JPH105186A - Biomagnetism measuring device - Google Patents

Biomagnetism measuring device

Info

Publication number
JPH105186A
JPH105186A JP8162010A JP16201096A JPH105186A JP H105186 A JPH105186 A JP H105186A JP 8162010 A JP8162010 A JP 8162010A JP 16201096 A JP16201096 A JP 16201096A JP H105186 A JPH105186 A JP H105186A
Authority
JP
Japan
Prior art keywords
data
measuring
magnetic field
noise
current source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8162010A
Other languages
Japanese (ja)
Inventor
Sadamu Tomita
定 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP8162010A priority Critical patent/JPH105186A/en
Publication of JPH105186A publication Critical patent/JPH105186A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biomagnetism measuring device which can accurately estimate a living body action current source in a short test time by effectively using measuring magnetic field data by removing influence by a noise in synchronism with heartbeats. SOLUTION: A prescribed stimulus is imparted to an examinee B through a stimulus applicator 8, and before and after it, for example, biomagnetism measuring data from a SQUID fluxmeter 3 and electrocardio-measuring data from an electrocardio- measuring device 1 are respectively obtained as single gathering unit for a time of about 100 msec. After the data are obtained, a coincidence degree of obtained both data is compared, and when the coincidence degree of both data is high, the obtained biomagnetism measuring data is rejected as receiving influence of a noise by heartbeats, and when the coincidence degree is low, it is preserved as receiving no noise. These operation is repeatedly performed, and after they finish by the prescribed number of times, the preserved biomagnetism measuring data is additively averaged with every data gathering unit, and a generating position of a living body action current source to the SQUID fluxmeter 3 is calculated by a widely known minimum square method and a minimum norm method or the like on the basis of data obtained by an additive average.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被検体内の生体活
動電流源に伴って発生する微小磁場を計測し、その計測
データに基づいて前記被検体内の生体活動電流源を求め
る生体磁気計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biomagnetic measurement for measuring a minute magnetic field generated with a living body current source in a subject and obtaining the living body current source in the subject based on the measurement data. Related to the device.

【0002】[0002]

【従来の技術】近年の超伝導デバイス技術の発展に伴
い、SQUID(Superconducting QUantum Interferen
ce Device )と呼ばれる高感度な磁束計を利用した生体
磁気計測装置が、医療診断装置の一つとして実用化され
つつあり、脳機能の解明や循環器疾患の診断に役立つも
のと期待されている。
2. Description of the Related Art With the development of superconducting device technology in recent years, SQUIDs (Superconducting Quantum Interferen
A biomagnetic measurement device using a high-sensitivity magnetometer called ce Device) is being put to practical use as one of medical diagnostic devices, and is expected to be useful for elucidating brain functions and diagnosing cardiovascular diseases. .

【0003】この生体磁気計測装置では、計測した磁場
データに基づき、例えば、最小自乗法や最小ノルム法等
によって、磁束計を基準とした座標系における生体活動
電流源の位置、向き、大きさなどの推定がなされる(Ju
kka Sarvas "Basic mathematical and electromagnetic
concepts of the biomagnetic inverseproblem" , Phy
s. Med. Biol., 1987, vol.32, No.1, 11-22, Printed
by theUK)。
[0003] In this biomagnetism measuring apparatus, the position, direction, size, etc., of a biological activity current source in a coordinate system based on a magnetometer are determined based on measured magnetic field data by, for example, a least square method or a minimum norm method. Is estimated (Ju
kka Sarvas "Basic mathematical and electromagnetic
concepts of the biomagnetic inverseproblem ", Phy
s. Med. Biol., 1987, vol.32, No.1, 11-22, Printed
by theUK).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、計測対
象となる生体磁場は極めて微弱であるため、被検体の体
動に起因する磁場雑音が正確なデータ解析の妨げとな
り、特に、心臓の鼓動に同期した雑音による影響が大き
い。かかる場合、生体活動電流源の位置、向き、大きさ
などの推定結果に多大な悪影響を与えると共に、予め誤
差が生じることを見越して計測を何度か繰り返さねば成
らず、一回の検査時間が長期化する共に、被検体である
患者に対する負担も過大になるという問題があった。
However, since the biomagnetic field to be measured is extremely weak, the magnetic field noise caused by the body movement of the subject hinders accurate data analysis, and is particularly synchronized with the heartbeat. The effect of the noise is large. In such a case, the position, orientation, size, and the like of the biological activity current source have a great adverse effect on the estimation result, and the measurement must be repeated several times in advance of the occurrence of an error, and one test time is required. There is a problem that the length of time is prolonged and the burden on the patient as the subject becomes excessive.

