【発明の詳細な説明】
不混和冷媒と併用するための強化型炭化水素潤滑剤
本発明は、鉱油等の炭化水素潤滑剤と、該炭化水素潤滑剤に不混和性の冷媒と
、炭化水素潤滑剤と不混和冷媒の間の界面張力を低下させることが可能な添加剤
を含む液体冷却組成物に関する。より詳細には本発明は、鉱油等の炭化水素潤滑
剤と、該炭化水素潤滑剤に不混和性のフルオロハイドロカーボン冷媒と、炭化水
素潤滑剤とフルオロハイドロカーボン冷媒の間の界面張力を低下させることが可
能な界面活性剤を含む液体冷却組成物に関する。
過去約60年間にわたり、クロロフルオロカーボン(CFC)は冷却及び空調
用システムで熱交換流体として商業的に使用されてきた。この種の化合物は噴射
剤、発泡剤、並びにエレクトロニクス及び航空宇宙産業用洗浄溶剤としても使用
されている。このような化合物の例としては、CFC−12(ジクロロジフルオ
ロメタン)、CFC−115(1−クロロ−1,1,2,2,2−ペンタフルオ
ロエタン)及びCFC−113(1,1,2−トリクロロ−1,2,2−トリフ
ルオロエタン)が挙げられる。
1970年代の初めにRowlandとMolinaは、CFCの固有の高い
安定性により、これらの分子は下部大気圏内で非常に長い寿命をもつという仮説
を立てた。従って、CFC分子は成層圏まで時間をかけて移動し、成層圏に達す
ると太陽からの紫外線の作用によりCFC分子から塩素基が遊離する。その後、
塩素遊離基はこの大気圏層内に存在するオゾンを破壊し、その濃度を低下させる
。このため、エアゾール産業は1970年代の中頃にこれらの化学物質の代わり
にその製品規格を満たしながら環境上もっと安全な代替品を徐々に使用するよう
になった。
1980年代の中頃に南極上空のオゾン濃度の低下が検出され、この現象は現
在では地球の他の地域にも広がっているが、この検出に伴い、多くの国でCFC
の製造及び使用を制限し、今世紀の終わりまでに最終的に禁止することが定めら
れた。そこで、代替冷媒として使用するために数種の化合物が提案された。これ
らの化合物はハイドロクロロフルオロカーボン(HCFC)及びハイドロフルオ
ロカーボン(HFC)化学系統に属する。HCFCの例はR−22(ハイドロク
ロロジフルオロメタン)、R−123(1,1−ジクロロ−2,2,2−トリフ
ルオロエタン)及びR−124(1−クロロ−1,2,2,2−テトラフルオロ
エタン)である。HCFCは分子中に塩素を含むが、水素原子も含んでいるので
大気圏の下部で分解できるため、CFCよりもオゾン破壊能が著しく低い。しか
し、オゾン層の破壊は現在も続いており、地球の他の地域まで拡大しているので
、これらの化学物質も最終的に制限及び禁止する法的圧力が高まっている。従っ
て、これらの物質は短期的な冷媒代替品とみなされる。現在使用されているナフ
テン系鉱油、アルキルベンゼン及びナフテン系鉱油/アルキルベンゼンブレンド
はHCFCを充填した冷却システムの潤滑及び性能要件を伝統的に満たすもので
あった。
HFCの例はR−134a(1,1,1,2−テトラフルオロエタン)、R−
152a(1,1−ジフルオロエタン)、R−32(ジフルオロメタン)、R−
143a(1,1,1−トリフルオロエタン)、R−125(1,1,1,2,
2−ペンタフルオロエタン)、及びこれらの任意の1種と他のHFC成分から構
成される共沸混合物である。これらの分子はオゾン破壊物質でないので、目下、
長期的代替冷媒として受け入れられている。HFC冷媒は適当な長期的冷媒代替
品として望ましい物性をもち得るが、冷却圧縮機潤滑剤として伝統的に使用され
てきたナフテン系鉱油に対して不混和性である。鉱油は化学的に安定であり、C
FC及びHCFC冷媒に混和性であり、全システム構成要素に化学的に適合性で
あり、フロック点と流動点が低く、耐電圧が高く、固有の粘度をもつため、シス
テムに加えると、総合性能を高めるような性質を提供する。
HFCを冷媒として利用する冷却又は空調用途でナフテン冷却油を併用するの
は、2種の流体が不混和性であるため不適切であるとみなすものもある。この考
えによれば、装置運転温度で冷媒と潤滑剤が不混和性又は低分散性であると、圧
縮機への油戻りが不適切になる恐れがある。その結果、熱交換コイルの内側表面
の油皮膜により熱伝達が不十分になり、極端な場合には圧縮機の潤滑剤不足をも
たらす。前者はエネルギー効率の低下の原因となり、後者は装置の燃え切りの原
因となる。
Jollyらの米国特許第4,941,986号は、冷媒と潤滑剤の混合物が
冷却及び空調システムの運転温度範囲をカバーする広い温度範囲にわたって混和
性/可溶性であり且つ化学的及び熱的に安定でなければならないと述べている。
潤滑剤は−40℃〜80℃の温度範囲にわたって約5〜15%の濃度で冷媒に混
和性/可溶性であることが一般に望ましい。この温度範囲は今日市販されている
多数の冷却及び空調システム設計の運転温度をカバーする。
更に前記特許は、炭化水素潤滑油の代わりに炭化水素油よりも著しく高価な種
々の合成材料を使用することを開示している。しかし、不混和性であっても、こ
れらのシステムで使用するものとして炭化水素油/代替冷媒液体を提供すること
が経済的且つ環境的に望ましいことは自明である。
米国加熱冷却空調工学会(American Society of Hea
ting,Refrigerating and Air Condition
ing Engineers)でSanvordenker(1989)とRe
yes−Gavilan(1993)は、HFC−134aと直鎖炭化水素油を
充填した家庭用冷却システムに適正な油戻りが存在することをそれぞれ別々に指
摘している。Sanvordenkerは更に、この条件は装置構成に依存する
と説明しており、水平蒸発器を備える上部装着式装置は良好に機能するが、鉛直
蒸発器を備える並置式装置はさほど良好ではない。Reyes−Gavilan
はSanvordenkerが試験したと同一型の装置で低粘度ナフテン系鉱油
(37.8℃で70SUS)を使用することにより、油戻りの装置構成依存性が
解消されることを立証した。家庭用冷却システムにおける油戻りの要因は、シス
テムで良好な流動特性をもち且つ圧縮機で適正な潤滑性能をもつ低粘度鉱油以外
に、蒸発器と圧縮機の間の冷媒速度が高く、戻り管が短いことである。蒸発器と
圧縮機の間の冷媒速度が低いか及び/又は戻り管が長い冷却又は空調システムは
油戻りが不良になるため、上記のようなシステム性能の問題のいずれかが生じる
と考えられる。
HFC冷媒を利用する冷却又は空調システムにおける炭化水素油の使用を教示
した従来技術は少数しかない。花王の米国特許第5,096,606号明細書及
び請求の範囲には、HFCとポリオールエステルを含む組成物が記載されており
、他の潤滑剤とブレンドしてもよいと記載されている。
三井石油化学の米国特許第5,114,605号は、ハイドロフルオロカーボ
ン、ポリエーテルカーボネート及び鉱油又はαオレフィンオリゴマーのいずれか
一方を含む組成物を開示している。
日本特許第4,018,491号の要約書は、エステル油と炭化水素油の比を
少なくとも1としたエステル油と鉱油等の炭化水素油のブレンドがハイドロフル
オロカーボン冷媒に相溶性であることを開示している。
日本特許第1,115,998号の要約書は、アルキルベンゼンと鉱油とハイ
ドロフルオロカーボン冷媒のブレンドを開示している。
LubrizolのPCT WO/12849号は、ナフテン系鉱油等の粘度
調節剤の使用を提案している。しかし、HFC冷媒の存在下での炭化水素潤滑剤
の分散性又は混和性/可溶性特性の改善については言及していない。
これらの参考文献は、HFC冷却及び空調用途で炭化水素潤滑剤を含むブレン
ドを使用できることを当業者に教示している。しかし、HFC/ポリオールエス
テル液体を利用するように改良された多くの炭化水素潤滑剤CFCシステムは、
ポリオールエステル中の残留鉱油濃度がシステム内の合計潤滑剤の1%を超える
と、圧縮機への油戻りの不良を暗示する性能低下を示すことが業界で認められて
いる。
本発明の目的で「不混和」なる用語は、冷却又は空調システムで少なくとも−
40℃〜80℃の典型的運転温度範囲の任意の点で冷媒と潤滑剤の間に2相系が
形成されることを意味する。
本発明の一般目的は、炭化水素潤滑剤、好ましくは鉱油潤滑剤と、該炭化水素
潤滑剤に不混和性であり、少なくとも1個の炭素原子及び1個のフッ素原子を含
む冷媒を含む冷却液体組成物を提供することである。本発明のより特定的な目的
は、鉱油潤滑剤と、鉱油に不混和性のハイドロフルオロカーボン冷媒を含む冷却
液体組成物を提供することである。他の目的については以下に記載する。
本発明者らは、炭化水素潤滑剤と、該炭化水素潤滑剤に不混和性であり、少な
くとも1個の炭素原子及び1個のフッ素原子を含む冷媒と、炭化水素潤滑剤と不
混和冷媒の間の界面張力を低下させることが可能な有効量の添加剤を含む冷却液
体組成物により、本発明の目的を達成できることを今般知見した。
本発明の組成物は、直鎖炭化水素油とHFC冷媒を充填した際に潜在的な油戻
りの困難を伴う冷却及び空調システムで使用することができる。その目的は、冷
媒と炭化水素潤滑剤の相互分散性を助長し、冷媒が熱交換器の内側表面から潤滑
剤を洗い流すようにして圧縮機への油戻りを助長することである。本発明は、シ
ステム内に十分な化学的及び熱安定性を維持しながら、装置に適正な潤滑及びエ
ネルギー効率を提供する。
要約すると、本発明の冷却液体組成物は、炭化水素潤滑油と、少なくとも1個
の炭素原子及び1個のフッ素原子を含む冷媒と、炭化水素潤滑剤と冷媒の間の界
面張力を低下させることが可能な添加剤を含む。
本発明で有用な適切な炭化水素潤滑剤としては、パラフィン系鉱油、ナフテン
系鉱油、アルキルベンゼン油、ポリαオレフィン及びそのオリゴマー並びにそれ
らの混合物が挙げられる。所定の添加剤(即ち2,4,7,9−テトラメチル−
5−デシン−4,7−ジオール等の界面活性剤)の炭化水素油可溶性又は分散性
を改善するには、主要量(99〜80重量%)のナフテン系鉱油と共に副次量(
1〜20重量%)のアルキルベンゼンを併用すると特に有用である。
本発明で有用な適切な冷媒としては、少なくとも1個の炭素原子及び1個のフ
ッ素原子を含むものが挙げられる。適切な冷媒の例としては、R−22(クロロ
ジフルオロメタン)、R−124(1−クロロ−1,2,2,2−テトラフルオ
ロエタン)、R−134a(1,1,1,2−テトラフルオロエタン)、R−1
43a(1,1,1−トリフルオロエタン)、R−152a(1,1−ジフルオ
ロエタン)、R−32(ジフルオロメタン)、R−125(1,1,1,2,2
−ペンタフルオロエタン)及びその混合物、例えばR−404a[R−125(
44重量%)、R−143a(52重量%)、R−134a(4.0重量%)]
が挙げられる。熱交換流体を既存の冷却及び空調装置の暫定改良流体として使用
しようとする用途では、これらの混合物は更にブレンドの成分としてプロパンも
含有し得る。所望により、特に改良しようとするシステムにCFC冷媒が残留し
ている場合には、適切な冷媒をCFC冷媒と併用してもよい。
