JPH1050618A - Device for manufacturing semiconductor device and manufacture thereof - Google Patents

Device for manufacturing semiconductor device and manufacture thereof

Info

Publication number
JPH1050618A
JPH1050618A JP8201402A JP20140296A JPH1050618A JP H1050618 A JPH1050618 A JP H1050618A JP 8201402 A JP8201402 A JP 8201402A JP 20140296 A JP20140296 A JP 20140296A JP H1050618 A JPH1050618 A JP H1050618A
Authority
JP
Japan
Prior art keywords
source gas
reaction chamber
film
wafer
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8201402A
Other languages
Japanese (ja)
Inventor
Shigeru Fujita
繁 藤田
Makoto Furuno
誠 古野
Hideji Itaya
秀治 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Kokusai Electric Corp
Original Assignee
Sony Corp
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, Kokusai Electric Corp filed Critical Sony Corp
Priority to JP8201402A priority Critical patent/JPH1050618A/en
Publication of JPH1050618A publication Critical patent/JPH1050618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method and device wherein occurrence of foreign materials is prevented. SOLUTION: A semiconductor device manufacturing device 10 comprises a reaction chamber 2 for film-forming process with a wafer W, the first raw material gas introduction means for allowing the raw material gas to flow in one direction across the film-formation surface of the wafer W, the second raw material gas introduction means for allowing the raw material gas to flow in a direction different from the former direction, across the film formation surface of the wafer W, and a negative pressure source 8 for evacuating the inside of the reaction chamber. A control means 11 which controls actions of the first raw material gas introduction means, the negative pressure source 8 and the second raw material gas introduction means is provided, so that the raw material gas is introduced in the reaction chamber for a specified period by the first raw material gas introduction means, then the introduction of the raw material gas from the first raw material gas introduction means is stopped, with the inside of the reaction chamber 2 evacuated by the negative pressure source 8, and then the raw material gas is introduced in the reaction chamber 2 for a specified period by the second raw material gas introduction means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に、減圧CVD
装置で成膜を行う際に異物の発生を防止した、半導体装
置の製造装置、及びこの装置を用いた半導体装置の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to an apparatus for manufacturing a semiconductor device and a method for manufacturing a semiconductor device using the apparatus, wherein generation of foreign matter is prevented when a film is formed by the apparatus.

【0002】[0002]

【従来の技術】従来、半導体装置を製造するにあたって
は、特にポリシリコン膜や各種の絶縁膜などを形成する
場合、減圧CVD装置がよく用いられている。減圧CV
D装置としては、現在のところ縦型のバッチ式CVD装
置が主流である。しかし、将来的にウエハの大口径化が
見込まれ、また、開発期間の短縮のために短TAT(tu
rn around time)化が必要となってきていることから、
縦型のバッチ式CVD装置に代わって枚葉式のCVD装
置(例えば枚葉式減圧CVD装置)が開発され、一部の
半導体デバイス開発ラインに導入されはじめている。
2. Description of the Related Art Conventionally, in manufacturing a semiconductor device, a reduced-pressure CVD apparatus is often used particularly when a polysilicon film or various insulating films are formed. Decompression CV
At present, a vertical batch type CVD apparatus is mainly used as the D apparatus. However, it is expected that the diameter of the wafer will increase in the future, and a short TAT (tu
rn around time),
A single wafer type CVD apparatus (for example, a single wafer type reduced pressure CVD apparatus) has been developed in place of a vertical batch type CVD apparatus, and has begun to be introduced into some semiconductor device development lines.

【0003】枚葉式減圧CVD装置は、一般に加熱方式
によって分類され、抵抗加熱方式ホットウォール型のも
のと、ランプ加熱方式コールドウォール型のものとの2
種類に大別されている。抵抗加熱方式ホットウォール型
の枚葉式減圧CVD装置は、従来の縦型減圧装置が抵抗
加熱方式であるため、そのプロセス条件が縦型減圧CV
D装置の場合の条件に近く、したがって従来装置との置
き換えが容易であり、しかも温度制御性にも優れている
という利点があることから、ランプ加熱方式コールドウ
ォール型のものに比べ有利であるとされている。
[0003] Single-wafer type low-pressure CVD apparatuses are generally classified according to heating methods, and are classified into two types, a hot wall type of resistance heating type and a cold wall type of lamp heating type.
They are roughly divided into types. In a resistive heating type hot-wall type single-wafer decompression CVD apparatus, the process condition is a vertical decompression CV because a conventional vertical decompression apparatus is a resistance heating method.
It is close to the condition of the D apparatus, and therefore has the advantage that it can be easily replaced with the conventional apparatus and has excellent temperature controllability. Have been.

【0004】一方、ランプ加熱方式コールドウォール型
の枚葉式減圧CVD装置は、その多くが成膜中にウエハ
を回転させることにより、成膜される膜の面内均一性を
向上させることができるものとなっている。これに対し
て抵抗加熱方式の枚葉式減圧CVD装置は、構造上、成
膜中にウエハを回転させることが困難であることから、
膜厚均一性に劣るものとなっている。そこで、従来で
は、膜厚均一性を向上させるべく、図3に示すような枚
葉式の減圧CVD装置を用いて成膜を行っている。
On the other hand, most of the cold-wall type single-wafer low pressure CVD apparatuses of the lamp heating type can improve the in-plane uniformity of a film to be formed by rotating a wafer during the film formation. It has become something. On the other hand, a single-wafer low-pressure CVD apparatus using a resistance heating method is structurally difficult to rotate a wafer during film formation.
It is inferior in film thickness uniformity. Therefore, conventionally, in order to improve the uniformity of the film thickness, the film is formed using a single-wafer-type low-pressure CVD apparatus as shown in FIG.