【0005】本発明は、上記課題を解決するために創案
されたもので、心臓の鼓動に同期した雑音による影響を
取り除くことで、計測磁場データを有効活用し、短い検
査時間で正確な生体活動電流源の推定をなしうる生体磁
気計測装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and eliminates the influence of noise synchronized with the heartbeat, thereby effectively utilizing measured magnetic field data and achieving accurate biological activity in a short examination time. An object of the present invention is to provide a biomagnetism measurement device capable of estimating a current source.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、被検体内の生体活動電流源から発生する
微小磁場を計測し、その計測データに基づいて前記被検
体内の生体活動電流源を求める生体磁気計測装置におい
て、前記被検体から生じる微小磁場を計測する磁束計
と、前記被検体の心電波形を計測する心電計と、前記磁
束計により計測された磁場データと前記心電計により計
測された心電データとの一致度を求め、両者の一致度が
高い場合、前記磁場データを不良データと認識するデー
タ処理手段と、を備えたことを特徴とする。
In order to achieve the above object, the present invention measures a minute magnetic field generated from a biological activity current source in a subject, and based on the measured data, detects a living body in the subject. In a biomagnetism measurement device for determining an active current source, a magnetometer for measuring a minute magnetic field generated from the subject, an electrocardiograph for measuring an electrocardiographic waveform of the subject, and magnetic field data measured by the magnetometer. And a data processing unit for determining the degree of coincidence with the electrocardiographic data measured by the electrocardiograph, and recognizing the magnetic field data as defective data when the degree of coincidence is high.

【0007】前記データ処理装置は、計測された磁場デ
ータのうち、不良データと認識された部分のデータのみ
を棄却し、残りの磁場データに基づいて生体活動電流源
の推定を行うことを特徴とする。
[0007] The data processing device is characterized in that, of the measured magnetic field data, only data of a portion recognized as defective data is rejected, and a biological activity current source is estimated based on the remaining magnetic field data. I do.

【0008】前記データ処理装置は、被検体に所定の刺
激が付与される毎に得られる計測データを一収集単位と
し、不良データが生じた場合に、それを含むデータ収集
単位を棄却することを特徴とする。
[0008] The data processing device uses measurement data obtained each time a predetermined stimulus is applied to a subject as one collection unit, and rejects a data collection unit including defective data when the data is defective. Features.

【0009】[0009]

【発明の実施の形態】本発明の一実施例を図1〜図3に
基づいて説明する。図1は、本発明の一実施例である生
体磁気計測装置の概略構成図で、被検体Bの所定部位に
心電パッド2が複数個貼着されており、心電パッド2か
ら得られた心電信号は心電計測装置1で増幅及びノイズ
処理等をされた後、コンピュータ7に出力される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of a biomagnetism measuring apparatus according to an embodiment of the present invention. The electrocardiographic signal is output to the computer 7 after being subjected to amplification, noise processing and the like in the electrocardiographic measuring device 1.

【0010】SQUID磁束計3は、SQUIDを含む
複数の磁気センサ(S1 〜Sm )からなり、液体ヘリウ
ムデュア4内で液体ヘリウムにより極低温に冷却されて
超伝導状態に保持されており、被検体頭部より生じた微
小磁場を検出し、SQUID駆動回路5、及びA/D変
換器6を介してコンピュータ7に出力される。
The SQUID magnetometer 3 comprises a plurality of magnetic sensors (S1 to Sm) including the SQUID, is cooled to a very low temperature by the liquid helium in the liquid helium dual 4, and is maintained in a superconducting state. The micro magnetic field generated from the head is detected and output to the computer 7 via the SQUID drive circuit 5 and the A / D converter 6.

【0011】コンピュータ7は、SQUID磁束計3で
検出された磁場データと心電計測装置1から得られる心
電データとを比較し、両者の一致度を求めることで、検
出された磁場データの良否を判断し、良好な磁場データ
のみを用いて、SQUID磁束計3に対する生体磁気発
生源を求めるための演算処理を行う。
The computer 7 compares the magnetic field data detected by the SQUID magnetometer 3 with the electrocardiographic data obtained from the electrocardiograph 1, and obtains the degree of coincidence between the two to determine the quality of the detected magnetic field data. Is determined, and arithmetic processing for obtaining the biomagnetic source for the SQUID magnetometer 3 is performed using only good magnetic field data.