潤滑剤と冷媒の間の界面張力を低下させるために本発明で有用な添加剤は、冷
媒による金属表面からの油の置換を助長する性質をもつ。この性質は、鋼又は鉄
チップを入れたガラス管に、室温で炭化水素潤滑剤に不混和性の冷媒(例えばR
134a)、炭化水素潤滑剤及び添加剤を加えて密閉することにより測定できる
。潤滑油の上層と冷媒の下層から成る2相系が形成される。その後、磁石を用い
て管内の油のレベルまで金属チップを上昇させ、金属チップを油中で迅速に上下
運動させることにより油で金属表面を完全に湿潤させる。本発明で添加剤を使用
するのが適しているのは、チップが液体冷媒層内にゆっくりと下降するときに冷
媒が油を置換する場合である。
適切な添加剤としては界面活性剤が挙げられ、例えばSurfynol SE
として市販されている2,4,7,9−テトラメチル−5−デシン−4,7−ジ
オール、FC−430として市販されているフルオロカーボンエステル類、アニ
オン性フルオロハイドロカーボンホスファイト、ホスフェート、カルボキシレー
ト(塩及び酸)、スルホネート等、例えばZonyl FSAとして市販されて
いるF(CF2CF2)3-8−CH2−CH2SCH2CH2CO2Li、Zonyl
FSP、Zonyl FSJ等として市販されているF(CF2CF2)3-8−C
H2CH2O−PO(ONH4)2と[F(CF2CF2)3-8−CH2CH2O]2−
PO(ONH4)の混合物がある。
場合によっては、補助溶剤を使用するか又は2種以上の成分から構成される炭
化水素潤滑剤を使用することにより界面活性剤の炭化水素潤滑剤可溶性を高める
ことが望ましいこともある。例えば、上記のように、副次量のアルキルベンゼン
炭化水素を加えると、所定の添加剤の鉱油可溶性又は分散性を改善することがで
きる。
理論に拘束する意図はないが、鋼上の冷媒液体の拡張係数が小さい正の値にな
るか又はゼロに非常に近い点まで冷媒(液体)/IGS界面の界面張力が低下し
、僅かな震盪又は比重の変化により冷媒が油を置換できると出願人らは考える。
拡張係数の概念はY=γとしてS=Y23−Y12−Y13により定義される。ここ
でSは、固体である第3の相(3)の表面上の流体(2)に対する流体(1)の
拡張係数である。「Y」はそれぞれの界面張力である。S>0ならば同時拡張が
生じる。比重や機械的剪断エネルギーの差等の他の影響も加わるが、Sは添加剤
又は界面活性剤により影響される界面張力の寄与分を表す。
1=冷媒、2=1GS、3=鋼表面とするならば、添加剤が存在しない場合に
は、0>Y23−Y12−Y13であり、2相間の顕著なメニスカスから明らかなよう
にY12は有意な正の数である。また、油はある程度の震盪があっても鋼を優先的
に湿潤し、湿潤し続けるので、Y13>Y23となる。従って、Y12+Y13>Y23と
なる。
所定の界面活性剤を加えると挙動は変化し、Y12→0(平坦なメニスカス)、
Y23≧Y13(冷媒は鋼表面上の油を置換する)となるので、0≦Y23−Y12−Y13
となる。
従って、Y12+Y13をY23よりも迅速に低下させる所定の添加剤の存在下では
、鋼上の冷媒の拡張係数は0に近づくか又は小さい正の値になる。
添加剤又は界面活性剤は、潤滑油100重量部当たり0.001〜5重量部の
範囲で使用することができる。界面活性剤を全く含まないか又は所望の目的には
不十分な量しか含まない炭化水素潤滑油を含む冷却システムに添加する目的では
、潤滑油100重量部当たり100重量部までの界面活性剤を含有する濃厚液を
調製することができる。
潤滑油と不混和冷媒の重量比は当該技術分野で慣用通り、冷媒100重量部当
たり0.10〜15重量部の範囲であり得る。
上述のように、HFC/ポリオールエステル液体を利用するように改良された
多くの炭化水素潤滑剤/CFCシステムは、ポリオールエステル中の残留鉱油濃
度がシステム内の合計潤滑剤の1%を越えると、圧縮機への油戻りの不良を暗示
する性能低下を示すことが産業界で認められている。驚くべきことに、比較的少
量のポリオールエステル潤滑剤を本発明の組成物に添加すると、所定の添加剤(
即ち2,4,7,9−テトラメチル−5−デシン−4,7−ジオール等の界面活
性剤)の炭化水素油可溶性又は分散性を改善できることを本発明者らは知見した
。このような場合には、ポリオールエステルと炭化水素潤滑剤の重量比は約1:
99〜1:3、好ましくは1:19〜1:4の範囲であり得る。
従って、圧縮機システム内の界面活性剤が圧縮機内の潤滑液100重量部当た
り少なくとも0.001重量部を構成するという条件で、付加的炭化水素潤滑剤
の存在下又は不在下でポリオールエステルと2,4,7,9−テトラメチル−5
−デシン−4,7−ジオール又はフッ素化エステル等の界面活性剤を含有する濃
厚組成物を圧縮機システムに直接添加することにより、HFCを利用するように
炭化水素潤滑剤CFCシステムを改良するのが有利であると本発明者らは考える
。
ポリオールエステル/界面活性剤濃厚液はポリオールエステル100重量部当
たり約0.1〜100重量部を構成し得る。
適切なポリオールエステルは炭素原子数4〜25の脂肪族モノカルボン酸単独
又はジもしくはトリカルボン酸との多価アルコールエステルを含む。適切な多価
アルコールは2〜6個のヒドロキシ基を含み、例えばネオペンチルアルコール、
1,1,1−トリメチロールエタン、1,1,1−トリメチロールプロパン、ペ
ンタエリトリトール等である。適切な脂肪族カルボン酸としては、例えば酪酸、
イソ酪酸、2−エチルヘキサン酸、n−オクタン酸、吉草酸、イソペンタン酸、
ヘキサン酸、ヘプタン酸、ノナン酸、ステアリン酸等の分枝及び非分枝酸が挙げ
られる。ポリオールエステルの粘度を調節するために、マレイン酸、コハク酸、
アジピン酸等のジカルボン酸や、トリメリット酸等のトリカルボン酸も少量使用
することができる。
表Iは、潤滑剤不混和冷媒を用いる冷却及び空調用途で界面活性剤を利用して
炭化水素潤滑剤と併用可能な適切な安定性及び耐摩耗性強化添加剤を示す。
実施例I
容量9mLのガラス管に候補界面活性剤0.5重量%を含有する70SUSナ
フテン系鉱油(Suniso IGS)0.050ml、6mm鋼チップ及び1
,1,1,2−テトラフルオロエタン(R−134a)0.70mlを加えて密
閉した。ナフテン系鉱油の上層とハイドロフルオロカーボンの下層とから成る2
相系が形成された。磁石を使用して金属チップを油相中で迅速に上下運動させる
ことにより、金属チップを油で完全に湿潤させた。次に、チップをゆっくりとテ
トラフルオロエタン層中に下降させた。結果を表IIに示す。
上記データは、2,4,7,9−テトラメチル−5−デシン−4,7−ジオー
ルを含むSurfynol SEとフッ素化エステルを含むFC−430が本発
明で使用するのに適していることを明白に示している。
実施例II
容量9mLのガラス管に候補界面活性剤(Surfynol SE又はFC−
430)0.05重量%を含有する70SUSナフテン系鉱油(Suniso
1GS)0.050ml、6mm鋼チップ及び1,1,1,2−テトラフルオロ
エタン(R−134a)0.70mlを加えて密閉した。ナフテン系鉱油の上層
とハイドロフルオロカーボンの下層とから成る2相系が形成された。磁石を使用
して金属チップを油相中で迅速に上下運動させることにより、金属チップを油で
完全に湿潤させた。次に、チップをゆっくりとテトラフルオロエタン層中に下降
させた。どちらの候補も油はR−134aによりチップとガラスから分離した。
潤滑剤層と冷媒層は相互に非常に分散性であるため、油はR−134aによりチ
ップとガラスの表面から分離した。
実施例III
ニューイングランドのマルチゾーンポンプダウンソレノイド中温スーパーマー
ケット用フリーザーラックに2台の5ドアフリーザーラックキャビネット(各1
05.6ft3)を取り付け、地面から約6〜7ft離して圧縮機(Copel
ametic Model No.R−76 WMT3T)を配置し、各キャ
ビネットの床面に蒸発器を配置し、改良試験した。冷媒ガスと油は直径7/8イ
ンチの縦横吸込戻り管を約20ft通った後、1+3/8インチの管を通って圧
縮機に到達する。38重量%R125(ペンタフルオロエタン)、60重量%R
22(ハイドロクロロジフルオロメタン)及び2重量%R290(プロパン)か
らなるR−402A(充填量30ポンド)と、耐摩耗剤及び発泡剤を含有する2
00SUSアルキルベンゼン潤滑油をシステムに充填した。装置を−5°F未満
で運転すると、圧縮機内の潤滑油レベルは低下し、油圧スイッチは装置を切断し
た。次にシステムを約0°Fで運転すると、適正な油圧及び潤滑を維持した。
多少の残留アルキルベンゼンを残してシステムから油を排出し、主成分として
ナフテン系鉱油、10重量%アルキルベンゼン及び0.05重量%Surfyn
ol SEを含む150SUS油を充填し、30分間減圧し、1時間運転して残
留アルキルベンゼン油をシステムからフラッシした。この間、油圧スイッチは切
断せず、それぞれのラックで−17°F及び−10°Fの温度に達した。1時間
後に再度油をシステムから排出し、主成分としてナフテン系鉱油、10重量%ア
ルキルベンゼン及び0.05重量%Surfynol SEを含む新たな150
SUS油で置換した。両者のフリーザーを−10°F〜−15°Fで2カ月間運
転したが、油戻りの不良は生じなかった。
実施例IV
下表IIIに示す組成物をR−134a及び2,4,7,9−テトラメチル−5
−デシン−4,7−ジオール界面活性剤と併用試験した処、有望な結果が得られ
た。表中、H−1は40℃で12cStのナフテン系鉱油を表し、H−2は40
℃で38cStの白色ナフテン系鉱油を表し、H−3は40℃で29〜30cS
tのナフテン系鉱油を表し、H−4は40℃で18cStのナフテン系鉱油を表
し、H−5は40℃で29〜30cStのアルキルベンゼンを表し、P1はトリ
メチロールプロパン、70%吉草酸及び30%イソ吉草酸のポリエステルを表し
、P2はペンタエリトリトールと2−エチルヘキサン酸のポリエステルを表し、
P3はペンタエリトリトール、吉草酸、イソ吉草酸及びアジピン酸のポリエステ
ルを表す。
実施例V
本実施例は、アニオン性フルオロハイドロカーボン界面活性剤を本発明で使用
できることを立証するものである。ISO 10ナフテン系鉱油と下表IVに示す
候補アニオン及び非イオン性フルオロハイドロカーボン界面活性剤を使用して実
施例IIを繰り返した。Zonyl FSN及びZonyl FSOは異なるレベ
ルのオキシエチレン単位をもつF(CF2CF2)3-8−CH2CH2O(CH2CH2
O)xHである。表中、ANはアニオン性界面活性剤を表し、NONは非イオン
性界面活性剤を表す。
上記データは、アニオン性フルオロハイドロカーボン界面活性剤が本発明で使
用するのに適していることを明白に示している。
比較例
本発明の添加剤を使用せずに潤滑剤をチップから置換する目的で、ISO 1
0ナフテン系鉱油と、トリメチロールプロパン及び30%吉草酸のポリエステル
に相当するP−1又は2−エチルヘキサン酸、79%ネオペンチルグリコール及
