JPH1051047A - Hall element - Google Patents

Hall element

Info

Publication number
JPH1051047A
JPH1051047A JP8205938A JP20593896A JPH1051047A JP H1051047 A JPH1051047 A JP H1051047A JP 8205938 A JP8205938 A JP 8205938A JP 20593896 A JP20593896 A JP 20593896A JP H1051047 A JPH1051047 A JP H1051047A
Authority
JP
Japan
Prior art keywords
thin film
hall element
magnetic sensing
boundary
unbalanced voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8205938A
Other languages
Japanese (ja)
Other versions
JP3715380B2 (en
Inventor
Toshiaki Fukunaka
敏昭 福中
Takeki Matsui
雄毅 松居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP20593896A priority Critical patent/JP3715380B2/en
Publication of JPH1051047A publication Critical patent/JPH1051047A/en
Priority to US09/352,872 priority patent/US6141133A/en
Application granted granted Critical
Publication of JP3715380B2 publication Critical patent/JP3715380B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce unbalanced voltage and further reduce the range of its dispersion, by constituting the boundary between a magnetosensitive part and an electrode part as a protruding form when viewed from the center of the magnetosensitive part. SOLUTION: A magnetosensitive part 3 having a specified pattern is formed in a specified part of a semiconductor layer. A metal film as an electrode part 4 is formed on a semiconductor layer continuous with the magnetosensitive part 3. The form of boundary between the magnetosensitive part 3 and the electrode part 4 is an important factor which determines the dispersion of unbalanced voltage, and constituted as a protruding pattern when viewed from the center of the magnetosensitive part 3. Thereby dispersion of the unbalanced voltage between elements can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はホール素子に関し、
特に不平衡電圧が小さく、その素子間のばらつきが小さ
いホール素子に関する。
TECHNICAL FIELD The present invention relates to a Hall element,
In particular, the present invention relates to a Hall element having a small unbalanced voltage and a small variation between the elements.

【0002】[0002]

【従来の技術】ホール素子は、VTR、フロッピーディ
スク、CD−ROM等のドライブモータ用の回転位置検
出センサとして広く用いられている。モータの小型化に
伴って、S/N比の大きいホール素子の要求が益々強ま
っている。
2. Description of the Related Art Hall elements are widely used as rotational position detection sensors for drive motors such as VTRs, floppy disks and CD-ROMs. With the miniaturization of motors, the demand for Hall elements having a large S / N ratio has been increasing.

【0003】高感度にすれば自ずとS/N比が高くな
る。そうした高感度ホール素子のペレットは、高透磁率
強磁性体基板の上に移動度の高い半導体薄膜が配置さ
れ、さらにその上にほぼ直方体の磁気集束用磁性体チッ
プが載せられている構造体をなしている。例えば、特公
昭51−45234号公報には、ホール移動度の高い薄
膜をこの構造体中に配置するための方法が示されてい
る。すなわち、まず雲母などの結晶性基板上に化合物半
導体薄膜を形成し、この化合物半導体薄膜をエポキシ等
の接着剤を用いて高透磁率強磁性体基板に接着した後、
結晶性基板を除去し、半導体薄膜に所望のパターンを形
成し、次いで接着剤で半導体薄膜の感磁部の上に磁気集
束用磁性体チップを載せることによって積層構造体を形
成する方法である。
When the sensitivity is increased, the S / N ratio naturally increases. The pellet of such a high-sensitivity Hall element is a structure in which a high-mobility semiconductor thin film is disposed on a high-permeability ferromagnetic substrate, and a substantially rectangular parallelepiped magnetic chip for magnetic focusing is mounted thereon. No. For example, Japanese Patent Publication No. 51-45234 discloses a method for disposing a thin film having high hole mobility in this structure. That is, first, a compound semiconductor thin film is formed on a crystalline substrate such as mica, and the compound semiconductor thin film is bonded to a high-permeability ferromagnetic substrate using an adhesive such as epoxy,
This is a method in which a crystalline substrate is removed, a desired pattern is formed on a semiconductor thin film, and a magnetic chip for magnetic focusing is mounted on a magnetically sensitive portion of the semiconductor thin film with an adhesive to form a laminated structure.