【0005】図3において符号1は減圧CVD装置であ
り、この減圧CVD装置1は、反応室2と、この反応室
2内にウエハWを入れるための収容口3と、反応室2内
に原料ガスを導入する一対の導入管4a、4bと、反応
室2内を排気するための一対の排気管5a、5bと、反
応室2内を加熱するためのヒータ6、6とを備えてなる
ものである。導入管4a、4bは、それぞれ反応室2の
上側に配設されたもので、導入管4aは前記収容口3側
に配置され、導入管4bはその反対側(反応室2の奥
側)に配置されている。これら導入管4a、4bには、
それぞれ原料ガスの供給源(図示略)が接続され、また
その管中にはそれぞれ開閉弁7が設けられている。
[0005] In FIG. 3, reference numeral 1 denotes a low-pressure CVD apparatus. The low-pressure CVD apparatus 1 includes a reaction chamber 2, an accommodation port 3 for accommodating a wafer W in the reaction chamber 2, and a raw material in the reaction chamber 2. A device including a pair of introduction pipes 4a and 4b for introducing gas, a pair of exhaust pipes 5a and 5b for exhausting the inside of the reaction chamber 2, and heaters 6 and 6 for heating the inside of the reaction chamber 2. It is. The introduction pipes 4a and 4b are respectively disposed above the reaction chamber 2, and the introduction pipe 4a is disposed on the side of the storage port 3, and the introduction pipe 4b is disposed on the opposite side (the back side of the reaction chamber 2). Are located. In these introduction pipes 4a and 4b,
Each is connected to a source gas supply source (not shown), and each of the pipes is provided with an on-off valve 7.

【0006】排気管5a、5bは、それぞれ反応室2の
下側に配設されたもので、排気管5aは前記収容口3
側、すなわち前記導入管4aの直下に配置され、導入管
4bはその反対側(反応室2の奥側)、すなわち前記導
入管4bの直下に配置されている。これら排気管5a、
5bには、それぞれに真空ポンプ8が接続され、またそ
の管中にはそれぞれ開閉弁9が設けられている。
The exhaust pipes 5a and 5b are disposed below the reaction chamber 2, respectively.
Side, that is, directly below the introduction pipe 4a, and the introduction pipe 4b is disposed on the opposite side (the back side of the reaction chamber 2), that is, directly below the introduction pipe 4b. These exhaust pipes 5a,
A vacuum pump 8 is connected to each of the tubes 5b, and an on-off valve 9 is provided in each of the tubes.

【0007】このような構成の減圧CVD装置1によっ
て成膜を行うにあたり、特に膜厚均一性の向上を図るた
めには、従来、まず図4(a)に示すように収容口3側
(以下、前側とする)の導入管4aからのみ反応室2内
に原料ガスを供給するとともに、真空ポンプ8を起動さ
せて収容口3と反対側(以下、後側とする)の排気管5
bからのみ排気することにより、図4中矢印で示すよう
にウエハWの成膜面上を前から後へ横切る方向(以下、
順方向とする)に原料ガスを流し、所望する膜厚の半分
の成膜を行う。
In forming a film by the low pressure CVD apparatus 1 having such a structure, in order to particularly improve the uniformity of the film thickness, conventionally, as shown in FIG. , The front side), the source gas is supplied only into the reaction chamber 2 from the introduction pipe 4a, and the vacuum pump 8 is started to activate the exhaust pipe 5 on the side opposite to the accommodation port 3 (hereinafter, the rear side).
By exhausting air only from b, a direction crossing the film formation surface of the wafer W from front to back as shown by an arrow in FIG.
The raw material gas is flowed in the forward direction) to form a film having a half of a desired film thickness.

【0008】続いて、この順方向の原料ガスの供給を行
いつつ、後側の導入管4bの開閉弁7と前側の排気管5
aの開閉弁9とを開き、図4(b)に示すようにウエハ
Wの成膜面上を後から前へ横切る方向(以下、逆方向と
する)にも原料ガスを流す。その後、前側の導入管4a
の開閉弁7と後側の排気管5bの開閉弁8とを閉じ、図
4(c)に示すように逆方向にのみ原料ガスを流して残
りの膜厚分の成膜を行う。このような成膜方法によれ
ば、原料ガスを順方向に流しての成膜と、逆方向に流し
ての成膜とを半分ずつ行うことにより、得られる膜の厚
さを均一化することができるのである。
Subsequently, while supplying the raw material gas in the forward direction, the open / close valve 7 of the rear inlet pipe 4b and the front exhaust pipe 5
The opening and closing valve 9a is opened, and the source gas is also flown in a direction crossing the film formation surface of the wafer W from the rear to the front (hereinafter, referred to as a reverse direction) as shown in FIG. Then, the front introduction pipe 4a
The on-off valve 7 and the on-off valve 8 of the rear exhaust pipe 5b are closed, and as shown in FIG. 4 (c), the source gas is flowed only in the reverse direction to form the remaining film thickness. According to such a film formation method, the thickness of the obtained film is made uniform by performing the film formation in which the source gas flows in the forward direction and the film formation in the reverse direction. You can do it.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、この成
膜では、原料ガスの供給を順方向から逆方向に切り換え
る際、図4(b)に示したように原料ガスの供給を順方
向と逆方向との両方で行うため、原料ガスの流れに乱れ
が生じ、これに起因して成膜後、例えば8インチのウエ
ハ1枚に対して200〜300個の異物(パーティク
ル)が発生した。したがって、従来では、このような異
物の発生に起因して歩留りの低下を招いてしまうことか
ら、異物の発生を防止した製造装置及び製造方法の提供
が望まれている。
However, in this film formation, when the supply of the source gas is switched from the forward direction to the reverse direction, as shown in FIG. In this case, the flow of the raw material gas is disturbed, and as a result, after film formation, for example, 200 to 300 foreign substances (particles) are generated for one 8-inch wafer. Therefore, conventionally, the yield has been reduced due to the occurrence of such foreign matter, and therefore, it is desired to provide a manufacturing apparatus and a manufacturing method which prevent the occurrence of foreign matter.