び21%ペンタエリトリトールのポリエステルに相当するP−2のいずれかとを
使用して、90重量%鉱油と10重量%ポリエステルの混合物又は70重量%鉱
油と30重量%ポリエステルの混合物からなる潤滑剤組成物を実施例IIに記載し
たように試験した。結果を下表Vに示す。
The present invention relates to a hydrocarbon lubricant such as mineral oil, a refrigerant immiscible with the hydrocarbon lubricant, and a hydrocarbon lubricant. The present invention relates to a liquid cooling composition containing an additive capable of reducing the interfacial tension between a refrigerant and an immiscible refrigerant. More specifically, the present invention reduces a hydrocarbon lubricant such as mineral oil, a fluorohydrocarbon refrigerant immiscible with the hydrocarbon lubricant, and an interfacial tension between the hydrocarbon lubricant and the fluorohydrocarbon refrigerant. Liquid cooling composition comprising a possible surfactant. For the past approximately 60 years, chlorofluorocarbons (CFCs) have been used commercially as heat exchange fluids in cooling and air conditioning systems. Compounds of this type have also been used as propellants, blowing agents and cleaning solvents for the electronics and aerospace industries. Examples of such compounds include CFC-12 (dichlorodifluoromethane), CFC-115 (1-chloro-1,1,2,2,2-pentafluoroethane) and CFC-113 (1,1,2 -Trichloro-1,2,2-trifluoroethane). In the early 1970's, Rowland and Molina hypothesized that due to the inherent high stability of CFCs, these molecules have a very long lifetime in the lower atmosphere. Therefore, the CFC molecule moves to the stratosphere over time, and when it reaches the stratosphere, a chlorine group is released from the CFC molecule by the action of ultraviolet rays from the sun. The chlorine radicals then destroy the ozone present in this atmospheric layer and reduce its concentration. This has led to the aerosol industry gradually replacing these chemicals with more environmentally safe alternatives while meeting their product specifications in the mid 1970's. In the mid-1980s, a decrease in ozone concentration over Antarctica was detected, and this phenomenon is now spreading to other parts of the globe, but this detection has limited the production and use of CFCs in many countries. , Was finally banned by the end of this century. Thus, several compounds have been proposed for use as alternative refrigerants. These compounds belong to the hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) chemical families. Examples of HCFCs are R-22 (hydrochlorodifluoromethane), R-123 (1,1-dichloro-2,2,2-trifluoroethane) and R-124 (1-chloro-1,2,2,2). -Tetrafluoroethane). HCFC contains chlorine in its molecule, but also contains hydrogen atoms, so that it can be decomposed in the lower part of the atmosphere, and therefore has much lower ozone destruction ability than CFC. However, as depletion of the ozone layer continues and extends to other parts of the globe, there is increasing legal pressure to eventually limit and ban these chemicals as well. Therefore, these materials are considered short-term refrigerant substitutes. Currently used naphthenic mineral oils, alkylbenzenes and naphthenic mineral oil / alkylbenzene blends have traditionally met the lubrication and performance requirements of cooling systems filled with HCFCs. Examples of HFCs include R-134a (1,1,1,2-tetrafluoroethane), R-152a (1,1-difluoroethane), R-32 (difluoromethane), and R-143a (1,1,1- Trifluoroethane), R-125 (1,1,1,2,2-pentafluoroethane), and azeotropes composed of any one of these and other HFC components. Because these molecules are not ozone-depleting substances, they are currently accepted as long-term alternative refrigerants. HFC refrigerants can have desirable physical properties as a suitable long-term refrigerant replacement, but are immiscible with naphthenic mineral oils that have traditionally been used as refrigeration compressor lubricants. Mineral oil is chemically stable, is miscible with CFC and HCFC refrigerants, is chemically compatible with all system components, has a low floc and pour point, has a high withstand voltage, and has an inherent viscosity. Therefore, when added to the system, it provides properties that enhance the overall performance. The use of naphthenic cooling oils in cooling or air conditioning applications that use HFCs as refrigerants is sometimes considered inappropriate because the two fluids are immiscible. According to this idea, if the refrigerant and the lubricant are immiscible or have low dispersibility at the operation temperature of the apparatus, there is a possibility that the return of oil to the compressor becomes inappropriate. As a result, an oil film on the inner surface of the heat exchange coil results in insufficient heat transfer, and in extreme cases, a shortage of compressor lubricant. The former causes a decrease in energy efficiency, and the latter causes the device to burn out. U.S. Pat. No. 