【0004】一方、高透磁率強磁性体基板の表面に特定
の絶縁層を形成した後、半導体薄形成法を改良して半導
体薄膜を形成し、感磁部上に同様に磁気集束用磁性体チ
ップを付けて上述した構造体とする方法も提案されてい
る。
On the other hand, after a specific insulating layer is formed on the surface of a high-permeability ferromagnetic substrate, a semiconductor thin film is formed by improving the semiconductor thin film forming method, and a magnetic material for magnetic focusing is similarly formed on the magnetic sensing portion. There has also been proposed a method of attaching the chip to the above-described structure.

【0005】また、近年、ホール素子の高感度化の要求
と相まって、ノイズレベル低減化の要求が強まってきて
いる。ここで、ホール素子でのノイズレベルは不平衡電
圧の値によって決まる。
[0005] In recent years, along with the demand for higher sensitivity of the Hall element, the demand for lowering the noise level has been increasing. Here, the noise level in the Hall element is determined by the value of the unbalanced voltage.

【0006】ところが、上述のようにして形成したペレ
ットを使用してホール素子を作製し、その不平衡電圧を
調べたところ、素子によってばらつきがあり、不平衡電
圧が極めて小さいものからかなり大きなものまで種々存
在した。
However, when a Hall element was manufactured using the pellets formed as described above and the unbalanced voltage thereof was examined, there was a variation depending on the element, and the unbalanced voltage varied from extremely small to extremely large. There were various.

【0007】[0007]

【発明が解決しようとする課題】図3は、通常使用され
るペレットの感磁部パターンの一例を示すものである。
基板1上に絶縁膜2が形成され、その上に、十字状の感
磁部3とその4隅に電極部4を有するパターンが形成さ
れ、電極部4にはボンディング電極層が形成されてい
る。感磁部3と電極部4の境界は直線状になっている。
FIG. 3 shows an example of a pattern of a magnetic sensing part of a commonly used pellet.
An insulating film 2 is formed on a substrate 1, and a pattern having a cross-shaped magnetic sensing portion 3 and electrode portions 4 at four corners thereof is formed thereon, and a bonding electrode layer is formed on the electrode portion 4. . The boundary between the magnetic sensing part 3 and the electrode part 4 is linear.

【0008】このような通常のホール素子において、不
平衡電圧は、半導体薄膜の組成や膜厚が均一でない時や
パターンがいびつなときに発生することは知られてい
る。しかし、そうでない時にも大きな不平衡電圧を示す
ものがあることが分かった。
It is known that in such ordinary Hall elements, an unbalanced voltage is generated when the composition and thickness of the semiconductor thin film are not uniform or when the pattern is irregular. However, it has been found that even when this is not the case, some devices exhibit a large unbalanced voltage.

【0009】そこで、本発明は不平衡電圧が小さく、し
かもそのばらつきの範囲が狭いホール素子を提供するこ
とを目的とする。
Accordingly, an object of the present invention is to provide a Hall element having a small unbalanced voltage and a narrow range of variation.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記不平
衡電圧のばらつきがなぜ起こるのかを、種々のパターの
マスクを試作して種々の形状の感磁部を有するペレット
を作製し、感磁部パターンと不平衡電圧のばらつきとの
対応関係を調査した。その結果、感磁部と電極部との境
界の形状が不平衡電圧のばらつきを決定する一つの重要
な因子であることを見出した。図3に示したように直線
であった感磁部と電極部の形状を変えると不平衡電圧の
ばらつきが変わること、およびそのばらつきの範囲が狭
くなる条件があることを見出して本発明をなすに至った
ものである。
Means for Solving the Problems The inventors of the present invention prepared a prototype of masks of various putters and produced pellets having magneto-sensitive portions of various shapes by examining why the unbalanced voltage variation occurred. The correspondence between the magneto-sensitive pattern and the variation of the unbalanced voltage was investigated. As a result, it has been found that the shape of the boundary between the magnetic sensing part and the electrode part is one important factor that determines the variation of the unbalanced voltage. When the shapes of the magnetic sensing part and the electrode part, which are linear as shown in FIG. 3, are changed, the variation of the unbalanced voltage is changed, and the present invention is found to have a condition that the range of the variation is narrowed. It has been reached.

【0011】即ち、本発明によるホール素子は、基板
と、該基板上に形成されパターニングされた感磁部と電
極部を有する半導体薄膜とを有するホール素子であっ
て、前記感磁部と前記電極部の境界の形状が該感磁部の
中心から見て凸状になっていることを特徴とする。
That is, a Hall element according to the present invention is a Hall element having a substrate, a patterned magnetically sensitive portion formed on the substrate, and a semiconductor thin film having an electrode portion. The shape of the boundary of the part is convex when viewed from the center of the magnetically sensitive part.