【0010】[0010]

【課題を解決するための手段】本発明の半導体装置の製
造装置では、ウエハを所定位置に配置して該ウエハに成
膜処理を行うための反応室と、この反応室内に配置され
るウエハの成膜面上を横切る一方向に原料ガスを流すた
めの第1の原料ガス導入手段と、前記一方向と異なる方
向でかつ前記ウエハの成膜面上を横切る方向に原料ガス
を流すための第2の原料ガス導入手段と、反応室内を排
気するための負圧源とを具備してなり、前記第1の原料
ガス導入手段によって原料ガスを所定時間反応室内に導
入し、続いて第1の原料ガス導入手段からの原料ガスの
導入を停止せしめるとともに、前記負圧源によって反応
室内を排気し、その後前記第2の原料ガス導入手段によ
って原料ガスを所定時間反応室内に導入するよう、これ
ら第1の原料ガス導入手段、負圧源、第2の原料ガス導
入手段の動作を制御する制御手段を備えたことを前記課
題の解決手段とした。
In the apparatus for manufacturing a semiconductor device according to the present invention, a reaction chamber for arranging a wafer at a predetermined position and performing a film forming process on the wafer, and a wafer for the wafer disposed in the reaction chamber are formed. First source gas introduction means for flowing the source gas in one direction across the film formation surface, and first source gas introduction means for flowing the source gas in a direction different from the one direction and across the film formation surface of the wafer And a negative pressure source for evacuating the reaction chamber. The first source gas introducing means introduces a source gas into the reaction chamber for a predetermined time. While stopping the introduction of the source gas from the source gas introducing means, exhausting the reaction chamber by the negative pressure source, and then introducing the source gas into the reaction chamber by the second source gas introducing means for a predetermined time. 1 source gas Input means, a negative pressure source, further comprising a control means for controlling the operation of the second source gas introduction means and the solutions of the problems.

【0011】この製造装置によれば、第1の原料ガス導
入手段、負圧源、第2の原料ガス導入手段の各動作を制
御する制御手段を備えているので、この制御手段によ
り、第1の原料ガス導入手段によって原料ガスを、例え
ば所望する膜厚の略半分を成膜し得る時間反応室内に導
入し、続いて、第1の原料ガス導入手段による原料ガス
の導入を停止させるとともに、前記負圧源によって反応
室内を十分に排気し、その後、前記第2の原料ガス導入
手段によって原料ガスを、例えば所望する膜厚の残り分
を成膜し得る時間反応室内に導入するよう動作させるこ
とにより、従来と同様に得られる膜の厚さの均一化を図
れるとともに、原料ガスの流れ方向を切り換える際、原
料ガスの流れに乱れが生じることをなくすことが可能に
なる。
According to this manufacturing apparatus, since the control means for controlling each operation of the first raw material gas introducing means, the negative pressure source, and the second raw material gas introducing means is provided, the first raw material gas introducing means, The raw material gas is introduced into the reaction chamber by a raw material gas introducing means for a time capable of forming a film having a thickness of, for example, approximately half of a desired film thickness. Subsequently, the introduction of the raw material gas by the first raw material gas introducing means is stopped. The reaction chamber is sufficiently evacuated by the negative pressure source, and then the source gas is introduced into the reaction chamber by the second source gas introducing means for a time period during which, for example, the remainder of a desired film thickness can be formed. As a result, the thickness of the obtained film can be made uniform as in the conventional case, and the flow of the source gas can be prevented from being disturbed when the flow direction of the source gas is switched.

【0012】本発明の半導体装置の製造方法では、反応
室を備えた製造装置の反応室内に原料ガスを導入し、予
め反応室内に配置したウエハ上に原料ガスからなる堆積
物を堆積して成膜を行うに際し、まず、前記反応室内
に、ウエハの成膜面上を横切る一方向に原料ガスを導入
して所望する膜厚の略半分を成膜し、次いで、前記原料
ガスの導入を停止し、その状態で反応室内を排気し、そ
の後、前記反応室内に、前記一方向と異なる方向でかつ
ウエハの成膜面上を横切る方向に原料ガスを導入して所
望する膜厚の残り分を成膜することを前記課題の解決手
段とした。
In the method of manufacturing a semiconductor device according to the present invention, a source gas is introduced into a reaction chamber of a manufacturing apparatus having a reaction chamber, and a deposit composed of the source gas is deposited on a wafer previously disposed in the reaction chamber. In forming the film, first, a source gas is introduced into the reaction chamber in one direction crossing the film formation surface of the wafer to form a film having a thickness of approximately half of a desired thickness, and then the introduction of the source gas is stopped. Then, the reaction chamber is evacuated in that state, and thereafter, a source gas is introduced into the reaction chamber in a direction different from the one direction and across the film formation surface of the wafer to remove a remaining portion of a desired film thickness. Forming a film is a means for solving the problem.

