JP2752884B2 - Life activity current source estimation method - Google Patents

Life activity current source estimation method

Info

Publication number
JP2752884B2
JP2752884B2 JP5160450A JP16045093A JP2752884B2 JP 2752884 B2 JP2752884 B2 JP 2752884B2 JP 5160450 A JP5160450 A JP 5160450A JP 16045093 A JP16045093 A JP 16045093A JP 2752884 B2 JP2752884 B2 JP 2752884B2
Authority
JP
Japan
Prior art keywords
current source
grid
grid point
biological activity
minimum norm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5160450A
Other languages
Japanese (ja)
Other versions
JPH06343613A (en
Inventor
定 ▲富▼田
直一 八巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHISUTEMU KEIKAKU KENKYUSHO KK
Shimazu Seisakusho KK
Original Assignee
SHISUTEMU KEIKAKU KENKYUSHO KK
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHISUTEMU KEIKAKU KENKYUSHO KK, Shimazu Seisakusho KK filed Critical SHISUTEMU KEIKAKU KENKYUSHO KK
Priority to JP5160450A priority Critical patent/JP2752884B2/en
Priority to US08/252,788 priority patent/US5601081A/en
Priority to DE69420615T priority patent/DE69420615T2/en
Priority to FI942643A priority patent/FI942643A/en
Priority to CA002125086A priority patent/CA2125086A1/en
Priority to EP94108543A priority patent/EP0627192B1/en
Priority to CN94106684A priority patent/CN1102774A/en
Priority to CNA021061009A priority patent/CN1491612A/en
Publication of JPH06343613A publication Critical patent/JPH06343613A/en
Priority to US08/739,452 priority patent/US5671740A/en
Priority to US08/739,463 priority patent/US5755227A/en
Priority to US08/739,461 priority patent/US5682889A/en
Application granted granted Critical
Publication of JP2752884B2 publication Critical patent/JP2752884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、生体活動電流源の位
置,向き,大きさを推定する方法に係り、特に、最小ノ
ルム法を用いた生体活動電流源推定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the position, orientation, and size of a biological activity current source, and more particularly to a method for estimating a biological activity current source using a minimum norm method.

【0002】[0002]

【従来の技術】生体に刺激を与えると、細胞膜を挟んで
形成されている分極が壊れて生体活動電流が流れる。こ
の生体活動電流は、脳や心臓において現れ、脳波,心電
図として記録される。また、生体活動電流によって生じ
る磁界は、脳磁図,心磁図として記録される。
2. Description of the Related Art When a living body is stimulated, the polarization formed across a cell membrane is broken and a living activity current flows. This biological activity current appears in the brain and heart, and is recorded as an electroencephalogram and an electrocardiogram. The magnetic field generated by the biological activity current is recorded as a magnetoencephalogram and a magnetocardiogram.

【0003】近年、生体内の微小な磁界を計測する装置
として、SQUID(Superconduc-ting Quantum Inter
ference Device:超電導量子干渉計)を用いたセンサが
開発されている。このセンサを頭部の外側に置き、脳内
に生じた生体活動電流源である電流双極子(以下、単に
電流源とも称する)による微小磁界をそのセンサで無侵
襲に計測することができる。計測された磁界データから
病巣に関連した電流源の位置, 向き, 大きさを推定し、
推定した電流源をX線CT装置やMRI装置で得られた
断層像上に表示させて患部等の物理的位置の特定などに
用いている。
Recently, as a device for measuring a minute magnetic field in a living body, SQUID (Superconducting Quantum Inter
A sensor using an ference device (superconducting quantum interferometer) has been developed. This sensor is placed outside the head, and the sensor can non-invasively measure a small magnetic field generated by a current dipole (hereinafter simply referred to as a current source), which is a biological activity current source, generated in the brain. Estimate the position, direction, and size of the current source related to the lesion from the measured magnetic field data,
The estimated current source is displayed on a tomographic image obtained by an X-ray CT apparatus or an MRI apparatus and used for specifying a physical position of an affected part or the like.

【0004】従来、電流源の推定方法の一つとして、最
小ノルム法を用いた手法がある(例えば、W.H.Kullman
n, K.D.Jandt, K.Rehm, H.A.Schlitt, W.J.Dallas and
W.E.Smith, Advances in Biomagnetism, pp.571-574, P
lenum Pless, New York, 1989) 。
Conventionally, as one of current source estimation methods, there is a method using a minimum norm method (for example, WHKullman
n, KDJandt, K. Rehm, HASchlitt, WJDallas and
WESmith, Advances in Biomagnetism, pp.571-574, P
lenum Pless, New York, 1989).