【0012】感磁部を構成する半導体薄膜は、インジウ
ムアンチモン、インジウム砒素、ガリウム砒素等の化合
物半導体から選択できる。これらのうち、高感度ホール
素子に特に適しているのは移動度の高いインジウムアン
チモン系化合物半導体薄膜である。ここで、インジウム
アンチモン系化合物半導体とは、一般式In1-x X
1-y y (ただし、VはGa、Alの1種または2
種、Wは燐、砒素の1種または2種、xおよびyはそれ
ぞれ0〜0.5)で表される化合物半導体である。これ
らの化合物半導体を感磁部とするホール素子がセンサと
して機能するためには、実用上の抵抗値を確保する必要
があり、厚みを0.5〜1.5μm程度に薄膜化するこ
とが必須の要件である。もちろん、高感度を確保するた
めに、高い移動度も当然必要である。本発明者らは、こ
の系の高移動度化の方法を種々提案してきたが、これら
の方法により作成した半導体薄膜を本発明に好適に適用
できる(特公平1−13211号公報、特公平1−15
135号公報、特公平2−47849号公報、特公平2
−47850号公報、特公平3−59571号公報参
照)。
The semiconductor thin film constituting the magnetic sensing portion can be selected from compound semiconductors such as indium antimony, indium arsenide, and gallium arsenide. Among these, an indium-antimony-based compound semiconductor thin film having high mobility is particularly suitable for the high-sensitivity Hall element. Here, the indium-antimony-based compound semiconductor is represented by a general formula In 1-x V X S
b 1-y W y (where V is one or two of Ga and Al)
The species, W, is one or two of phosphorus and arsenic, and x and y are each a compound semiconductor represented by 0 to 0.5). In order for a Hall element having such a compound semiconductor as a magnetic sensing part to function as a sensor, it is necessary to secure a practical resistance value, and it is essential to reduce the thickness to about 0.5 to 1.5 μm. Requirements. Of course, a high mobility is naturally necessary to ensure high sensitivity. The present inventors have proposed various methods of increasing the mobility of this system, but a semiconductor thin film formed by these methods can be suitably applied to the present invention (Japanese Patent Publication No. 1-13211, Japanese Patent Publication No. -15
No. 135, Japanese Patent Publication No. 2-47849, Japanese Patent Publication No. 2
-47850, JP-B-3-59571).

【0013】非常に高感度なホール素子にするには、前
述したように、基板に高透磁率強磁性体を用い、半導体
薄膜の感磁部の上にさらに磁気集束用磁性体チップを載
せる構造にするのが一つの態様である。この場合にも本
発明の感磁部パターンが有効であって、非常に高いS/
N比を有するホール素子とすることができる。
As described above, in order to make a Hall element with extremely high sensitivity, a structure in which a high magnetic permeability ferromagnetic material is used for a substrate and a magnetic material chip for magnetic focusing is further mounted on a magnetically sensitive portion of a semiconductor thin film. Is one embodiment. Also in this case, the magnetic sensing portion pattern of the present invention is effective, and has a very high S /
A Hall element having an N ratio can be obtained.

【0014】基板の材料としては、パーマロイ、鉄珪素
合金、Mn−Znフェライト等の高透磁率磁性体、ある
いはアルミナその他のセラミックス等の非磁性体を用い
ることができる。
As a material of the substrate, a high magnetic permeability material such as permalloy, iron-silicon alloy, Mn-Zn ferrite, or a non-magnetic material such as alumina or other ceramics can be used.

【0015】[0015]

【発明の実施の形態】図1および図2は、本発明の実施
例としてのホール素子の平面図である。
1 and 2 are plan views of a Hall element according to an embodiment of the present invention.