【0013】この製造方法によれば、反応室内に、ウエ
ハの成膜面上を横切る一方向に原料ガスを導入して所望
する膜厚の略半分を成膜し、次いで、前記原料ガスの導
入を停止し、その状態で反応室内を排気し、その後、前
記反応室内に、前記一方向と異なる方向でかつウエハの
成膜面上を横切る方向に原料ガスを導入して所望する膜
厚の残り分を成膜するので、従来と同様に得られる膜の
厚さの均一化を図れるとともに、原料ガスの流れ方向を
切り換える際、原料ガスの流れに乱れが生じることをな
くすことが可能になる。
According to this manufacturing method, a source gas is introduced into the reaction chamber in one direction across the film-forming surface of the wafer to form a film having a thickness of approximately half of a desired film thickness. Is stopped, and the reaction chamber is evacuated in that state, and thereafter, a source gas is introduced into the reaction chamber in a direction different from the one direction and across the film formation surface of the wafer to leave a desired film thickness. As a result, the thickness of the obtained film can be made uniform as in the related art, and the flow of the source gas can be prevented from being disturbed when the flow direction of the source gas is switched.

【0014】[0014]

【発明の実施の形態】以下、本発明をその実施形態例に
基づいて詳しく説明する。図1は本発明の半導体装置の
製造装置の一実施形態例を示す図であり、図1中符号1
0は枚葉式の減圧CVD装置である。この減圧CVD装
置10が図3に示した減圧CVD装置1と異なるところ
は、反応室2中への原料ガスの導入の仕方を制御する制
御装置(制御手段)11を設けた点にある。なお、図1
に示した減圧CVD装置10においては、前述した順方
向に原料ガスを流す導入管4aと排気管5bとを第1の
原料ガス導入手段12とし、逆方向に原料ガスを流す導
入管4bと排気管5aとを第2の原料ガス導入手段13
とし、また真空ポンプ8を本発明における負圧源として
いる。また、開閉弁7、9は、いずれもその開閉が電気
的に制御されるものとなっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on an embodiment. FIG. 1 is a view showing one embodiment of a semiconductor device manufacturing apparatus according to the present invention.
Reference numeral 0 denotes a single wafer type low pressure CVD apparatus. This low-pressure CVD apparatus 10 differs from the low-pressure CVD apparatus 1 shown in FIG. 3 in that a control device (control means) 11 for controlling a method of introducing a source gas into the reaction chamber 2 is provided. FIG.
In the low-pressure CVD apparatus 10 shown in FIG. 1, the introduction pipe 4a for flowing the source gas in the forward direction and the exhaust pipe 5b serve as the first source gas introduction means 12, and the introduction pipe 4b for flowing the source gas in the reverse direction and the exhaust gas. The pipe 5a is connected to the second source gas introducing means 13
The vacuum pump 8 is a negative pressure source in the present invention. The opening and closing of each of the on-off valves 7 and 9 is electrically controlled.

【0015】制御装置11は、第1の原料ガス導入手段
12によって原料ガスを所定時間反応室2内に導入し、
続いて第1の原料ガス導入手段12からの原料ガスの導
入を停止させるとともに、真空ポンプ(負圧源)8によ
って反応室2内を排気し、その後第2の原料ガス導入手
段13によって原料ガスを所定時間反応室2内に導入す
るよう、第1の原料ガス導入手段12、真空ポンプ8、
第2の原料ガス導入手段13の動作を制御するものであ
る。具体的には、この制御装置11は導入管4a、4
b、排気管5a、5bの各開閉弁7(9)にそれぞれ電
気的に接続し、これら開閉弁7(9)を電気的に開閉さ
せるものであり、かつ、タイマー(図示略)を内蔵し、
このタイマーが予め設定されることにより、開閉弁7
(9)を設定された時間で開閉させるものである。な
お、この制御装置11は、本例では真空ポンプ8にも電
気的に接続し、これによりこの真空ポンプ8の起動動作
をも制御するものとなっている。
The control device 11 introduces the source gas into the reaction chamber 2 by the first source gas introducing means 12 for a predetermined time,
Subsequently, the introduction of the source gas from the first source gas introducing unit 12 is stopped, and the inside of the reaction chamber 2 is evacuated by the vacuum pump (negative pressure source) 8. Is introduced into the reaction chamber 2 for a predetermined time, the first raw material gas introducing means 12, the vacuum pump 8,
It controls the operation of the second source gas introduction means 13. Specifically, the control device 11 includes the introduction pipes 4a, 4
b, which are electrically connected to the respective on-off valves 7 (9) of the exhaust pipes 5a, 5b to electrically open and close these on-off valves 7 (9), and incorporate a timer (not shown). ,
By setting this timer in advance, the on-off valve 7
(9) is opened and closed at a set time. In this example, the control device 11 is also electrically connected to the vacuum pump 8, and thereby controls the starting operation of the vacuum pump 8.

【0016】次に、この減圧CVD装置10を用いた成
膜方法に基づき、本発明における半導体装置の製造方法
の一実施形態例について説明する。なお、この例では、
ウエハW上にポリシリコンを成膜する例について説明す
る。まず、成膜を行うためのウエハWを、収容口3より
挿入して反応室2内の所定位置にセットする。また、こ
れに先立ち、ヒータ6、6によって反応室2内を加熱し
ておき、ウエハWをセットした反応室2内の温度を65
0℃にする。
Next, an embodiment of a method for manufacturing a semiconductor device according to the present invention will be described based on a film forming method using the low pressure CVD apparatus 10. In this example,
An example of forming a polysilicon film on the wafer W will be described. First, a wafer W for forming a film is inserted from the accommodation port 3 and set at a predetermined position in the reaction chamber 2. Prior to this, the inside of the reaction chamber 2 is heated by the heaters 6, 6, and the temperature in the reaction chamber 2 in which the wafer W is set is raised to 65 ° C.
Bring to 0 ° C.