【0005】以下、図3を参照して、最小ノルム法を用
いた従来の電流源推定方法を説明する。図3に示すよう
に、被検体Mに近接してマルチチャンネルSQUIDセ
ンサ1が配備される。マルチチャンネルSQUIDセン
サ1は、デュアーと呼ばれる容器内に多数の磁気センサ
(ピックアップコイル)S1 〜Sm を液体窒素などの冷
媒に浸漬して収納している。
Hereinafter, a conventional current source estimating method using the minimum norm method will be described with reference to FIG. As shown in FIG. 3, a multi-channel SQUID sensor 1 is provided near the subject M. Multichannel SQUID sensor 1 is accommodated by immersing a number of magnetic sensors (pickup coil) S 1 to S m in the refrigerant such as liquid nitrogen in a container called a dewar.

【0006】一方、被検体Mの診断対象領域である例え
ば脳に、多数の格子点(1)〜(n)を設定し、各格子
点に未知の電流源(電流双極子)を仮定し、各電流源を
3次元ベトクルVP(j=1〜n)で表す。そうする
と、SQUIDセンサ1の各磁気センS〜Sで検出
される磁界の強さB〜Bは、次式(1)で表され
る。なお、(1)式は、ビオサバールの法則、およびS
QUIDセンサ1の各磁気センS〜Sがコイルでそ
れぞれ構成されており、したがって、各磁気センS
は各コイルの軸芯方向の磁界成分を検出することか
ら導出される。
On the other hand, a large number of grid points (1) to (n) are set in, for example, the brain, which is a diagnosis target area of the subject M, and an unknown current source (current dipole) is assumed at each grid point. each current source represented by 3-dimensional Betokuru VP j (j = 1~n). Then, the magnetic field intensities B i to B m detected by the magnetic sensors S 1 to S m of the SQUID sensor 1 are represented by the following equation (1). Equation (1) is based on Biot-Savart's law and S
Each magnetic sensor S 1 to S m of QUID sensor 1 are each configured by a coil, therefore, the magnetic sensor S 1 ~
S m is derived from detecting the magnetic field component in the axial direction of each coil.

【0007】[0007]

【数1】 (Equation 1)

【0008】 式(1) において、VPj =(Pjx,Pjy,Pjz) αij=(αijx,αijy,αijz ) で表される。なお、αijは、格子点上にX,Y,Z方向
の単位大きさの電流源を置いた場合に磁気センサS1
m の各位置で検出される磁界の強さを表す既知の係数
である。
In equation (1), VP j = (P jx , P jy , P jz ) α ij = (α ijx, α ijy, α ijz ). Note that α ij is the magnetic sensors S 1 to S 1 when a current source having a unit size in the X, Y, and Z directions is placed on a grid point.
Is a known coefficient which represents the strength of the magnetic field detected by each position of the S m.

【0009】 ここで、〔B〕=(B1 ,B2 ,…,Bm ) 〔P〕=(P1x,P1y,P1z,P2x,P2y,P2z,…,
nx,Pny,Pnz) のように表すと、(1) 式は(2) 式のような線形の関係式
に書き換えられる。 〔B〕=A〔P〕 ………(2)
[B] = (B 1 , B 2 ,..., B m ) [P] = (P 1x , P 1y , P 1z , P 2x , P 2y , P 2z ,.
(P nx , P ny , P nz ), the expression (1) can be rewritten into a linear relational expression like the expression (2). [B] = A [P] (2)

【0010】(2) 式において、Aは次式(3) で表される
3n×m個の要素をもった行列である。
In the equation (2), A is a matrix having 3n × m elements represented by the following equation (3).