【0016】基板1上に樹脂あるいはガラス、SiO2
等の無機物からなる絶縁層2を介して、感磁部となる半
導体層が形成され、この半導体層の所定部分に所定パタ
ーンの感磁部3が形成され、感磁部3とつながる半導体
層上に電極部4として金属膜が形成されている。電極部
4の一部にはさらにボンディング用電極層5が付けられ
ている態様となっている。ただし、絶縁層2は必須の要
件ではなく、基板1が例えばセラミックスからなる場合
には省略することができる。感磁部3と電極部4の境界
の形状が図3に示した従来例と異なり、感磁部の中心か
ら見て凸状になっているのが特徴である。こうした形状
にすることによって、不平衡電圧の素子間のばらつきを
小さくすることができる。興味深いことに、感磁部3と
電極部4の境界の形状が図1および図2とは逆に感磁部
の中心から見て凹状になると、直線状の場合より不平衡
電圧のばらつきが悪くなった。
Resin or glass, SiO 2 on substrate 1
A semiconductor layer serving as a magnetic sensing portion is formed via an insulating layer 2 made of an inorganic material such as an inorganic material. A magnetic sensing portion 3 having a predetermined pattern is formed in a predetermined portion of the semiconductor layer. In addition, a metal film is formed as the electrode part 4. In this embodiment, a bonding electrode layer 5 is further provided on a part of the electrode portion 4. However, the insulating layer 2 is not an essential requirement, and can be omitted when the substrate 1 is made of, for example, ceramics. Unlike the conventional example shown in FIG. 3, the shape of the boundary between the magnetically sensitive portion 3 and the electrode portion 4 is characterized by being convex when viewed from the center of the magnetically sensitive portion. By adopting such a shape, the variation of the unbalanced voltage between the elements can be reduced. Interestingly, when the shape of the boundary between the magnetic sensing part 3 and the electrode part 4 is concave as viewed from the center of the magnetic sensing part, contrary to FIGS. became.

【0017】ところで、感磁部の長さとその幅が素子の
抵抗値と感度を決める。例えば、厚みが大きく抵抗値の
低い半導体薄膜を基準の抵抗値にするためには、長さを
長く幅を小さくしなければならないが、そうすると感度
が低くなる。本発明のように、感磁部と電極部の境界が
曲線状の場合には、直線状の場合とは当然異なってく
る。この場合の長さは、最長(感磁部幅の中央の長さ)
と最短(感磁部幅方向端部の長さ)のほぼ中間の値を用
いてパターンを設計することができる。正確には、感磁
部と電極部の境界の形状に依存するので、試作によって
マスクパターンを決定することが必要である。
Incidentally, the length and width of the magnetic sensing portion determine the resistance value and sensitivity of the element. For example, in order to set a semiconductor thin film having a large thickness and a low resistance value as a reference resistance value, it is necessary to increase the length and reduce the width, but this lowers the sensitivity. When the boundary between the magnetic sensing part and the electrode part is curved as in the present invention, the boundary is naturally different from the case where the boundary is linear. The length in this case is the longest (the length of the center of the magnetic sensing part width)
And the shortest (length of the end in the width direction of the magnetic sensing portion) can be used to design the pattern. Precisely, it depends on the shape of the boundary between the magnetic sensing part and the electrode part, so it is necessary to determine the mask pattern by trial manufacture.

【0018】基板上に形成された半導体薄膜を、パター
ニング工程において、所望の特性のでる長さと幅のマス
クを用い、多数の素子を一括してパターン形成を行う。
その際、電極部の形成も併せて行う。その後、ダイシン
グ工程により、個別のペレットとし、これらのペレット
をダイボンダー等でリードフレームに固着し、ペレット
の電極とリードフレームとをワイヤーボンダー等でつな
ぎ、さらにモールド工程などによりホール素子とするの
が製造の一つの態様である。
A semiconductor thin film formed on a substrate is patterned in a patterning step using a mask having a desired length and width to obtain desired characteristics.
At this time, the formation of the electrode portion is also performed. After that, individual pellets are formed by a dicing process, these pellets are fixed to a lead frame by a die bonder or the like, the electrodes of the pellet are connected to the lead frame by a wire bonder or the like, and a hall element is formed by a molding process or the like. This is one embodiment of the present invention.

【0019】このようにして作ったホール素子は、不平
衡電圧の素子間のばらつきが少ない。
In the Hall element manufactured in this way, the variation of the unbalanced voltage between the elements is small.

【0020】[0020]

【実施例】以下に、実施例によって本発明をさらに詳細
に説明する。
The present invention will be described in more detail with reference to the following examples.

【0021】(実施例1、比較例1、2)雲母を蒸着基
板にして、初めにIn過剰のInSb複合結晶(InS
b結晶とInSb膜から析出するInから形成される複
合結晶)薄膜を蒸着により形成し、次いで過剰のInと
化合物を形成するSbを過剰に蒸着する方法によって化
学量論組成の移動度43,000cm2 /V/secの
InSb薄膜を雲母基板上に作製した。
(Example 1, Comparative Examples 1 and 2) First, mica was used as a deposition substrate, and an In-rich InSb composite crystal (InS
composite crystal formed from b crystal and In deposited from InSb film) A thin film is formed by vapor deposition, and then the excess stoichiometric mobility 43,000 cm is obtained by vapor deposition of excess Sb to form a compound with excess In. A 2 / V / sec InSb thin film was formed on a mica substrate.