【0017】そして、ウエハWに成膜を行うべく、制御
装置11への設定を、各開閉弁7、7、9、9がそれぞ
れ個別に所定時間開きあるいは閉じ、これにより第1の
原料ガス導入手段12によって、所望する膜厚の略半分
を成膜し得る時間反応室内に原料ガスを導入し、続い
て、第1の原料ガス導入手段12による原料ガスの導入
を停止せしめるとともに、真空ポンプ8によって反応室
2内を排気し、その後、第2の原料ガス導入手段13に
よって、所望する膜厚の残り分を成膜し得る時間反応室
内に原料ガスを導入するよう動作させるようにする。
The on / off valves 7, 7, 9, 9 are individually opened or closed for a predetermined time to set the control device 11 to form a film on the wafer W, thereby introducing the first source gas. The source gas is introduced into the reaction chamber by means 12 for a time capable of forming a film having a thickness approximately equal to a desired thickness, and then the introduction of the source gas by the first source gas introducing means 12 is stopped. After that, the inside of the reaction chamber 2 is evacuated, and thereafter, the second source gas introducing means 13 is operated to introduce the source gas into the reaction chamber for a time during which a remaining film having a desired film thickness can be formed.

【0018】制御装置11をこのように設定すると、ま
ず、真空ポンプ8が起動するとともに、第1の原料ガス
導入手段12を構成する排気管5bの開閉弁9が開き、
また、他の開閉弁7、7、9は閉じたままとなる。この
ような動作がなされると、反応室2内は排気され、設定
圧力、この例では60Paに減圧される。
When the control device 11 is set in this manner, first, the vacuum pump 8 is started, and the opening / closing valve 9 of the exhaust pipe 5b constituting the first raw material gas introducing means 12 is opened.
The other on-off valves 7, 7, 9 remain closed. When such an operation is performed, the inside of the reaction chamber 2 is evacuated and reduced to a set pressure, in this example, 60 Pa.

【0019】このようにして減圧され、設定圧力になる
と、制御装置11の設定によって第1の原料ガス導入手
段12を構成する導入管4aの開閉弁7が開き、原料ガ
ス供給源(図示略)から原料ガス、この例ではSiH4
が、400sccmの流量で反応室2内に導入される。する
と、導入された原料ガスは、図2(a)に示すように導
入管4aから排気管5bに向かって流れ、ウエハWの成
膜面上を順方向に横切る。そして、原料ガスが流れる過
程において反応が起こり、その反応生成物がウエハW上
に堆積してポリシリコン膜が形成され、また、その残留
ガスは排気管5bから排気される。なお、このときの成
膜レートは約30nm/minとなるように設定されて
いる。
When the pressure is reduced in this manner and reaches the set pressure, the opening and closing valve 7 of the introduction pipe 4a constituting the first source gas introduction means 12 is opened by the setting of the controller 11, and the source gas supply source (not shown) To the source gas, in this case SiH 4
Is introduced into the reaction chamber 2 at a flow rate of 400 sccm. Then, the introduced source gas flows from the introduction pipe 4a toward the exhaust pipe 5b as shown in FIG. 2A, and crosses the film formation surface of the wafer W in the forward direction. Then, a reaction occurs in the course of the flow of the source gas, and the reaction product is deposited on the wafer W to form a polysilicon film, and the residual gas is exhausted from the exhaust pipe 5b. The film formation rate at this time is set to be about 30 nm / min.

【0020】このような第1の原料ガス導入手段12に
よる原料ガスの導入は、所望する膜厚の略半分の厚さの
膜が形成されるまで続けられ、先に設定されたごとく、
略半分の厚さの膜が形成される時間が経過したら、制御
装置11により、図2(b)に示すように導入管4aの
開閉弁7が閉じられるとともに、第2の原料ガス導入手
段13を構成する排気管5aの開閉弁9が開かれる。す
ると、原料ガスの導入がないことから、反応室2内は真
空ポンプ8によって排気のみがなされ、これにより0.
1Pa程度の真空度にまで達する。なお、この真空引き
は、真空ポンプ8の容量にもよるものの、通常は数秒程
度で前記真空度に達することから、予め制御装置11に
より、数秒〜10秒程度、この真空引きを行うように設
定しておく。
The introduction of the source gas by the first source gas introducing means 12 is continued until a film having a thickness approximately half of a desired film thickness is formed.
After the elapse of the time for forming the film having a thickness of about half, the control device 11 closes the on-off valve 7 of the introduction pipe 4a as shown in FIG. The opening / closing valve 9 of the exhaust pipe 5a is opened. Then, since no source gas is introduced, only the inside of the reaction chamber 2 is evacuated by the vacuum pump 8.
It reaches a degree of vacuum of about 1 Pa. Although the evacuation usually reaches the above-mentioned degree of vacuum in about several seconds, although it depends on the capacity of the vacuum pump 8, the controller 11 sets the evacuation in advance for about several seconds to about 10 seconds. Keep it.

【0021】次いで、制御装置11の設定によって第1
の原料ガス導入手段12を構成する排気管5bの開閉弁
9が閉じ、さらに第2の原料ガス導入手段13を構成す
る導入管4bの開閉弁7が開き、これにより再度原料ガ
ス(SiH4 )が、400sccmの流量で反応室2内に導
入される。すると、導入された原料ガスは、図2(c)
に示すように導入管4bから排気管5aに向かって流
れ、ウエハWの成膜面上を逆方向に横切る。そして、先
の場合と同様にして反応生成物がウエハW上に堆積し、
ポリシリコン膜が形成される。
Next, the first setting is made by the setting of the controller 11.
The opening / closing valve 9 of the exhaust pipe 5b constituting the raw material gas introducing means 12 is closed, and the opening / closing valve 7 of the introducing pipe 4b constituting the second raw material gas introducing means 13 is opened, whereby the raw material gas (SiH 4 ) is again formed. Is introduced into the reaction chamber 2 at a flow rate of 400 sccm. Then, the introduced source gas is as shown in FIG.
As shown in the figure, the gas flows from the introduction pipe 4b toward the exhaust pipe 5a, and crosses the film formation surface of the wafer W in the opposite direction. Then, the reaction product is deposited on the wafer W in the same manner as the previous case,
A polysilicon film is formed.