4,941,986 to Jolly et al. Discloses that a mixture of refrigerant and lubricant is miscible / soluble and chemically and thermally stable over a wide temperature range covering the operating temperature range of a cooling and air conditioning system. It must be. It is generally desirable that the lubricant be miscible / soluble in the refrigerant at a concentration of about 5-15% over a temperature range of -40C to 80C. This temperature range covers the operating temperature of many cooling and air conditioning system designs that are commercially available today. Further, the patent discloses the use of various synthetic materials in place of hydrocarbon lubricating oils, which are significantly more expensive than hydrocarbon oils. However, it is self-evident that it is economically and environmentally desirable to provide a hydrocarbon oil / alternative refrigerant liquid for use in these systems, even if immiscible. At the American Society of Heating, Refrigerating and Air Conditioning Engines, Sanvordenker (1989) and Reyes-Gavilan (1993) were filled with HFC-134a and HFC-134a for domestic cooling with domestic oil filled with Refrigerant oil. It separately points out that there is a proper return of oil in the system. Sanvordenker further states that this condition depends on the equipment configuration: top-mounted equipment with a horizontal evaporator works well, but side-by-side equipment with a vertical evaporator is not so good. Reyes-Gavilan has demonstrated that the use of low-viscosity naphthenic mineral oil (70SUS at 37.8 ° C.) in equipment of the same type as tested by Sanvordenker eliminates the equipment configuration dependence of oil return. The cause of oil return in a domestic cooling system is that, besides low-viscosity mineral oil which has good flow characteristics in the system and proper lubrication performance in the compressor, the refrigerant speed between the evaporator and the compressor is high and the return pipe Is short. It is believed that any cooling or air conditioning system with a low refrigerant velocity between the evaporator and the compressor and / or a long return line will have poor oil return, thus causing any of the above system performance issues. There are only a few prior art teaching the use of hydrocarbon oils in cooling or air conditioning systems that utilize HFC refrigerants. Kao U.S. Pat. No. 5,096,606 and claims describe compositions comprising HFCs and polyol esters, and state that they may be blended with other lubricants. U.S. Pat. No. 5,114,605 to Mitsui Petrochemical discloses a composition comprising a hydrofluorocarbon, a polyether carbonate and either a mineral oil or an alpha olefin oligomer. The abstract of Japanese Patent No. 4,018,491 discloses that blends of ester oils and hydrocarbon oils such as mineral oils with a ratio of ester oil to hydrocarbon oil of at least 1 are compatible with hydrofluorocarbon refrigerants. doing. The abstract of Japanese Patent No. 1,115,998 discloses a blend of alkylbenzene, mineral oil and hydrofluorocarbon refrigerant. Lubrizol PCT WO / 12849 proposes the use of viscosity modifiers such as naphthenic mineral oils. However, there is no mention of improving the dispersibility or miscibility / solubility properties of hydrocarbon lubricants in the presence of HFC refrigerants. These references teach those skilled in the art that blends containing hydrocarbon lubricants can be used in HFC cooling and air conditioning applications. However, many hydrocarbon lubricant CFC systems that have been modified to utilize HFC / polyol ester liquids, require that the residual mineral oil concentration in the polyol ester exceed 1% of the total lubricant in the system, resulting in a loss of compression to the compressor. It is recognized in the industry to exhibit performance degradation that is indicative of poor oil return. The term "immiscible" for the purposes of the present invention refers to the formation of a two-phase system between a refrigerant and a lubricant in a cooling or air conditioning system at any point in the typical operating temperature range of at least -40C to 80C. Means that. It is a general object of the present invention to provide a cooling liquid comprising a hydrocarbon lubricant, preferably a mineral oil lubricant, and a refrigerant immiscible with the hydrocarbon lubricant and containing at least one carbon atom and one fluorine atom. It is to provide a composition. A more specific object of the present invention is to provide a cooling liquid composition comprising a mineral oil lubricant and a hydrofluorocarbon refrigerant immiscible in mineral oil. Other purposes are described below. The present inventors have developed a hydrocarbon lubricant, a refrigerant that is immiscible with the hydrocarbon lubricant, and contains at least one carbon atom and