【0022】次に、50mm角で厚みが0.15mmの
アルミナ製セラミック基板を準備し、上記のInSb薄
膜上にポリイミド樹脂を滴下し、セラミック基板をその
上に重ね、重しを置いて200℃で12時間放置した。
次に室温に戻し、雲母を剥ぎ取った。こうしてセラミッ
ク基板上に担持されたInSb薄膜に、フォトリソグラ
フィーの手法によって感磁部パターンを形成した。
Next, a 50 mm square ceramic substrate made of alumina and having a thickness of 0.15 mm is prepared, a polyimide resin is dropped on the above-mentioned InSb thin film, the ceramic substrate is overlaid thereon, and a weight is placed at 200 ° C. For 12 hours.
Next, the temperature was returned to room temperature, and the mica was peeled off. Thus, a magneto-sensitive portion pattern was formed on the InSb thin film carried on the ceramic substrate by a photolithography technique.

【0023】感磁部の幅が140μm、長さが最長部分
540μm、最短部分490μmで、図1に示すように
感磁部と電極部の境界の形状が感磁部の中心から見て凸
状のパターン(実施例1用)、感磁部の幅が140μ
m、長さが490μmで、感磁部と電極部の境界の形状
が図3に示すように直線状のパターン(比較例1用)、
および感磁部の幅が140μm、長さが最長部分540
μm、最短部分490μmで、ただし感磁部と電極部の
境界の形状が感磁部の中心から見て凹状のパターン(比
較例2用)の3種類のパターンをその順に繰り返して配
列させたマスクを用いて3種類のそれぞれのパターンの
感磁部を多数パターニングした。電極部はCuで、ボン
ディング電極部はNiとAuの積層構造とした。このよ
うにして、上述したマスクパターンに相当する感磁部パ
ターンを有する実施例1、比較例2、3のホール素子を
同一の工程で同時に作製した。このようにすることによ
って、半導体薄膜の組成、厚みの変動等の要因による不
平衡電圧のばらつきを一定化することができ、感磁部と
電極部の境界の形状の影響を正しく評価することができ
る。実施例1、および比較例1、2のホール素子をそれ
ぞれ300個づつランダムに抜き取って、不平衡電圧を
測定してその素子間のばらつきの分布を計算した。ばら
つきの分布はいずれの場合も0mVを中心とした正規分
布と仮定できる。
The width of the magnetic sensing part is 140 μm, the length is the longest part 540 μm, and the shortest part is 490 μm. As shown in FIG. 1, the shape of the boundary between the magnetic sensing part and the electrode part is convex when viewed from the center of the magnetic sensing part. Pattern (for Example 1), the width of the magnetically sensitive part is 140 μm
m, the length is 490 μm, and the shape of the boundary between the magnetosensitive part and the electrode part is a linear pattern (for Comparative Example 1) as shown in FIG.
And the width of the magnetic sensing part is 140 μm and the length is the longest part 540.
μm, the shortest part is 490 μm, but the shape of the boundary between the magnetic sensing part and the electrode part is a concave pattern (for Comparative Example 2) when viewed from the center of the magnetic sensing part. A large number of magnetically sensitive parts of each of the three types of patterns were patterned by using. The electrode portion was made of Cu, and the bonding electrode portion was made of a laminated structure of Ni and Au. In this way, the Hall elements of Example 1, Comparative Examples 2, and 3 having the magneto-sensitive portion pattern corresponding to the above-described mask pattern were simultaneously manufactured in the same process. By doing so, it is possible to stabilize the variation of the unbalanced voltage due to factors such as the composition and thickness of the semiconductor thin film, and to correctly evaluate the influence of the shape of the boundary between the magnetic sensing part and the electrode part. it can. 300 Hall elements of Example 1 and Comparative Examples 1 and 2 were each randomly sampled, the unbalanced voltage was measured, and the distribution of variation between the elements was calculated. In any case, the distribution of the variation can be assumed to be a normal distribution centered on 0 mV.