【0012】また、生体磁気計測では、自発磁場測定と
誘発磁場測定の2種類の測定方法が存在するが、誘発磁
場測定に際しては、コンピュータ7は、刺激付与装置8
を介して被検体Bに電気的等の刺激を与える。
In the biomagnetic measurement, there are two types of measurement methods, that is, a spontaneous magnetic field measurement and an induced magnetic field measurement.
Is applied to the subject B via the.

【0013】次に、本願発明の作用を図2に示されるコ
ンピュータ7の動作を示すフローチャートに基づいて説
明する。
Next, the operation of the present invention will be described with reference to the flow chart showing the operation of the computer 7 shown in FIG.

【0014】まず、刺激付与装置8を介して被検体Bに
対して所定の刺激を与え(S1)、その前後で100m
sec程度の時間、SQUID磁束計3より生体磁気計
測データを、また、心電計測装置1より心電計測データ
をそれぞれ一収集単位として取得する(S2,S3)。
First, a predetermined stimulus is given to the subject B via the stimulus giving device 8 (S1), and 100 m before and after that.
The biomagnetic measurement data is acquired from the SQUID magnetometer 3 and the electrocardiogram measurement data is acquired from the electrocardiograph 1 as a collection unit for about sec (S2, S3).

【0015】そして、データ取得後、得られた両データ
の一致度を比較する(S4)。ここで、両データの一致
度の比較には、種々の手法が存在するが、例えば、次式
に基づき得られたγの値を指標とすることができる。
After the data is obtained, the degree of coincidence between the obtained data is compared (S4). Here, there are various methods for comparing the degree of coincidence between the two data. For example, a value of γ obtained based on the following equation can be used as an index.

【0016】γ=ΣCi ・mi /((ΣCi 2 )1/2 ・
(Σmi 2 )1/2 ) Ci :時刻iにおける心電データ mi :時刻iにお
ける生体磁気計測データ Σ :一収集単位で得られたデータの加算 ここで、γは、相関係数で、−1から1の間の値をと
り、その絶対値が1に近いほど、両計測データの波形間
の一致度が高いことを示す指標である。
Γ = ΣCi · mi / ((ΣCi 2) 1/2 ·
(Σmi 2) 1/2) Ci: electrocardiographic data at time i mi: biomagnetic measurement data at time i Σ: addition of data obtained in one collection unit where γ is a correlation coefficient and −1 This is an index indicating that the closer the absolute value is to 1, the higher the degree of coincidence between the waveforms of the two measurement data is.

【0017】例えば、得られた両データが図3aに示さ
れる関係にあれば、両データ間の相関が小さく、γは、
1から離れたものとなるが、図3bに示される関係にあ
れば、両データ間の相関が高く、γは、1に近いものと
なる。
For example, if the obtained data has the relationship shown in FIG. 3A, the correlation between the two data is small, and γ is
Although it is far from 1, if the relationship shown in FIG. 3B is satisfied, the correlation between the two data is high, and γ is close to 1.

【0018】このように、両計測データの相関を求め、
γが所定の閾値、例えば0.9より大きければ、両計測
データの一致度が高く、得られた生体磁気計測データは
心臓の鼓動によるノイズの影響を受けたものとして、生
体磁気計測データの一収集単位を棄却し(S6)、γが
所定の閾値より小さければ、ノイズを受けていないもの
として、得られた生体磁気計測データを保存する(S
7)。
In this way, the correlation between the two measurement data is obtained,
If γ is larger than a predetermined threshold value, for example, 0.9, the degree of coincidence between the two measurement data is high, and the obtained biomagnetic measurement data is regarded as being affected by the noise due to the heartbeat, and one of the biomagnetic measurement data The collection unit is rejected (S6), and if γ is smaller than the predetermined threshold, it is determined that noise has not been received, and the obtained biomagnetic measurement data is stored (S6).
7).

【0019】なお、上述した指標γに基づくノイズ判定
の有無は、SQUID磁束計3に含まれる全ての磁気セ
ンサ素子(S1 〜Sm )で得られた生体磁気計測データ
に対して行い、一素子のデータでもノイズの影響を受け
ていると判断された場合は、他の磁気センサ素子で得ら
れたデータも含めて全てを棄却する。
The presence / absence of the noise determination based on the index γ is determined for the biomagnetic measurement data obtained by all the magnetic sensor elements (S 1 to Sm) included in the SQUID magnetometer 3. If it is determined that the data is also affected by noise, all data including data obtained by other magnetic sensor elements is rejected.

