流指令と比較するアクティ
ブフィルタの補償電流である第2の検出ディジタル値を
得る比較手段とに、前記第1の検出ディジタル値および
第2の検出ディジタル値入力の整数倍信号を得る信号発
生手段を具備して構成したことを特徴とするアクティブ
フィルタ制御回路。
An active filter interposed between a power supply system and a load for compensating for harmonics by a power converter, wherein a harmonic component included in a first detection digital value that is a load current or a power supply current is calculated. The first detected digital value and the second detected digital value, the second detected digital value being a compensation current of the active filter to be compared with the compensation current command. An active filter control circuit comprising signal generation means for obtaining an integer multiple signal of the detected digital value input.
JP8215504A 1996-07-26 1996-07-26 Active filter control circuit Pending JPH1051956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8215504A JPH1051956A (en) 1996-07-26 1996-07-26 Active filter control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8215504A JPH1051956A (en) 1996-07-26 1996-07-26 Active filter control circuit

Publications (1)

Publication Number Publication Date
JPH1051956A true JPH1051956A (en) 1998-02-20

Family

ID=16673500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8215504A Pending JPH1051956A (en) 1996-07-26 1996-07-26 Active filter control circuit

Country Status (1)

Country Link
JP (1) JPH1051956A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178221A (en) * 2007-01-18 2008-07-31 Mitsubishi Electric Corp Active filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178221A (en) * 2007-01-18 2008-07-31 Mitsubishi Electric Corp Active filter
JP4679525B2 (en) * 2007-01-18 2011-04-27 三菱電機株式会社 Active filter

Similar Documents

Publication Publication Date Title
JP5003819B2 (en) System stabilization device
US11637493B2 (en) Electrical circuits for power factor correction by measurement and removal of overtones and power factor maximization
JP2023099680A (en) Power conversion device
JPH1051956A (en) Active filter control circuit
JP3247252B2 (en) Control device for power converter
JPH10201099A (en) Active filter
JP2004064947A (en) Voltage controller for voltage-type pwm inverter
JPH11164481A (en) Method for controlling active filter
JP7289409B2 (en) Power conversion device and control device
JP3110898B2 (en) Inverter device
JPH05336663A (en) Harmonic suppressor
JPH10222235A (en) Control circuit of active filter device
JPH11122931A (en) Method for controlling converter
JP2906923B2 (en) Voltage fluctuation suppression device
JP3309894B2 (en) Control method of self-excited var compensator
JP5050622B2 (en) Voltage fluctuation compensator control method
JP2005080404A (en) Control unit for digitally controlled dc power supply
JP3394529B2 (en) Power converter
JP2006136107A (en) Semiconductor power converter and its magnetic asymmetry control method
JPH0446527A (en) Controlling method for current of harmonic wave suppressor
JP2024037273A (en) Static power converter and control method
JP2843220B2 (en) Cycloconverter device
JP4279520B2 (en) Control device for self-excited power converter
JPH09238469A (en) Control unit of power converting equipment and its control method
JP2020108243A (en) Electric power conversion device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050309