【0024】感磁部と電極部の境界の形状が感磁部中心
から見て凸状の実施例1の素子の場合、入力電圧1V印
加時の不平衡電圧のばらつきの分布の偏差σは1.1m
Vであった。それに対して、感磁部と電極部の境界の形
状が直線状の比較例1、および境界の形状が感磁部中心
から見て凹状の比較例2の場合は、不平衡電圧のばらつ
きの分布の偏差σはそれぞれ1.9mVおよび2.6m
Vで、実施例1より大きかった。
In the case of the device of Example 1 in which the shape of the boundary between the magnetic sensing part and the electrode part is convex when viewed from the center of the magnetic sensing part, the deviation σ of the distribution of the unbalanced voltage variation when an input voltage of 1 V is applied is 1 .1m
V. On the other hand, in Comparative Example 1 in which the shape of the boundary between the magnetic sensing part and the electrode part is linear, and in Comparative Example 2 in which the shape of the boundary is concave when viewed from the center of the magnetic sensing part, the distribution of the unbalanced voltage variation is Are 1.9 mV and 2.6 m, respectively.
V was larger than that of Example 1.

【0025】(実施例2、比較例3、4)図2に示した
いわゆる対角パターンの感磁部を有するホール素子を作
製した。図2における参照符号は図1と同様であり、説
明を省略する。図2の対角パターンを有し、感磁部の寸
法および感磁部と電極部の境界の形状が実施例1、比較
例1および比較例2と同じ素子をそれぞれ実施例2、比
較例3、比較例4としてそれぞれ300個の素子につい
て不平衡電圧を測定し、そのばらつきの分布を計算し
た。
Example 2, Comparative Examples 3 and 4 A Hall element having a so-called diagonal pattern magneto-sensitive portion shown in FIG. 2 was produced. The reference numerals in FIG. 2 are the same as those in FIG. Elements having the diagonal pattern shown in FIG. 2 and having the same size of the magneto-sensitive portion and the shape of the boundary between the magneto-sensitive portion and the electrode portion as in Example 1, Comparative Example 1, and Comparative Example 2 were obtained in Example 2 and Comparative Example 3, respectively. As Comparative Example 4, the unbalanced voltage was measured for each of 300 devices, and the distribution of the variation was calculated.

【0026】1V印加時の、実施例2、比較例3および
比較例4の不平衡電圧のばらつきの分布の偏差σは、そ
れぞれ実施例1、比較例1および比較例2とほぼ同様で
あった。
The deviation σ of the distribution of the unbalanced voltage variation in Example 2, Comparative Example 3 and Comparative Example 4 when 1 V was applied was almost the same as Example 1, Comparative Example 1 and Comparative Example 2, respectively. .

【0027】(実施例3、比較例5、6)3インチ(約
7.6cm)角で厚みが0.3mmの高透磁率フェライ
ト、例えばMn−Znフェライトを強磁性体基板とし、
その上にスパッタリングによってコーニング社製の70
59ガラスを0.5μmの厚さに付着し、初めにIn過
剰のInSb複合結晶薄膜を蒸着によってガラス膜上に
形成し、次いで、過剰のSbを蒸着してInSb薄膜を
形成し、その後、InSb薄膜を所望の抵抗値になるま
で研磨する方法で半導体薄膜がガラス膜を介して強磁性
体上に担時された構造を作製した。この半導体薄膜に実
施例1、比較例1および比較例2と同じパターンのマス
クを用いてパターニングを行い、実施例3、比較例5お
よび比較例6の素子を同時に作製した。先の実施例と同
様に、それぞれ300個の素子について不平衡電圧を測
定し、その素子間のばらつきを計算した。ばらつきの分
布はいずれの場合も0mVを中心とした正規分布と仮定
できる。
(Example 3, Comparative Examples 5 and 6) A high permeability ferrite, for example, Mn-Zn ferrite having a thickness of 0.3 mm and a thickness of 0.3 mm (about 7.6 cm) square is used as a ferromagnetic substrate.
On top of this, a Corning 70
59 glass was deposited to a thickness of 0.5 μm, an In-excess InSb composite crystal thin film was first formed on the glass film by vapor deposition, and then excess Sb was vapor-deposited to form an InSb thin film. A structure in which a semiconductor thin film was supported on a ferromagnetic material via a glass film by a method of polishing the thin film to a desired resistance value was produced. This semiconductor thin film was patterned by using the same pattern mask as in Example 1, Comparative Example 1 and Comparative Example 2, and devices of Example 3, Comparative Example 5 and Comparative Example 6 were simultaneously manufactured. As in the previous example, the unbalanced voltage was measured for each of 300 elements, and the variation between the elements was calculated. In any case, the distribution of the variation can be assumed to be a normal distribution centered on 0 mV.