【0020】そして、これらの動作を繰り返し行い(S
1〜S7)、所定回数終了後、保存した生体磁気計測デ
ータを各データ収集単位毎に加算平均し、加算平均され
たデータに基づいて周知の最小自乗法や最小ノルム法等
によりSQUID磁束計3に対する生体活動電流源の発
生位置を算出する(S8)。
These operations are repeated (S
1 to S7), after completion of the predetermined number of times, the stored biomagnetic measurement data is added and averaged for each data collection unit, and the SQUID magnetometer 3 is obtained based on the added and averaged data by a well-known least square method or a minimum norm method. The generation position of the biological activity current source with respect to is calculated (S8).

【0021】なお、上述した実施例では、得られた両デ
ータの一致度を比較するのに、両者の相関関係を示す指
標γを用いたが、本発明は、これに限らず、例えば、心
電データと同時刻付近でプラス方向とマイナス方向に値
が触れたか場合に、生体磁気計測データが心臓の鼓動に
よるノイズを受けたものと判断して、データを棄却する
よう構成してもよい。
In the above-described embodiment, the index γ indicating the correlation between the two data is used for comparing the degree of coincidence of the two obtained data. However, the present invention is not limited to this. If a value touches in the plus direction and the minus direction near the same time as the electrical data, it may be determined that the biomagnetic measurement data has received noise due to the heartbeat, and the data may be discarded.

【0022】[0022]

【発明の効果】本発明によれば、生体磁気計測時に、心
臓の鼓動によりノイズの影響を受けた誤差原因となる生
体磁気計測データのみ棄却され、ノイズの影響のない正
確な生体磁気計測データのみに基づいて演算処理される
ため、短い検査時間で正確な生体活動電流源の推定をな
しうると共に、患者への負担も大幅に軽減される。
According to the present invention, at the time of biomagnetism measurement, only biomagnetic measurement data which causes an error affected by noise due to the heartbeat is rejected, and only accurate biomagnetism measurement data without noise is rejected. , The accurate estimation of the biological activity current source can be performed in a short examination time, and the burden on the patient is greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる生体磁気計測装置の一実施例を
示す図である。
FIG. 1 is a diagram showing an embodiment of a biomagnetism measuring apparatus according to the present invention.

【図2】本発明における生体活動電流源推定のためのデ
ータ処理動作を示すフローチャートである。
FIG. 2 is a flowchart showing a data processing operation for estimating a life activity current source according to the present invention.

【図3】計測された生体磁気計測データと心電データの
一例を示す図である。
FIG. 3 is a diagram showing an example of measured biomagnetic measurement data and electrocardiogram data.

【符号の説明】[Explanation of symbols]

1 心電計測装置 2 心電パット 3 SQUID磁束計 4 液体ヘリウムデュア 5 SQUID駆動回路 6 A/D変換器 7 コンピュータ 8 刺激付与装置 REFERENCE SIGNS LIST 1 electrocardiographic measuring device 2 electrocardiographic pat 3 SQUID magnetometer 4 liquid helium dual 5 SQUID drive circuit 6 A / D converter 7 computer 8 stimulating device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被検体内の生体活動電流源から発生する
微小磁場を計測し、その計測データに基づいて前記被検
体内の生体活動電流源を求める生体磁気計測装置におい
て、 前記被検体から生じる微小磁場を計測する磁束計と、 前記被検体の心電波形を計測する心電計と、 前記磁束計により計測された磁場データと前記心電計に
より計測された心電データとの一致度を求め、両者の一
致度が高い場合、前記磁場データを不良データと認識す
るデータ処理手段と、 を備えたことを特徴とする生体磁気計測装置。
1. A biomagnetism measuring apparatus for measuring a micro magnetic field generated from a biological activity current source in a subject and obtaining a biological activity current source in the subject based on the measurement data. A magnetometer for measuring a minute magnetic field, an electrocardiograph for measuring the electrocardiographic waveform of the subject, and a degree of coincidence between the magnetic field data measured by the magnetometer and the electrocardiographic data measured by the electrocardiograph. And a data processing means for recognizing the magnetic field data as defective data when the degree of coincidence is high.
JP8162010A 1996-06-21 1996-06-21 Biomagnetism measuring device Withdrawn JPH105186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8162010A JPH105186A (en) 1996-06-21 1996-06-21 Biomagnetism measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8162010A JPH105186A (en) 1996-06-21 1996-06-21 Biomagnetism measuring device

Publications (1)