【0011】[0011]

【数2】 (Equation 2)

【0012】ここで、Aの逆行列をA- で表すと、
〔P〕は次式(4) で表される。 〔P〕=A- 〔B〕 ………(4)
Here, when the inverse matrix of A is represented by A ,
[P] is represented by the following equation (4). (P) = A - (B) ......... (4)

【0013】(4) 式で表される連立方程式は、式の個数
m(磁気センサS1 〜Sm の個数で、例えば数10〜数
100)よりも、未知数の個数n(各格子点に仮定され
る電流源の個数で、例えば数100〜数1000)が多
くあるので、解が求まらない。そこで、ベクトル〔P〕
のノルム|〔P〕|を最小にするという条件を付加す
る。そうすると、上式(4)は次式(5) のように表され
る。 〔P〕=A+ 〔B〕 ………(5) ここで、A+ は次式(6) で表される一般逆行列である。 A+ =At (AAt -1 ………(6) ただし、At はAの転置行列である。
The simultaneous equation represented by the equation (4) is obtained by comparing the number m of equations (the number of magnetic sensors S 1 to S m , for example, several 10 to several hundred) with the number n of unknowns (for each grid point). Since there are many assumed current sources (for example, several hundred to several thousand), no solution can be obtained. Then, the vector [P]
Of minimizing the norm | [P] | Then, the above equation (4) is expressed as the following equation (5). [P] = A + [B] (5) where A + is a generalized inverse matrix expressed by the following equation (6). A + = A t (AA t ) -1 ......... (6) However, A t is the transpose matrix of A.

【0014】上式(5) を解いて各格子点上の電流源VPj
の方向,大きさを推定し、その中で値の最も大きなもの
を真の電流源に近いものとしている。これが、最小ノル
ム法による電流源推定方法の原理である。
By solving the above equation (5), the current sources VP j on each grid point
Are estimated, and the one having the largest value among them is assumed to be close to the true current source. This is the principle of the current source estimation method using the minimum norm method.

【0015】さらに、最小ノルム法の位置分解能を向上
させるために格子点分割を細分しながら最小ノルム解を
繰り返し求める方法も提案されている(例えば、 Y.Oka
da,J.Huang and C.Xu, 8th International Conference
on Biomagnetism, Munster,August 1991)。以下、図4
を参照して、この方法を簡単に説明する。
Further, there has been proposed a method of repeatedly obtaining the minimum norm solution while subdividing the grid points in order to improve the position resolution of the minimum norm method (for example, Y.Oka).
da, J.Huang and C.Xu, 8th International Conference
on Biomagnetism, Munster, August 1991). Hereinafter, FIG.
This method will be described briefly with reference to FIG.

【0016】図4は、図3に示した格子点群Nの一部を
拡大して示したもので、図中の符号Jは、上述した最小
ノルム法を用いて推定された真の電流源に近い電流源が
存在する格子点である。この格子点Jの周りに、細分さ
れた格子点群M(図4では小さな黒点で示す)を追加設
定する。そして、最初に設定した格子点群Nに新たに設
定した格子点群Mを含ませた形態で、前述と同様の手法
を用いて、より真の電流源に近い電流源を推定する。
FIG. 4 is an enlarged view of a part of the lattice point group N shown in FIG. 3, and the symbol J in the figure represents a true current source estimated using the above-described minimum norm method. Is a grid point where a current source close to Around this grid point J, a subdivided grid point group M (indicated by small black dots in FIG. 4) is additionally set. Then, a current source closer to the true current source is estimated by using the same method as described above, with the newly set grid point group M included in the initially set grid point group N.

【0017】[0017]

【発明が解決しようとする課題】しかしながら、このよ
うな構成を有する従来例の場合には、次のような問題が
ある。図4に示した従来方法によれば、最初に設定した
格子点群Nに追加して、細分化された格子点群Mを新た
に設定するので、格子点の数が多くなる。そのため、
(5) 式におけるベクトル〔P〕の要素が多くなり、最小
ノルム解の計算精度が低下するという難点がある。
However, the prior art having such a structure has the following problems. According to the conventional method shown in FIG. 4, the subdivided grid point group M is newly set in addition to the initially set grid point group N, so that the number of grid points increases. for that reason,
There is a disadvantage that the number of elements of the vector [P] in the equation (5) increases, and the calculation accuracy of the minimum norm solution decreases.

【0018】この発明は、このような事情に鑑みてなさ
れたものであって、最小ノルム法を繰り返し用いても計
算精度を維持して、電流源を精度よく推定することがで
きる生体活動電流源推定方法を提供することを目的とし
ている。
The present invention has been made in view of such circumstances, and a biological activity current source capable of accurately estimating a current source while maintaining the calculation accuracy even when the minimum norm method is repeatedly used. It aims to provide an estimation method.