【0028】感磁部と電極部の境界の形状が感磁部中心
から見て凸状の実施例3の素子は、1V印加時の不平衡
電圧のばらつきの分布の偏差σは1.6mVであった。
それに対して、境界の形状が直線状の比較例5および境
界の形状が感磁部の中心から見て凹状の比較例6の不平
衡電圧のばらつきの分布の偏差σはそれぞれ2.3mV
および2.7mVで実施例3より大きかった。。
In the device of Example 3 in which the shape of the boundary between the magnetic sensing portion and the electrode portion is convex when viewed from the center of the magnetic sensing portion, the deviation σ of the distribution of the unbalanced voltage variation when 1 V is applied is 1.6 mV. there were.
On the other hand, the deviation σ of the distribution of the unbalanced voltage variation in Comparative Example 5 in which the shape of the boundary is linear and Comparative Example 6 in which the shape of the boundary is concave when viewed from the center of the magnetosensitive portion is 2.3 mV, respectively.
And 2.7 mV, which was larger than that of Example 3. .

【0029】(実施例4、比較例7、8)実施例3、比
較例5、6で説明した感磁部パターンを有する半導体薄
膜の感磁部のほぼ中心上に、特公平7−13987号公
報に記載の方法で、一辺の長さが300μmの立方体の
高透磁率フェライトチップを、シリコーン樹脂を接着剤
として載せた。
(Example 4, Comparative Examples 7 and 8) On substantially the center of the magnetic sensing portion of the semiconductor thin film having the magnetic sensing portion pattern described in Example 3, Comparative Examples 5 and 6, According to the method described in the publication, a cubic high-permeability ferrite chip having a side length of 300 μm was mounted with a silicone resin as an adhesive.

【0030】ダイシング、ダイボンディング、ワイヤー
ボンディング、モールドなどの工程を経て、実施例4、
比較例7および比較例8の素子を同時に作製した。それ
ぞれ300個の素子について感度を測定したところ、感
磁部と電極部の境界の形状が直線状の比較例7の素子の
感度は、入力電圧1V、磁界500Gで平均280mV
であった。感磁部と電極部の境界の形状が感磁部中心か
ら見て凸状の実施例4の素子は約6%これより小さく、
境界の形状が感磁部中心から見て凹状の比較例8の素子
の場合は約6%比較例7より大きかった。
Through the steps of dicing, die bonding, wire bonding, molding, etc.,
The devices of Comparative Examples 7 and 8 were simultaneously manufactured. When the sensitivity was measured for each of 300 devices, the sensitivity of the device of Comparative Example 7 in which the shape of the boundary between the magnetically sensitive portion and the electrode portion was linear was 280 mV on average at an input voltage of 1 V and a magnetic field of 500 G.
Met. The device of Example 4 in which the shape of the boundary between the magnetically sensitive portion and the electrode portion is convex when viewed from the center of the magnetically sensitive portion is about 6% smaller than this,
In the case of the device of Comparative Example 8 in which the shape of the boundary was concave when viewed from the center of the magnetic sensing portion, the value was about 6% larger than that of Comparative Example 7.

【0031】また、先の実施例と同様にそれぞれ300
個の素子について不平衡電圧を測定した。不平衡電圧の
ばらつきの分布はいずれの場合も正規分布と仮定でき
る。実施例4の場合の不平衡電圧の素子間のばらつきの
分布の偏差σは2.1mVであった。それに対して、比
較例7および比較例8の不平衡電圧のばらつきの分布の
偏差σはそれぞれ2.5mVおよび2.9mVで実施例
4より大きかった。
In the same manner as in the previous embodiment, 300
The unbalanced voltage was measured for each of the devices. The distribution of the unbalanced voltage variation can be assumed to be a normal distribution in any case. In the case of Example 4, the deviation σ of the distribution of the unbalanced voltage among the devices was 2.1 mV. On the other hand, the deviation σ of the distribution of the variation of the unbalanced voltage in Comparative Examples 7 and 8 was 2.5 mV and 2.9 mV, respectively, which was larger than that in Example 4.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
高感度で、不平衡電圧が小さく、しかもその素子間のば
らつきの小さいホール素子を得ることができる。
As described above, according to the present invention,
It is possible to obtain a Hall element with high sensitivity, low unbalanced voltage, and small variation among the elements.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるホール素子の一実施例の平面図で
ある。
FIG. 1 is a plan view of an embodiment of a Hall element according to the present invention.