one fluorine atom, and a refrigerant that is immiscible with the hydrocarbon lubricant. It has now been found that the object of the present invention can be achieved by a cooling liquid composition comprising an effective amount of an additive capable of lowering the interfacial tension between the two. The compositions of the present invention can be used in cooling and air conditioning systems with potential oil return difficulties when charged with straight chain hydrocarbon oils and HFC refrigerants. The purpose is to promote the mutual dispersibility of the refrigerant and the hydrocarbon lubricant and to encourage the oil to return to the compressor such that the refrigerant flushes the lubricant from the inner surface of the heat exchanger. The present invention provides devices with adequate lubrication and energy efficiency while maintaining sufficient chemical and thermal stability in the system. In summary, the cooling liquid composition of the present invention reduces the interfacial tension between a hydrocarbon lubricant, a refrigerant containing at least one carbon atom and one fluorine atom, and a hydrocarbon lubricant and the refrigerant. Include possible additives. Suitable hydrocarbon lubricants useful in the present invention include paraffinic mineral oils, naphthenic mineral oils, alkylbenzene oils, polyalphaolefins and oligomers thereof, and mixtures thereof. To improve the solubility or dispersibility of a given additive (i.e., a surfactant such as 2,4,7,9-tetramethyl-5-decyne-4,7-diol) in a hydrocarbon oil, a major amount (99%) may be used. It is particularly useful to use a secondary amount (1 to 20% by weight) of an alkylbenzene together with a naphthenic mineral oil of about 80% by weight. Suitable refrigerants useful in the present invention include those containing at least one carbon atom and one fluorine atom. Examples of suitable refrigerants include R-22 (chlorodifluoromethane), R-124 (1-chloro-1,2,2,2-tetrafluoroethane), R-134a (1,1,1,2- Tetrafluoroethane), R-143a (1,1,1-trifluoroethane), R-152a (1,1-difluoroethane), R-32 (difluoromethane), R-125 (1,1,1,1) 2,2-pentafluoroethane) and a mixture thereof, for example, R-404a [R-125 (44% by weight), R-143a (52% by weight), R-134a (4.0% by weight)]. In applications where the heat exchange fluid is to be used as a temporary improvement fluid in existing cooling and air conditioning systems, these mixtures may also contain propane as a component of the blend. If desired, a suitable refrigerant may be used in conjunction with the CFC refrigerant, especially if CFC refrigerant remains in the system to be improved. Additives useful in the present invention for reducing the interfacial tension between the lubricant and the refrigerant have properties that facilitate the displacement of oil from metal surfaces by the refrigerant. This property can be measured by adding a refrigerant (for example, R134a), a hydrocarbon lubricant, and an additive that is immiscible with a hydrocarbon lubricant at room temperature to a glass tube containing a steel or iron chip, and sealing the glass tube. A two-phase system consisting of an upper layer of lubricating oil and a lower layer of refrigerant is formed. The metal tip is then raised to the level of oil in the tube using a magnet, and the metal surface is completely wetted with oil by rapidly moving the metal tip up and down in the oil. The use of additives in the present invention is suitable when the refrigerant displaces oil as the chips slowly descend into the liquid refrigerant layer. Suitable additives include surfactants, such as 2,4,7,9-tetramethyl-5-decyne-4,7-diol, commercially available as Surfynol SE, and FC-430. fluorocarbons esters, anionic fluorohydrocarbon phosphites, phosphates, carboxylates (salts and acids), sulfonates, etc., for example Zonyl FSA is commercially available as F (CF 2 CF 2) 3-8 -CH 2 -CH 2 SCH 2 CH 2 CO 2 Li, Zonyl FSP, F (CF 2 CF 2) which is commercially available as Zonyl FSJ, etc. 3-8 -C H 2 CH 2 O- PO (ONH 4) 2 and [F (CF 2 CF2) 3-8 -CH 2 CH 2 O] 2 - is a mixture of PO (ONH 4). In some cases, it may be desirable to increase the hydrocarbon lubricant solubility of the surfactant by using a co-solvent or by using a hydrocarbon lubricant composed of two or more components. For example, as described above, the addition of secondary amounts of alkylbenzene hydrocarbons can improve the mineral oil solubility or dispersibility of certain additives. Without intending to be bound by theory, the interfacial tension at the refrigerant (liquid) / IGS interface drops to a point where the expansion coefficient of the refrigerant liquid on the steel is a small positive value or very close to zero, causing slight shaking. Applicants believe that the refrigerant can replace oil by a change in specific gravity. The concept of the expansion coefficient is defined by S = Y 23 −Y 12 −Y 13 as Y = γ. Where S is the expansion coefficient of fluid (1) relative to fluid (2) on the surface of solid third phase (3). “Y” is the respective interfacial tension. If S> 0, simultaneous expansion occurs. S also represents the contribution of interfacial tension affected by additives or surfactants, although other effects such as differences in specific gravity and mechanical shear energy are also added. 