【0019】[0019]

【課題を解決するための手段】この発明は、このような
目的を達成するために、次のような構成をとる。すなわ
ち、この発明は、生体活動電流によって生じる磁界を複
数個の磁気センサで検出することによって、前記生体活
動電流源の位置,大きさ,方向の何れかを含む物理量を
推定するにあたり、被検体内に多数の格子点を設定し、
各格子点上の未知の電流源と前記各磁気センサによって
計測された磁界データとの関係式を、前記各格子点の電
流源を要素としたベクトルのノルムを最小にするという
条件を付加することによって解いて、各電流源の物理量
を求める手法(最小ノルム法)を用いた生体活動電流源
推定方法において、被検体内に多数の格子点を設定し、
各格子点上の電流源を前記最小ノルム法により求める第
1過程と、前記第1過程で求められた各格子点の電流源
の内で、値の大きな電流源が存在する格子点の付近に他
の格子点群を移動させる第2過程と、前記移動させた各
格子点上の電流源を前記最小ノルム法を用いて求める第
3過程とを備えたものである。
The present invention has the following configuration to achieve the above object. That is, the present invention detects a magnetic field generated by a biological activity current with a plurality of magnetic sensors to estimate a physical quantity including any of the position, size, and direction of the biological activity current source. Set many grid points in
The relational expression between the unknown current source on each grid point and the magnetic field data measured by each magnetic sensor is added with a condition that the norm of a vector having the current source at each grid point as an element is minimized. In the biological activity current source estimating method using the method of obtaining the physical quantity of each current source (minimum norm method), a number of grid points are set in the subject,
A first step of obtaining a current source on each grid point by the minimum norm method, and, among the current sources of each grid point obtained in the first step, in the vicinity of a grid point where a current source having a large value exists. A second step of moving another group of grid points; and a third step of obtaining a current source on each of the moved grid points using the minimum norm method.

【0020】[0020]

【作用】この発明の作用は次のとおりである。第1過程
で推定された電流源は、真の電流源ではないが、それに
近い電流源である。したがって、第2過程では、第1過
程で設定した格子点群を、前記推定された電流源が存在
する格子点に近づけ、第3過程において、移動させた各
格子点上の電流源を最小ノルム法により推定する。つま
り、格子点の数を変えずに、格子点の位置を移動させる
ことにより、真の電流源を推定しているので、最小ノル
ム解の計算精度を維持しながら、真の電流源が精度よく
推定される。
The operation of the present invention is as follows. The current source estimated in the first step is not a true current source, but a current source close thereto. Therefore, in the second step, the group of grid points set in the first step is brought close to the grid point where the estimated current source exists, and in the third step, the current source on each grid point moved is set to the minimum norm. Estimate by the method. In other words, since the true current source is estimated by moving the positions of the grid points without changing the number of grid points, the true current source can be accurately calculated while maintaining the calculation accuracy of the minimum norm solution. Presumed.

【0021】[0021]

【実施例】以下、図面を参照してこの発明の一実施例を
説明する。本実施例においても、図3に示した従来方法
と同様に、マルチチャンネルSQUIDセンサ1を被検
体Mの例えば脳に近接配備し、脳内に生じた生体活動電
流源による微小磁界をSQUIDセンサ1で無侵襲に計
測して、磁界データが収集される。以下、図1のフロー
チャートに示した手順で、収集した磁界データに基づ
き、真の電流源が推定される。
An embodiment of the present invention will be described below with reference to the drawings. Also in the present embodiment, similarly to the conventional method shown in FIG. 3, the multi-channel SQUID sensor 1 is arranged close to, for example, the brain of the subject M, and a small magnetic field generated in the brain by a biological activity current source is generated in the SQUID sensor 1. The measurement is performed non-invasively and magnetic field data is collected. Hereinafter, the true current source is estimated based on the collected magnetic field data by the procedure shown in the flowchart of FIG.

【0022】まず、図3に示した従来例と同様に、診断
対象領域である例えば脳内に3次元の格子点群Nを均等
に設定する(ステップS1)。
First, similarly to the conventional example shown in FIG. 3, a three-dimensional grid point group N is uniformly set in, for example, a brain which is a diagnosis target area (step S1).