【0022】このような第1の原料ガス導入手段12に
よる原料ガスの導入は、所望する膜厚の残り分、すなわ
ち所望する膜厚の略半分の厚さの膜が形成されるまで続
けられ、先に設定されたごとく、略半分の厚さの膜が形
成され、これにより所望する膜厚にポリシリコン膜が形
成される時間が経過したら、導入管4bの開閉弁7が閉
じられる。なお、このときの反応室2内の温度及び圧
力、成膜レートについては、先の場合と同一に設定され
ている。このようにして所望する膜厚のポリシリコン膜
を形成したら、真空ポンプ8によって反応室2内を排気
し、その後、反応室2内からウエハWを取り出す。取り
出したウエハWのポリシリコン膜を観察したところ、異
物(パーティクル)は数十個程度であり、従来に比べ異
物の発生を格段に低下していることが確認された。
The introduction of the source gas by the first source gas introducing means 12 is continued until the remaining portion of the desired film thickness is formed, that is, a film having a thickness approximately half the desired film thickness is formed. As previously set, a film having a thickness of about half is formed, and after a lapse of time for forming a polysilicon film to a desired film thickness, the on-off valve 7 of the introduction pipe 4b is closed. The temperature and pressure in the reaction chamber 2 and the film formation rate at this time are set to be the same as those in the previous case. When the polysilicon film having a desired thickness is formed in this manner, the inside of the reaction chamber 2 is evacuated by the vacuum pump 8, and then the wafer W is taken out of the reaction chamber 2. Observation of the polysilicon film of the taken-out wafer W revealed that the number of foreign substances (particles) was about several tens, and it was confirmed that the generation of foreign substances was much lower than in the past.

【0023】このような製造方法にあっては、原料ガス
を順方向に導入して所望する膜厚の略半分をウエハW上
に成膜する工程と、原料ガスを逆方向に導入して所望す
る膜厚の残り分をウエハW上に成膜する工程との間に、
原料ガスの導入を停止し、その状態で反応室内を排気す
る工程を設けたことにより、従来のごとく原料ガスの流
れ方向を切り換える際に、原料ガスの流れに乱れが生じ
ることがなくなり、これにより原料ガスの流れの乱れに
起因する異物の発生を抑えることができる。
In such a manufacturing method, a step of introducing a raw material gas in the forward direction to form a film having approximately half of a desired film thickness on the wafer W and a step of introducing the raw material gas in the reverse direction are performed. Between the step of depositing the remaining film thickness on the wafer W
By providing the step of stopping the introduction of the source gas and exhausting the reaction chamber in that state, when the flow direction of the source gas is switched as in the related art, the flow of the source gas is not disturbed. It is possible to suppress the generation of foreign matter due to the disturbance of the flow of the source gas.

【0024】なお、前記実施形態例では、本発明をポリ
シリコン膜の形成に適用した場合について説明したが、
本発明はこれに限定されることなく、例えば原料ガス種
をSiH2 Cl2 とNH3 とに変えるのことにより、S
iNの成膜にも適用することができるなど、減圧CVD
により成膜可能なプロセスには全て適用することができ
る。
In the above embodiment, the case where the present invention is applied to the formation of a polysilicon film has been described.
The present invention is not limited to this. For example, by changing the source gas species to SiH 2 Cl 2 and NH 3 ,
Low pressure CVD, such as being applicable to iN film formation
Can be applied to all processes capable of forming a film.

【0025】また、前記実施形態例では、原料ガスの導
入を、順方向と逆方向の2回行ったが、これらを複数回
ずつ交互に繰り返すようにしてもよく、その場合にも、
流れ方向を切り換える際、一旦反応室内を排気するよう
にすればよい。さらに、前記実施形態例では、原料ガス
を流す経路として、順方向とこれの逆の逆方向との二種
類とし、それぞれに対応して第1の原料ガス導入手段と
第2の原料ガス導入手段を設けたが、原料ガスを流す経
路を3方向以上とし、それぞれに対応して原料ガス導入
手段を設けてもよく、その場合にも、流れ方向を切り換
える際、一旦反応室内を排気するようにすればよい。
In the above-described embodiment, the source gas is introduced twice in the forward direction and the reverse direction. However, these may be alternately repeated a plurality of times.
When switching the flow direction, the reaction chamber may be once evacuated. Further, in the above-described embodiment, there are two types of paths for flowing the source gas, namely, the forward direction and the reverse direction, and the first source gas introducing means and the second source gas introducing means correspond to each of the two directions. However, the flow path of the source gas may be three or more directions, and the source gas introduction means may be provided for each of the paths. In such a case, when the flow direction is switched, the reaction chamber is evacuated once. do it.