1 = refrigerant, if the 2 = 1 GS, 3 = the steel surface, if the additive is not present, 0> is Y 23 -Y 12 -Y 13, as is clear from prominent meniscus between the two phases Y 12 is a significant positive number. Also, the oil preferentially wets the steel even with some shaking and continues to wet, so that Y 13 > Y 23 . Therefore, Y 12 + Y 13 > Y 23 holds. When a predetermined surfactant is added, the behavior changes, and Y 12 → 0 (flat meniscus) and Y 23 ≧ Y 13 (the refrigerant displaces oil on the steel surface), so that 0 ≦ Y 23 −Y the 12 -Y 13. Thus, in the presence of certain additives that cause Y 12 + Y 13 to decrease more rapidly than Y 23 , the expansion coefficient of the refrigerant on steel approaches zero or becomes a small positive value. Additives or surfactants can be used in the range of 0.001 to 5 parts by weight per 100 parts by weight of lubricating oil. For the purpose of adding to a cooling system containing a hydrocarbon lubricating oil that contains no or no sufficient amount of surfactant for the desired purpose, up to 100 parts by weight of surfactant per 100 parts by weight of lubricating oil is used. Concentrates containing can be prepared. The weight ratio of lubricating oil to immiscible refrigerant may range from 0.10 to 15 parts by weight per 100 parts by weight of refrigerant, as is conventional in the art. As mentioned above, many hydrocarbon lubricant / CFC systems modified to utilize HFC / polyol ester liquids have a residual mineral oil concentration in the polyol ester of greater than 1% of the total lubricant in the system. It has been recognized in the industry to exhibit performance degradation that is indicative of poor oil return to the compressor. Surprisingly, when relatively small amounts of polyol ester lubricants are added to the compositions of the present invention, certain additives (i.e., 2,4,7,9-tetramethyl-5-decyne-4,7-diol, etc.) The present inventors have found that it is possible to improve the solubility or dispersibility of a hydrocarbon oil in a surfactant). In such cases, the weight ratio of polyol ester to hydrocarbon lubricant may range from about 1:99 to 1: 3, preferably 1:19 to 1: 4. Thus, provided that the surfactant in the compressor system comprises at least 0.001 parts by weight per 100 parts by weight of the lubricating fluid in the compressor, the polyol ester may be reacted with the polyol ester in the presence or absence of an additional hydrocarbon lubricant. Utilizing HFCs by adding a concentrated composition containing a surfactant, such as, 4,7,9-tetramethyl-5-decyne-4,7-diol or a fluorinated ester, directly to the compressor system. We believe that it would be advantageous to improve hydrocarbon lubricant CFC systems. The polyol ester / surfactant concentrate may comprise from about 0.1 to 100 parts by weight per 100 parts by weight of the polyol ester. Suitable polyol esters include aliphatic monocarboxylic acids having 4 to 25 carbon atoms alone or polyhydric alcohol esters with di- or tricarboxylic acids. Suitable polyhydric alcohols contain 2 to 6 hydroxy groups, such as neopentyl alcohol, 1,1,1-trimethylolethane, 1,1,1-trimethylolpropane, pentaerythritol and the like. Suitable aliphatic carboxylic acids include, for example, branched and unbranched acids such as butyric acid, isobutyric acid, 2-ethylhexanoic acid, n-octanoic acid, valeric acid, isopentanoic acid, hexanoic acid, heptanoic acid, nonanoic acid, stearic acid and the like. Branched acid. In order to adjust the viscosity of the polyol ester, dicarboxylic acids such as maleic acid, succinic acid, and adipic acid, and tricarboxylic acids such as trimellitic acid can be used in small amounts. Table I shows suitable stability and wear resistance enhancing additives that can be used in conjunction with hydrocarbon lubricants utilizing surfactants in cooling and air conditioning applications using lubricant-immiscible refrigerants. Example I 0.050 ml of 70 SUS naphthenic mineral oil (Suniso IGS) containing 0.5% by weight of a candidate surfactant in a 9 mL glass tube, 6 mm steel tip and 1,1,1,2-tetrafluoroethane (R) -134a) 0.70 ml was added and sealed. A two-phase system was formed consisting of an upper layer of naphthenic mineral oil and a lower layer of hydrofluorocarbon. The metal tip was completely wetted with oil by rapidly moving the metal tip up and down in the oil phase