【0023】そして、上述した最小ノルム法を用いて、
各格子点の電流源(最小ノルム解)を求める(ステップ
S2)。
Then, using the minimum norm method described above,
A current source (minimum norm solution) at each grid point is obtained (step S2).

【0024】次に、ステップS2で求められた各格子点
の電流源の内、その値の大きな電流源が存在する格子点
の付近へ他の格子点群を移動させる(ステップS3)。
図2に、その様子を示す。図中、符号Nは、ステップS
1で設定された最初の格子点群である。そして、図中に
×印で示した格子点が、ステップS2で求められた各電
流源の内、値の大きな電流源が存在する格子点である。
この格子点に向かって他の格子点群が移動することによ
り、格子点数は格子点群Nと同じで、間隔が密になった
格子点群N1 が得られる。
Next, among the current sources at the respective grid points obtained in step S2, another group of grid points is moved to the vicinity of a grid point where a current source having a large value exists (step S3).
FIG. 2 shows this state. In the figure, the symbol N indicates the step S
This is the first grid point group set at 1. The grid points indicated by crosses in the figure are the grid points where the current source having a large value exists among the current sources obtained in step S2.
By moving the other lattice point group toward this lattice point, a lattice point group N 1 having the same number of lattice points as the lattice point group N and a close interval is obtained.

【0025】ステップS3において、値の大きな電流源
が存在する格子点に、他の格子点群を近づけるための手
法は特に限定しないが、例えば、次のような手法が例示
される。ステップS2で求められた各格子点の電流源の
大きさを質量と考え、重力によって各格子点間に引力が
働くと仮定する。そうすると、各格子点は、質量の大き
な格子点に近づいて行き、質量の大きな格子点に近い
程、密度の高い格子点群が得られる。各格子点の移動距
離は適宜に設定される。
In step S3, a method for bringing another group of lattice points close to a lattice point where a current source having a large value exists is not particularly limited. For example, the following method is exemplified. The magnitude of the current source at each grid point obtained in step S2 is considered as a mass, and it is assumed that an attractive force acts between each grid point due to gravity. Then, each lattice point approaches a lattice point having a large mass, and a lattice point group having a higher density is obtained as the lattice point is closer to a lattice point having a large mass. The moving distance of each grid point is set appropriately.

【0026】ステップS4では、ステップS3で移動さ
れて得られた格子点群N1 の内、最小の格子点間隔が、
予め定められた間隔以下であるかを判定する。この間隔
は、電流源の推定位置精度に応じて適宜に定められる。
In step S4, the minimum grid point interval of the grid point group N 1 obtained by moving in step S3 is:
It is determined whether the distance is equal to or less than a predetermined interval. This interval is appropriately determined according to the estimated position accuracy of the current source.

【0027】最小の格子点間隔が所定値以下でなけれ
ば、ステップS2に戻り、元の格子点を移動させて得ら
れた格子点群N1 について、最小ノルム法により各格子
点の電流源を求める。上述したように、格子点群N1
格子点数は、最初の格子点群Nの格子点数と同じであ
る。つまり、上述した最小ノルム法で用いた線形式(5)
において(下に改めて示す)、 〔P’〕=A+ ’〔B〕 ………(5) ベクトル〔P’〕の要素の数は、増加しておらず一定で
ある。このことは、最小ノルム解の計算精度が維持され
ていることを意味している。一方、格子点を移動させた
関係で、2回目の最小ノルム法では、図2に示した斜線
領域では、電流源の存在が無視される。しかし、もとも
とこれらの領域は、真の電流源が在ると推定される位置
から離れた領域であり、これらの領域内の格子点に真の
電流源が存在する確率は極めて低いので、この領域を除
外して電流源を推定しても、推定精度が低下するおそれ
はない。
If [0027] The minimum distance between lattice points is not less than a predetermined value, the process returns to step S2, the grid point group N 1 obtained by moving the original lattice points, the current source of each lattice point by the least norm method Ask. As described above, the number of grid points of the grid point group N 1 is the same as the number of grid points of the first grid point group N. In other words, the linear form (5) used in the minimum norm method described above
(Represented below), [P '] = A + ' [B] (5) The number of elements of the vector [P '] is constant without increasing. This means that the calculation accuracy of the minimum norm solution is maintained. On the other hand, in the second minimum norm method, the existence of the current source is ignored in the hatched area shown in FIG. However, these regions are originally away from the position where the true current source is assumed to exist, and the probability that the true current source exists at the lattice points in these regions is extremely low. Even if the current source is estimated by excluding, the estimation accuracy does not decrease.