【0026】[0026]

【発明の効果】以上説明したように本発明の半導体装置
の製造装置は、第1の原料ガス導入手段、負圧源、第2
の原料ガス導入手段の各動作を制御する制御手段を備え
たものであるから、この制御手段により、第1の原料ガ
ス導入手段によって原料ガスを、例えば所望する膜厚の
略半分を成膜し得る時間反応室内に導入し、続いて、第
1の原料ガス導入手段による原料ガスの導入を停止させ
るとともに、前記負圧源によって反応室内を十分に排気
し、その後、前記第2の原料ガス導入手段によって原料
ガスを、例えば所望する膜厚の残り分を成膜し得る時間
反応室内に導入するよう動作させることにより、従来と
同様に得られる膜の厚さの均一化を図れるとともに、原
料ガスの流れ方向を切り換える際、原料ガスの流れに乱
れが生じることをなくすことができ、したがって原料ガ
スの流れの乱れに起因する異物の発生を抑えることがで
きる。
As described above, the apparatus for manufacturing a semiconductor device according to the present invention comprises a first source gas introducing means, a negative pressure source,
Control means for controlling each operation of the raw material gas introducing means, the raw material gas is formed by the first raw material gas introducing means by, for example, approximately half of a desired film thickness. After the introduction into the reaction chamber for the obtained time, the introduction of the source gas by the first source gas introduction means is stopped, and the reaction chamber is sufficiently exhausted by the negative pressure source. By operating the source gas into the reaction chamber, for example, for a period of time during which a remaining portion of a desired film thickness can be formed by the means, the thickness of the obtained film can be made uniform as in the related art, and When switching the flow direction of the raw material gas, it is possible to prevent the flow of the raw material gas from being disturbed, and therefore, it is possible to suppress the generation of foreign substances due to the disturbance of the flow of the raw material gas.

【0027】本発明の半導体装置の製造方法は、反応室
内に、ウエハの成膜面上を横切る一方向に原料ガスを導
入して所望する膜厚の略半分を成膜し、次いで、前記原
料ガスの導入を停止し、その状態で反応室内を排気し、
その後、前記反応室内に、前記一方向と異なる方向でか
つウエハの成膜面上を横切る方向に原料ガスを導入して
所望する膜厚の残り分を成膜するようにした方法である
から、従来と同様に得られる膜の厚さの均一化を図れる
とともに、原料ガスの流れ方向を切り換える際、原料ガ
スの流れに乱れが生じることをなくすことができ、した
がって原料ガスの流れの乱れに起因する異物の発生を抑
えることができる。
According to the method of manufacturing a semiconductor device of the present invention, a source gas is introduced into a reaction chamber in one direction across a film-forming surface of a wafer to form a film having a thickness of approximately half of a desired film thickness. Stop the gas introduction, exhaust the reaction chamber in that state,
Thereafter, in the reaction chamber, the source gas is introduced in a direction different from the one direction and in a direction crossing the film formation surface of the wafer, so that the remaining film having a desired film thickness is formed. As in the conventional case, the thickness of the obtained film can be made uniform, and when the flow direction of the source gas is switched, disturbance of the flow of the source gas can be eliminated. It is possible to suppress the generation of foreign substances that occur.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における半導体装置の製造装置の一実施
形態例の概略構成図である。
FIG. 1 is a schematic configuration diagram of an embodiment of a semiconductor device manufacturing apparatus according to the present invention.

【図2】(a)〜(c)は、本発明における半導体装置
の製造方法の一実施形態例を工程順に説明するための図
である。
FIGS. 2A to 2C are diagrams for explaining an embodiment of a method of manufacturing a semiconductor device according to the present invention in the order of steps; FIGS.

【図3】従来の半導体装置の製造装置の一例の概略構成
図である。
FIG. 3 is a schematic configuration diagram of an example of a conventional semiconductor device manufacturing apparatus.

【図4】(a)〜(c)は、図3に示した装置を用いた
半導体装置の製造方法の一例を工程順に説明するための
図である。
4A to 4C are diagrams for explaining an example of a method for manufacturing a semiconductor device using the device shown in FIG. 3 in the order of steps;

【符号の説明】[Explanation of symbols]