Publication Number Publication Date
JPH105186A true JPH105186A (en) 1998-01-13

Family

ID=15746340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8162010A Withdrawn JPH105186A (en) 1996-06-21 1996-06-21 Biomagnetism measuring device

Country Status (1)

Country Link
JP (1) JPH105186A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217798A (en) * 1999-02-02 2000-08-08 Hitachi Ltd Biological magnetic field measuring instrument
JP2000350709A (en) * 1999-04-08 2000-12-19 Heartstream Inc Multivariable artifact detection
US6609019B1 (en) 1999-02-02 2003-08-19 Hitachi, Ltd. Physiological magnetic field measuring instrument for measuring magnetic field at plural positions of living body
JP2003530557A (en) * 2000-04-07 2003-10-14 ノーザン・デジタル・インコーポレイテッド Error detection method in determining magnetic position or orientation
JP2004065605A (en) * 2002-08-07 2004-03-04 Hitachi High-Technologies Corp Biological magnetic field measuring instrument
US8870782B2 (en) 2010-09-29 2014-10-28 Denso Corporation Pulse wave analyzer and blood pressure estimator using the same
US11666262B2 (en) 2017-03-17 2023-06-06 Ricoh Company, Ltd. Information display device, biological signal measurement system and computer-readable recording medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217798A (en) * 1999-02-02 2000-08-08 Hitachi Ltd Biological magnetic field measuring instrument
US6609019B1 (en) 1999-02-02 2003-08-19 Hitachi, Ltd. Physiological magnetic field measuring instrument for measuring magnetic field at plural positions of living body
JP2000350709A (en) * 1999-04-08 2000-12-19 Heartstream Inc Multivariable artifact detection
JP4574793B2 (en) * 1999-04-08 2010-11-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Multivariable artifact assessment
JP2003530557A (en) * 2000-04-07 2003-10-14 ノーザン・デジタル・インコーポレイテッド Error detection method in determining magnetic position or orientation
JP2004065605A (en) * 2002-08-07 2004-03-04 Hitachi High-Technologies Corp Biological magnetic field measuring instrument
US8870782B2 (en) 2010-09-29 2014-10-28 Denso Corporation Pulse wave analyzer and blood pressure estimator using the same
US11666262B2 (en) 2017-03-17 2023-06-06 Ricoh Company, Ltd. Information display device, biological signal measurement system and computer-readable recording medium

Similar Documents

Publication Publication Date Title
Saba et al. Ventricular mass index using magnetic resonance imaging accurately estimates pulmonary artery pressure
Kovács et al. A rule-based phonocardiographic method for long-term fetal heart rate monitoring
US6389308B1 (en) System and device for multi-scale analysis and representation of electrocardiographic data
US6580944B1 (en) Method and apparatus for diagnosing sleep breathing disorders while a patient in awake
JP3473210B2 (en) Biomagnetic measurement device
EP0552009A1 (en) ECG analyser
US20020062076A1 (en) Apparatus for measuring bio-magnetic fields
Agostinelli et al. Noninvasive fetal electrocardiography Part I: Pan-tompkins' algorithm adaptation to fetal R-peak identification
Quesnel et al. Real-time biosignal quality analysis of ambulatory ECG for detection of myocardial ischemia
US7340289B2 (en) Biomagnetic field measuring apparatus
Jung et al. Accurate ballistocardiogram based heart rate estimation using an array of load cells in a hospital bed
Zhou et al. Philips QT interval measurement algorithms for diagnostic, ambulatory, and patient monitoring ECG applications
Schlesinger et al. Estimation and tracking of blood pressure using routinely acquired photoplethysmographic signals and deep neural networks
JPH105186A (en) Biomagnetism measuring device
Lamarque et al. A new concept of virtual patient for real-time ECG analyzers
JP3230460B2 (en) Biomagnetic measurement device
Tsukada et al. Newly developed magnetocardiographic system for diagnosing heart disease
JP3387236B2 (en) Biomagnetic measurement device
Brisinda et al. Multichannel mapping of fetal magnetocardiogram in an unshielded hospital setting
Mason et al. Simple online detector of auditory evoked cortical potentials
Tsukada et al. Magnetocardiographic mapping characteristic for diagnosis of ischemic heart disease
JP2752884B2 (en) Life activity current source estimation method
JPS61103431A (en) Apparatus for measuring health state
Ogata et al. Study of spatial filter for magnetocardiography measurements without a magnetically shielded room
Sazonova et al. Sleep state scoring in infants from respiratory and activity measurements

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040203