【0028】そして、前回と同様に、格子点群N1 の各
格子点の電流源を最小ノルム法により求め(ステップS
2)、その内、値の大きな電流源が真の電流源に近い電
流源であると推定し、この電流源が存在する格子点に他
の格子点群を近づけていき新たな格子点群N2 を設定す
る(ステップS3)。
Then, similarly to the previous time, the current source at each grid point of the grid point group N 1 is obtained by the minimum norm method (step S
2) Among them, it is estimated that a current source having a large value is a current source close to a true current source, and another lattice point group is brought closer to a lattice point where this current source exists, and a new lattice point group N 2 is set (step S3).

【0029】以上の処理を繰り返し実行し、ステップS
4において、最小の格子点間隔が所定値以下になったと
判断されると、最終のステップS2で求められた格子点
群の各電流源が真の電流源であると推定する。
The above processing is repeatedly executed, and step S
In 4, when it is determined that the minimum grid point interval is equal to or smaller than a predetermined value, it is estimated that each current source of the grid point group obtained in the final step S2 is a true current source.

【0030】[0030]

【発明の効果】以上の説明から明らかなように、この発
明によれば、1回目の最小ノルム法で推定された値の大
きな電流源が存在する格子点の付近に他の格子点群を移
動させ、次の最小ノルム法では、格子点の数は前回と同
数で、格子点間隔のみを狭くした状態で電流源を推定し
ているので、最小ノルム解の計算精度を維持しながら、
電流源を精度よく推定することができる。
As is apparent from the above description, according to the present invention, another group of grid points is moved to the vicinity of a grid point where a current source having a large value estimated by the first minimum norm method exists. Then, in the following minimum norm method, the number of grid points is the same as the previous time, and the current source is estimated with only the grid point interval narrowed, so while maintaining the calculation accuracy of the minimum norm solution,
The current source can be accurately estimated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に係る生体活動電流源推定方法の手順を
示したフローチャートである。
FIG. 1 is a flowchart illustrating a procedure of a life activity current source estimating method according to an embodiment.

【図2】格子点を移動させた状態を示した図である。FIG. 2 is a diagram showing a state in which lattice points are moved.

【図3】従来の生体活動電流源推定方法の説明に供する
図である。
FIG. 3 is a diagram provided for explanation of a conventional life activity current source estimating method.

【図4】従来の生体活動電流源推定方法の説明に供する
図である。
FIG. 4 is a diagram provided for explanation of a conventional life activity current source estimating method.

【符号の説明】[Explanation of symbols]

1…マルチチャンネルSQUIDセンサ S1 〜Sm …磁気センサ M…被検体 N…最初の格子点群 N1 ,N2 …移動後の格子点群1 ... multichannel SQUID sensor S 1 to S m ... magnetic sensor M ... subject N ... first grid point group N 1, N 2 ... grid point group after movement