2 反応室 4a、4b 導入管 5a、5b 排
気管 7、9 開閉弁 10 減圧CVD装置 11 制
御装置(制御手段) 12 第1の原料ガス導入手段 13 第2の原料ガ
ス導入手段
2 Reaction chamber 4a, 4b Introducing pipe 5a, 5b Exhaust pipe 7, 9 On-off valve 10 Reduced pressure CVD apparatus 11 Controller (control means) 12 First source gas introducing means 13 Second source gas introducing means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 板谷 秀治 東京都中野区東中野三丁目14番20号 国際 電気株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideharu Itaya 3-14-20 Higashinakano, Nakano-ku, Tokyo Inside Kokusai Electric Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ウエハを所定位置に配置して該ウエハに
成膜処理を行うための反応室と、この反応室内に配置さ
れるウエハの成膜面上を横切る一方向に原料ガスを流す
ための第1の原料ガス導入手段と、前記一方向と異なる
方向でかつ前記ウエハの成膜面上を横切る方向に原料ガ
スを流すための第2の原料ガス導入手段と、反応室内を
排気するための負圧源と、を具備した半導体装置の製造
装置において、 前記第1の原料ガス導入手段によって原料ガスを所定時
間反応室内に導入し、続いて第1の原料ガス導入手段か
らの原料ガスの導入を停止せしめるとともに、前記負圧
源によって反応室内を排気し、その後前記第2の原料ガ
ス導入手段によって原料ガスを所定時間反応室内に導入
するよう、これら第1の原料ガス導入手段、負圧源、第
2の原料ガス導入手段の動作を制御する制御手段を備え
たことを特徴とする半導体装置の製造装置。
1. A reaction chamber for arranging a wafer at a predetermined position and performing a film forming process on the wafer, and a source gas flowing in one direction across a film forming surface of the wafer disposed in the reaction chamber. A first source gas introducing means, a second source gas introducing means for flowing the source gas in a direction different from the one direction and in a direction crossing the film-forming surface of the wafer, and for exhausting the reaction chamber. A source gas is introduced into the reaction chamber by the first source gas introducing means for a predetermined time, and then the source gas is supplied from the first source gas introducing means. While the introduction is stopped, the reaction chamber is evacuated by the negative pressure source, and then the first source gas introducing means and the negative pressure are introduced so that the source gas is introduced into the reaction chamber by the second source gas introducing means for a predetermined time. Source, second Apparatus for manufacturing a semiconductor device characterized by comprising a control means for controlling the operation of the raw material gas introduction means.
【請求項2】 反応室を備えた製造装置の反応室内に原
料ガスを導入し、予め反応室内に配置したウエハ上に原
料ガスからなる堆積物を堆積して成膜を行う、半導体装
置の製造方法であって、 前記反応室内に、ウエハの成膜面上を横切る一方向に原
料ガスを導入し、所望する膜厚の略半分を成膜する第1
工程と、 前記原料ガスの導入を停止し、その状態で反応室内を排
気する第2工程と、 前記反応室内に、前記一方向と異なる方向でかつウエハ
の成膜面上を横切る方向に原料ガスを導入し、所望する
膜厚の残り分を成膜する第3工程と、 を備えたことを特徴とする半導体装置の製造方法。
2. A method of manufacturing a semiconductor device, comprising introducing a source gas into a reaction chamber of a manufacturing apparatus having a reaction chamber, depositing a deposit made of the source gas on a wafer placed in the reaction chamber in advance, and forming a film. A method comprising: introducing a source gas into the reaction chamber in one direction across a film-forming surface of a wafer to form a film having a thickness of approximately half of a desired film thickness;
A second step of stopping the introduction of the source gas and exhausting the reaction chamber in that state; and a step of feeding the source gas into the reaction chamber in a direction different from the one direction and across the film formation surface of the wafer. And a third step of forming a remaining film having a desired film thickness.
JP8201402A 1996-07-31 1996-07-31 Device for manufacturing semiconductor device and manufacture thereof Pending JPH1050618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8201402A JPH1050618A (en) 1996-07-31 1996-07-31 Device for manufacturing semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8201402A JPH1050618A (en) 1996-07-31 1996-07-31 Device for manufacturing semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH1050618A true JPH1050618A (en) 1998-02-20

Family

ID=16440500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8201402A Pending JPH1050618A (en) 1996-07-31 1996-07-31 Device for manufacturing semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH1050618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100697801B1 (en) * 1998-09-11 2007-03-21 가부시키가이샤 히다치 고쿠사이 덴키 Method for producing semiconductor device and apparatus for producing semiconductor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06509239A (en) * 1989-12-22 1994-10-20 ノーベルファーマ アクチボラゲット Tooth implant device with locking screw
US5951287A (en) * 1997-04-17 1999-09-14 Hawkinson; Roy T. Dental implant failed fastener recovery systems, devices and methods
JP2012110601A (en) * 2010-11-26 2012-06-14 Nanto Precision Co Ltd Implant, implant body and abutment body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06509239A (en) * 1989-12-22 1994-10-20 ノーベルファーマ アクチボラゲット Tooth implant device with locking screw
US5951287A (en) * 1997-04-17 1999-09-14 Hawkinson; Roy T. Dental implant failed fastener recovery systems, devices and methods
JP2012110601A (en) * 2010-11-26 2012-06-14 Nanto Precision Co Ltd Implant, implant body and abutment body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100697801B1 (en) * 1998-09-11 2007-03-21 가부시키가이샤 히다치 고쿠사이 덴키 Method for producing semiconductor device and apparatus for producing semiconductor

Similar Documents

Publication Publication Date Title
KR100272146B1 (en) Method of manafacturing semiconductor device, apparatus of manufacturing the same, and method of cleaning the same
US20040029379A1 (en) Thin film forming method and thin film forming device
JP7024087B2 (en) Semiconductor device manufacturing method, substrate processing device, program and substrate processing method
JP3913723B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
TW202006180A (en) Gas supply system, plasma processing device, and control method for gas supply system
KR102353111B1 (en) Film forming apparatus and operation method of film forming apparatus
JP7514245B2 (en) Multi-location gas injection for improved uniformity in rapidly alternating processes
JP2011029441A (en) Device and method for treating substrate
JP3381774B2 (en) Method of forming CVD-Ti film
JP2011249407A (en) Substrate processing apparatus
JP4244674B2 (en) Processing apparatus and processing method
JPH1112738A (en) Cvd film forming method
KR100393751B1 (en) How to make a film
JPH1050618A (en) Device for manufacturing semiconductor device and manufacture thereof
EP0960435B1 (en) Methods for minimizing as-deposited stress in tungsten silicide films
US20210242023A1 (en) Method of manufacturing semiconductor device, non-transitory computer-readable recording medium and substrate processing apparatus
US20220238311A1 (en) Substrate processing method and substrate processing apparatus
JP3706510B2 (en) Temperature control method in plasma CVD apparatus
US7972961B2 (en) Purge step-controlled sequence of processing semiconductor wafers
JP2009176942A (en) Substrate treatment equipment
WO2023037452A1 (en) Semiconductor device production method, substrate processing method, substrate processing device, and recording medium
JP3279459B2 (en) Single wafer processing apparatus and gas supply control method for single wafer processing apparatus
TWI841858B (en) Switchable delivery for semiconductor processing system
JP7440480B2 (en) Substrate processing equipment, semiconductor device manufacturing method, and program
WO2022059170A1 (en) Semiconductor device manufacturing method, recording medium, and substrate treatment device