using a magnet. Next, the chip was slowly lowered into the tetrafluoroethane layer. The results are shown in Table II. The above data show that Surfynol SE containing 2,4,7,9-tetramethyl-5-decyne-4,7-diol and FC-430 containing fluorinated esters are suitable for use in the present invention. It is clearly shown. Example II 0.050 ml of 70SUS naphthenic mineral oil (Suniso 1GS) containing 0.05% by weight of a candidate surfactant (Surfynol SE or FC-430) in a 9 mL glass tube, 6 mm steel chips and 1,1,1 And 0.70 ml of 2-tetrafluoroethane (R-134a) were added, and the mixture was sealed. A two-phase system was formed consisting of an upper layer of naphthenic mineral oil and a lower layer of hydrofluorocarbon. The metal tip was completely wetted with oil by rapidly moving the metal tip up and down in the oil phase using a magnet. Next, the chip was slowly lowered into the tetrafluoroethane layer. In both candidates, the oil was separated from the chips and glass by R-134a. The oil was separated from the chip and glass surfaces by R-134a because the lubricant layer and the coolant layer were very dispersible with each other. EXAMPLE III Two 5-door freezer rack cabinets (105.6 ft 3 each) are mounted on a New England multi-zone pump down solenoid mid-temperature supermarket freezer rack and are mounted approximately 6-7 ft from the ground and have a compressor (Cope Apeltic Model). No. R-76 WMT3T), and an evaporator was placed on the floor of each cabinet to perform an improvement test. Refrigerant gas and oil pass approximately 20 ft through a 7/8 inch diameter vertical and horizontal suction return line before reaching the compressor through a 1 + 3/8 inch tube. Contains R-402A (filling 30 lbs) consisting of 38% by weight R125 (pentafluoroethane), 60% by weight R22 (hydrochlorodifluoromethane) and 2% by weight R290 (propane), and contains an antiwear agent and a foaming agent The system was charged with 200 SUS alkylbenzene lubricating oil. When the unit was operated below -5 ° F, the lubricating oil level in the compressor was reduced and the hydraulic switch turned off the unit. The system was then operated at about 0 ° F. to maintain proper oil pressure and lubrication. The oil is discharged from the system leaving some residual alkylbenzene, filled with 150 SUS oil containing naphthenic mineral oil, 10 wt% alkylbenzene and 0.05 wt% Surfynol SE as main components, decompressed for 30 minutes, and operated for 1 hour To flush residual alkylbenzene oil from the system. During this time, the hydraulic switches were not turned off and reached a temperature of -17 ° F and -10 ° F in each rack. After one hour, the oil was again drained from the system and replaced with a fresh 150 SUS oil containing as main components naphthenic mineral oil, 10% by weight alkylbenzene and 0.05% by weight Surfynol SE. Both freezers were operated at -10 ° F to -15 ° F for 2 months and no oil return failures occurred. EXAMPLE IV Promising results were obtained when the compositions shown in Table III below were tested in combination with R-134a and 2,4,7,9-tetramethyl-5-decyne-4,7-diol surfactant. Was. In the table, H-1 represents a 12 cSt naphthenic mineral oil at 40 ° C, H-2 represents a 38 cSt white naphthenic mineral oil at 40 ° C, and H-3 represents a 29-30 cSt naphthenic mineral oil at 40 ° C. H-4 represents 18 cSt naphthenic mineral oil at 40 ° C., H-5 represents 29-30 cSt alkylbenzene at 40 ° C., and P1 is a polyester of trimethylolpropane, 70% valeric acid and 30% isovaleric acid. Wherein P2 represents a polyester of pentaerythritol and 2-ethylhexanoic acid, and P3 represents a polyester of pentaerythritol, valeric acid, isovaleric acid and adipic acid. Example V This example demonstrates that anionic fluorohydrocarbon surfactants can be used in the present invention. Example II was repeated using an ISO 10 naphthenic mineral oil and candidate anionic and nonionic fluorohydrocarbon surfactants as shown in Table IV below. Zonyl FSN and Zonyl FSO are different levels F having oxyethylene units (CF 2 CF 2) 3-8 -CH 2 CH 2 O (CH 2 CH 2 O) x H. In the table, AN represents an anionic surfactant, and NON represents a nonionic surfactant. The above data clearly shows that anionic fluorohydrocarbon surfactants are suitable for use in the present invention. COMPARATIVE EXAMPLE For the purpose of replacing lubricant from chips without using the additives of the present invention, ISO 10 naphthenic mineral oil and P-1 or 2-ethyl corresponding to polyester of trimethylolpropane and 30% valeric acid. A mixture of 90% by weight mineral oil and 10% by weight polyester or 70% by weight mineral oil and 30% by weight polyester using either hexanoic acid, P-2 corresponding to a polyester of 79% neopentyl glycol and 21% pentaerythritol Was tested as described in Example II. The results are shown in Table V below.