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 生体活動電流によって生じる磁界を複数
個の磁気センサで検出することによって、前記生体活動
電流源の位置,大きさ,方向の何れかを含む物理量を推
定するにあたり、被検体内に多数の格子点を設定し、各
格子点上の未知の電流源と前記各磁気センサによって計
測された磁界データとの関係式を、前記各格子点の電流
源を要素としたベクトルのノルムを最小にするという条
件を付加することによって解いて、各電流源の物理量を
求める手法(最小ノルム法)を用いた生体活動電流源推
定方法において、被検体内に多数の格子点を設定し、各
格子点上の電流源を前記最小ノルム法により求める第1
過程と、前記第1過程で求められた各格子点の電流源の
内で、値の大きな電流源が存在する格子点の付近に他の
格子点群を移動させる第2過程と、前記移動させた各格
子点上の電流源を前記最小ノルム法を用いて求める第3
過程とを備えたことを特徴とする生体活動電流源推定方
法。
A magnetic field generated by a biological activity current is detected by a plurality of magnetic sensors to estimate a physical quantity including any of the position, size, and direction of the biological activity current source. A large number of grid points are set, and the relational expression between the unknown current source on each grid point and the magnetic field data measured by each of the magnetic sensors is minimized with the norm of the vector having the current source at each grid point as an element. In the biological activity current source estimation method using the method of obtaining the physical quantity of each current source (minimum norm method), a large number of grid points are set in the subject, A first method for obtaining a current source on a point by the minimum norm method
A second step of moving another group of lattice points near a lattice point where a current source having a large value exists among the current sources of the respective lattice points obtained in the first step; and Third, the current sources on each of the grid points are determined using the minimum norm method.
And a biological activity current source estimating method.
JP5160450A 1993-06-04 1993-06-04 Life activity current source estimation method Expired - Fee Related JP2752884B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP5160450A JP2752884B2 (en) 1993-06-04 1993-06-04 Life activity current source estimation method
US08/252,788 US5601081A (en) 1993-06-04 1994-06-02 Method and apparatus for deducing bioelectric current sources
FI942643A FI942643A (en) 1993-06-04 1994-06-03 Method and apparatus for dedusing bioelectric power supplies
CA002125086A CA2125086A1 (en) 1993-06-04 1994-06-03 Method and apparatus for deducing bioelectric current sources
EP94108543A EP0627192B1 (en) 1993-06-04 1994-06-03 Method and apparatus for deducing bioelectric current sources
DE69420615T DE69420615T2 (en) 1993-06-04 1994-06-03 Method and device for measuring bioelectric sources
CN94106684A CN1102774A (en) 1993-06-04 1994-06-04 Method and apparatus for deducing bioelectric current sources
CNA021061009A CN1491612A (en) 1993-06-04 1994-06-04 Method and device for obtaining biological current source
US08/739,452 US5671740A (en) 1993-06-04 1996-10-29 Method and apparatus for deducing bioelectric current sources
US08/739,463 US5755227A (en) 1993-06-04 1996-10-29 Method and apparatus for deducing bioelectric current sources
US08/739,461 US5682889A (en) 1993-06-04 1996-10-29 Method and apparatus for deducing bioelectric current sources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5160450A JP2752884B2 (en) 1993-06-04 1993-06-04 Life activity current source estimation method

Publications (2)

Publication Number Publication Date
JPH06343613A JPH06343613A (en) 1994-12-20
JP2752884B2 true JP2752884B2 (en) 1998-05-18

Family

ID=15715200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5160450A Expired - Fee Related JP2752884B2 (en) 1993-06-04 1993-06-04 Life activity current source estimation method

Country Status (1)

Country Link
JP (1) JP2752884B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3033508B2 (en) * 1997-01-20 2000-04-17 日本電気株式会社 Method for estimating active site in living body

Also Published As

Publication number Publication date
JPH06343613A (en) 1994-12-20

Similar Documents

Publication Publication Date Title
US6539245B2 (en) Biomagnetic field measuring method and apparatus
US5526811A (en) Apparatus and process for determining the sources of biomagnetic activity
US6370414B1 (en) System and method for measuring, estimating and displaying RMS current density maps
JP3473210B2 (en) Biomagnetic measurement device
Gusev et al. Ultra-sensitive vector magnetometer for magnetocardiographic mapping
US7400984B2 (en) Biomagnetic measurement apparatus
JP2752884B2 (en) Life activity current source estimation method
JP4006543B2 (en) Bioactive current source estimation device
JPH105186A (en) Biomagnetism measuring device
JP2752885B2 (en) Life activity current source estimation method
JP3298312B2 (en) Biological activity current source estimation device
JP3227958B2 (en) Life activity current source estimation method
JP3237359B2 (en) Life activity current source estimation method
JP4000343B2 (en) Bioactive current source estimation device
Zhao et al. An integrated maximum current density approach for noninvasive detection of myocardial infarction
JP4791797B2 (en) Biomagnetic field measurement device
JP3324262B2 (en) Life activity current source estimation method
JP2795211B2 (en) Biomagnetic measurement device
JPH0515504A (en) Estimation method of magnetic field generation source
JPH10211181A (en) Biological activity current source estimating device
JP2001033534A (en) Intrapsychic electric phenomenon diagnostic apparatus
JPH05220124A (en) Biomagnetism measuring instrument
JPH0435642A (en) Biomagnetic measuring equipment
Mariyappa Development of squid based magnetocardiography system cardiac signal source analysis using ensemble empirical mode decomposition
JP3791119B2 (en) Biomagnetic measurement device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980217

LAPS Cancellation because of no payment of annual fees