【図2】本発明によるホール素子の他の実施例の平面図
である。
FIG. 2 is a plan view of another embodiment of the Hall element according to the present invention.

【図3】従来のホール素子の一例の平面図である。FIG. 3 is a plan view of an example of a conventional Hall element.

【符号の説明】[Explanation of symbols]

1 基板 2 絶縁層 3 化合物半導体層の感磁部 4 電極部 5 ボンディング電極部 DESCRIPTION OF SYMBOLS 1 Substrate 2 Insulating layer 3 Magnetic sensing part of compound semiconductor layer 4 Electrode part 5 Bonding electrode part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板と、該基板上に形成されパターニン
グされた感磁部と電極部を有する半導体薄膜とを有する
ホール素子であって、前記感磁部と前記電極部の境界の
形状が該感磁部の中心から見て凸状になっていることを
特徴とするホール素子。
1. A Hall element comprising a substrate, a patterned magnetically sensitive portion formed on the substrate, and a semiconductor thin film having an electrode portion, wherein a shape of a boundary between the magnetically sensitive portion and the electrode portion is the same. A Hall element having a convex shape as viewed from the center of the magnetic sensing portion.
【請求項2】 前記半導体薄膜がインジウムアンチモン
系化合物半導体薄膜であることを特徴とする請求項1に
記載のホール素子。
2. The Hall element according to claim 1, wherein the semiconductor thin film is an indium-antimony-based compound semiconductor thin film.
【請求項3】 前記基板がセラミック基板であることを
特徴とする請求項1または2に記載のホール素子。
3. The Hall element according to claim 1, wherein the substrate is a ceramic substrate.
JP20593896A 1995-10-25 1996-08-05 Hall element Expired - Lifetime JP3715380B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20593896A JP3715380B2 (en) 1996-08-05 1996-08-05 Hall element
US09/352,872 US6141133A (en) 1995-10-25 1999-07-13 Optical scanning device and a scanning lens therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20593896A JP3715380B2 (en) 1996-08-05 1996-08-05 Hall element

Publications (2)

Publication Number Publication Date
JPH1051047A true JPH1051047A (en) 1998-02-20
JP3715380B2 JP3715380B2 (en) 2005-11-09

Family

ID=16515216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20593896A Expired - Lifetime JP3715380B2 (en) 1995-10-25 1996-08-05 Hall element

Country Status (1)

Country Link
JP (1) JP3715380B2 (en)

Also Published As

Publication number Publication date
JP3715380B2 (en) 2005-11-09

Similar Documents

Publication Publication Date Title
JP4630544B2 (en) A method of orienting the magnetization direction of a magnetic layer of a selected magnetic element out of a plurality of magnetic elements constituting a bridge structure in a direction opposite to the magnetization direction of a magnetic layer of another magnetic element
US7193288B2 (en) Magnetoelectric transducer and its manufacturing method
JP3260921B2 (en) Movable body displacement detection device
US6692847B2 (en) Magneto resistive sensor
JP2005123383A (en) Electromagnetic transducer element
JP4846955B2 (en) Magnetoelectric transducer
KR20050051655A (en) Magnetoresistance effect element and production method and application method therefor
JP3715380B2 (en) Hall element
JP4723804B2 (en) Magnetoelectric converter
US20030085790A1 (en) Inductive micro-sensor formed flat on an integrated circuit
JP4573368B2 (en) Manufacturing method of small magnetoelectric transducer for face-down connection
JP4410320B2 (en) Magnetoelectric conversion element and manufacturing method thereof
JPH09331088A (en) Hole element
JPH09214017A (en) Hall device
JP2610083B2 (en) Ferromagnetic magnetoresistive element
JPH1051046A (en) Small-sized hall element
JPH08130338A (en) Thin film magnetic sensor
JP2715016B2 (en) Hall element and method of manufacturing hall element
JPH09191140A (en) Hall element
JP3223686B2 (en) Magnetic sensor device
JP2000150983A (en) Hall element and its manufacture
JPH11214766A (en) Small magnetoelectric conversion element and manufacture thereof
JPS60263484A (en) Magnetoresistance element
JP2000012919A (en) Electromagnetic transfer element and manufacture of the same
JPS6037183A (en) Manufacture of magnetoelectric conversion element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

EXPY Cancellation because of completion of term