【手続補正書】特許法第184条の8
【提出日】1996年10月10日
【補正内容】
請求の範囲
1.炭化水素潤滑剤と、該炭化水素潤滑剤に不混和性であり、少なくとも1個の
炭素原子及びフルオロハイドロカーボンのすべてのハロゲン基がフッ素を含むフ
ルオロハイドロカーボン冷媒と、冷媒が鋼から炭化水素潤滑剤を置換できるよう
に、鋼上の液体冷媒の拡張係数が小さい正の値である点まで炭化水素潤滑剤と液
体冷媒の間の界面張力を低下させる有効量の添加剤とを含む液体冷却組成物であ
って、前記添加剤が炭化水素潤滑剤100重量部当たり0.001〜5重量部の
濃度で存在する液体冷却組成物。
2.炭化水素潤滑剤がパラフィン系鉱油を含む請求項1に記載の組成物。
3.炭化水素潤滑剤がナフテン油を含む請求項1に記載の組成物。
4.炭化水素潤滑剤がアルキルベンゼン油を含む請求項1に記載の組成物。
5.炭化水素潤滑剤がポリαオレフィン及びそのオリゴマーを含む請求項1に記
載の組成物。
6.炭化水素潤滑剤が主要量のナフテン系鉱油と副次量のアルキルベンゼン油を
含む請求項1に記載の組成物。
7.炭化水素潤滑剤がパラフィン系鉱油である請求項6に記載の組成物。
8.フルオロハイドロカーボンが1,1,1,2−テトラフルオロエタンを含む
請求項6に記載の組成物。
9.フルオロハイドロカーボンがペンタフルオロエタンを含む請求項6に記載の
組成物。
10.前記組成物がジフルオロモノクロロメタンを更に含む請求項6に記載の組
成物。
11.添加剤が界面活性剤を含む請求項1に記載の組成物。
12.界面活性剤が2,4,7,9−テトラメチル−5−デシン−4,7−ジオ
ールを含む請求項11に記載の組成物。
13.界面活性剤がエステルを含む請求項11に記載の組成物。
14.冷媒が−40℃〜80℃の温度範囲全体にわたって潤滑剤に不混和性であ
る請求項1に記載の組成物。
19.パラフィン系鉱油、ナフテン系鉱油、アルキルベンゼン油並びにポリαオ
レフィン及びそのオリゴマーから構成される群から選択される少なくとも1員を
含む炭化水素潤滑剤と、該炭化水素潤滑剤に不混和性であり、少なくとも1個の
炭素原子及び1個のフッ素原子を含む冷媒と、冷媒が熱交換器及び管の内側表面
から潤滑剤を置換できるように炭化水素潤滑剤と液体冷媒の間の界面張力を低下
させる有効量の添加剤とを含む液体冷却組成物。
20.ポリオールエステル潤滑剤と2,4,7,9−テトラメチル−5−デシン
−4,7−ジオールを含む濃厚液を圧縮機システムに添加することを特徴とする
圧縮機システムの改良方法。[Procedure of Amendment] Article 184-8 of the Patent Act
[Submission date] October 10, 1996
[Correction contents]
The scope of the claims
1. At least one hydrocarbon lubricant which is immiscible with the hydrocarbon lubricant;
All halogen atoms of carbon atoms and fluorohydrocarbons contain fluorine.
Fluorohydrocarbon refrigerants and refrigerants can displace hydrocarbon lubricants from steel
To the point where the expansion coefficient of the liquid refrigerant on steel is a small positive value.
A liquid cooling composition comprising an effective amount of an additive that reduces the interfacial tension between the body refrigerants.
Thus, the additive may be used in an amount of 0.001 to 5 parts by weight per 100 parts by weight of the hydrocarbon lubricant.
Liquid cooling composition present in a concentration.
2. The composition of claim 1, wherein the hydrocarbon lubricant comprises a paraffinic mineral oil.
3. The composition of claim 1, wherein the hydrocarbon lubricant comprises a naphthenic oil.
4. The composition of claim 1, wherein the hydrocarbon lubricant comprises an alkylbenzene oil.
5. 2. The method according to claim 1, wherein the hydrocarbon lubricant comprises a polyalphaolefin and an oligomer thereof.
Composition.
6. Hydrocarbon lubricants contain a major amount of naphthenic mineral oil and a minor amount of alkylbenzene oil
The composition of claim 1 comprising:
7. 7. The composition according to claim 6, wherein the hydrocarbon lubricant is a paraffinic mineral oil.
8. The fluorohydrocarbon contains 1,1,1,2-tetrafluoroethane
A composition according to claim 6.
9. 7. The method of claim 6, wherein the fluorohydrocarbon comprises pentafluoroethane.
Composition.
10. 7. The set of claim 6, wherein said composition further comprises difluoromonochloromethane.
Adult.
11. The composition of claim 1, wherein the additive comprises a surfactant.
12. The surfactant is 2,4,7,9-tetramethyl-5-decyne-4,7-dioxide
12. The composition of claim 11, comprising a composition.
13. The composition of claim 11, wherein the surfactant comprises an ester.
14. The refrigerant is immiscible with the lubricant over the entire temperature range of -40 ° C to 80 ° C.
The composition according to claim 1.
19. Paraffinic mineral oil, naphthenic mineral oil, alkylbenzene oil and poly-α
At least one member selected from the group consisting of refins and oligomers thereof
A hydrocarbon lubricant comprising: at least one hydrocarbon lubricant that is immiscible with the hydrocarbon lubricant;
A refrigerant containing carbon atoms and one fluorine atom, wherein the refrigerant is the inner surface of a heat exchanger and a tube;
Interfacial tension between hydrocarbon lubricant and liquid refrigerant so that lubricant can be replaced from
A liquid cooling composition comprising an effective amount of an additive.
20. Polyol ester lubricant and 2,4,7,9-tetramethyl-5-decyne
Characterized in that a concentrate containing -4,7-diol is added to the compressor system
How to improve the compressor system.
─────────────────────────────────────────────────────
フロントページの続き
(51)Int.Cl.6 識別記号 FI
C10M 131:12)
C10N 40:30
(81)指定国 EP(AT,BE,CH,DE,
DK,ES,FR,GB,GR,IE,IT,LU,M
C,NL,PT,SE),OA(BF,BJ,CF,CG
,CI,CM,GA,GN,ML,MR,NE,SN,
TD,TG),AP(KE,MW,SD,SZ,UG),
AM,AT,AU,BB,BG,BR,BY,CA,C
H,CN,CZ,DE,DK,ES,FI,GB,GE
,HU,JP,KE,KG,KP,KR,KZ,LK,
LT,LU,LV,MD,MG,MN,MW,MX,N
O,NZ,PL,PT,RO,RU,SD,SE,SI
,SK,TJ,TT,UA,UZ,VN
(72)発明者 ブラック,ジー・トーマス
アメリカ合衆国ニュージャージー州07442,
ポンプトン・レイクス,ピアーソン・ミラ
ー・ドライブ 100,アパートメント・シ
ー44
(72)発明者 トリットカック,トッド・アール
アメリカ合衆国ニュージャージー州07002,
ベイオン,ウエスト・フィフティーンス・
ストリート 137
(72)発明者 アコンスキー,レオナード
アメリカ合衆国ニューヨーク州10019,ニ
ューヨーク,エイス・アベニュー 888──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C10M 131: 12) C10N 40:30 (81) Designated country EP (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OA (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP (KE, MW, SD, SZ, UG), AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, GE, HU, JP , KE, KG, KP, KR, KZ, LK, LT, LU, LV, MD, MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, S I, SK, TJ, TT, UA, UZ, VN (72) Inventor Black, G. Thomas 07442, New Jersey, USA Pampton Lakes, Pearson Mirror Drive 100, Apartment Sea 44 (72) Inventor Tritcak, Todd Earl, New Jersey, USA 07002, Bayon, West Fifteenth Street 137 (72) Inventor Aconsky, Leonard 10019, New York, USA, Ace Avenue 888