JPH1050523A - Impedance device and its manufacture - Google Patents
Impedance device and its manufactureInfo
- Publication number
- JPH1050523A JPH1050523A JP8215343A JP21534396A JPH1050523A JP H1050523 A JPH1050523 A JP H1050523A JP 8215343 A JP8215343 A JP 8215343A JP 21534396 A JP21534396 A JP 21534396A JP H1050523 A JPH1050523 A JP H1050523A
- Authority
- JP
- Japan
- Prior art keywords
- impedance
- resistance
- circuit
- frequency characteristic
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Coils Or Transformers For Communication (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、信号回路内のノイ
ズ吸収を目的にし、信号波の歪みや遅延の少ない積層型
インピーダンス素子及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer impedance element for reducing noise in a signal circuit and reducing signal wave distortion and delay, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】近年、電子機器のEMI対策の手法とし
て信号系にインピーダンス素子を直列に挿入しノイズを
遮断することが一般的に行われている。2. Description of the Related Art In recent years, as a measure against EMI of electronic equipment, it has been generally practiced to insert an impedance element in series in a signal system to cut off noise.
【0003】また、パワーアンプ等の電源ライン系に対
しても、インピーダンス素子を直列に挿入してアクチブ
素子から信号系のノイズが電源ラインに漏洩することを
抑制することも行われている。[0003] In a power supply line system such as a power amplifier, an impedance element is inserted in series to suppress the leakage of signal system noise from the active element to the power supply line.
【0004】しかしながら、インピーダンス素子による
EMI対策は、リアクタンス成分が信号波形に歪みを与
えたり、位相の遅れを生じさせるマイナスの効果も認め
られる。However, the countermeasure against EMI by the impedance element has a negative effect that a reactance component causes distortion of a signal waveform or causes a phase delay.
【0005】インピーダンス素子のインピーダンスZa
は、実数部の抵抗成分Raと虚数部のリアクタンス成分
Xaの合成であり、Ra+jXaの式で表される。ノイズ
吸収に有効で歪みや位相遅れを生じさせない理想的なイ
ンピーダンス素子は、ノイズ成分を有する特定の高周波
領域で、実数部の抵抗成分Raが大きな値を示し、信号
域の周波領域では、実数部の抵抗成分Raと虚数部のリ
アクタンス成分Xaは、小さい値を示す周波数特性を有
するものである。The impedance Za of the impedance element
Is a combination of the real-valued resistance component Ra and the imaginary-part reactance component Xa, and is expressed by the equation Ra + jXa. An ideal impedance element that is effective for noise absorption and does not cause distortion or phase lag has a large resistance component Ra in a real part in a specific high frequency region having a noise component, and has a real part in a frequency region in a signal range. The resistance component Ra and the imaginary part reactance component Xa have frequency characteristics indicating small values.
【0006】[0006]
【発明が解決しようとする課題】ノイズ吸収に作用する
高周波領域での抵抗値は、また使用される回路によっ
て、特定の値が要求される。今日、この目的で用いられ
ている素子は、所望の周波数特性に近付ける手段として
は、磁性材料の持つ固有の損失の周波数特性及び形成さ
れるスパイラルコイルの巻数の調整等によって実現され
ているが、フェライトのような材料の持つ損失特性は自
由度が低く、目的の周波数特性が必ずしも得られないこ
とが問題となっている。A specific value of the resistance value in a high-frequency region that affects noise absorption is required depending on the circuit used. Today, the element used for this purpose is realized by adjusting the frequency characteristic of the inherent loss of the magnetic material and adjusting the number of turns of the formed spiral coil as means for approaching the desired frequency characteristic. The loss characteristics of materials such as ferrite have a low degree of freedom, and the problem is that the desired frequency characteristics cannot always be obtained.
【0007】本発明の課題は、特定の高周波領域でイン
ピーダンス値を目的の値に容易に制御でき、一つの磁性
材料が多種のインピーダンス値の素子に共用できるイン
ピーダンス素子及びその製造方法を提供することにあ
る。SUMMARY OF THE INVENTION An object of the present invention is to provide an impedance element which can easily control an impedance value to a target value in a specific high-frequency region, and one magnetic material can be used for elements having various impedance values, and a method of manufacturing the same. It is in.
【0008】[0008]
【課題を解決するための手段】本発明は、酸化物磁性材
料からなるセラミックペーストを積層し、その上に前記
セラミックペーストと導体用ペーストを交互に積層し、
導体をスパイラルコイル状に形成し、その上に前記セラ
ミックペーストを積層して積層体を作り、該積層体を焼
成し、該積層体の表面に形成された導電物質からなる皮
膜と、スパイラルコイルの両端と並列に結線したことを
特徴とするインピーダンス素子である。According to the present invention, a ceramic paste comprising an oxide magnetic material is laminated, and the ceramic paste and the conductor paste are alternately laminated thereon.
A conductor is formed in a spiral coil shape, and the ceramic paste is laminated thereon to form a laminate, the laminate is fired, and a film made of a conductive substance formed on the surface of the laminate, An impedance element characterized by being connected in parallel with both ends.
【0009】又、本発明は、上記皮膜の形成手段とし
て、酸化物の焼結体からなる素子の表面を部分的に還元
させて所定の導電率を有する膜を形成することを特徴と
するインピーダンス素子の製造方法である。Further, the present invention is characterized in that, as a means for forming the film, the surface of an element made of an oxide sintered body is partially reduced to form a film having a predetermined conductivity. This is a method for manufacturing an element.
【0010】[0010]
【発明の実施の形態】本発明の実施の形態について、図
面を用いて説明する。Embodiments of the present invention will be described with reference to the drawings.
【0011】図1は、インダクタンスLと抵抗Rの並列
回路を示している。この回路の端子間のインピーダンス
は、式で与えられる。FIG. 1 shows a parallel circuit of an inductance L and a resistance R. The impedance between the terminals of this circuit is given by the equation:
【0012】 Z=(ω2L2R+jωLR2)/(R2+ω2L2)・・・・・・Z = (ω 2 L 2 R + jωLR 2 ) / (R 2 + ω 2 L 2 )
【0013】本発明のインピーダンス素子では、セラミ
ックペーストと導体用ペーストとを交互に積層し、導体
をスパイラルコイル状に形成し、その上に前記セラミッ
クペーストを積層して積層体を作り、この積層体を焼成
し、前記積層体の表面に抵抗素子の導電物質からなる皮
膜を形成し、この皮膜と前記スパイラルコイルの両端と
を並列に結線した複合素子とすることにより、目的の周
波数特性を得ることができる。In the impedance element of the present invention, a ceramic paste and a conductor paste are alternately laminated, a conductor is formed in a spiral coil shape, and the ceramic paste is laminated thereon to form a laminate. To obtain a target frequency characteristic by forming a film made of a conductive material of a resistance element on the surface of the laminate, and forming a composite element in which the film and both ends of the spiral coil are connected in parallel. Can be.
【0014】前記回路のインダクタンスLの値を1μ
H、または2μHとし、前記回路の抵抗Rの値を500
Ωとした場合、両端子間のインピーダンスZ1及びその
実数部の抵抗成分R1、虚数部のリアクタンス成分X1の
周波数特性を各々順にA1,B1,C1,D1,E1,F1の
曲線として図2に示す。The value of the inductance L of the circuit is 1 μm.
H or 2 μH, and the value of the resistor R of the circuit is 500
In the case of Ω, the frequency characteristics of the impedance Z1 between the two terminals, the resistance component R1 of the real part thereof, and the reactance component X1 of the imaginary part thereof are shown in FIG. 2 as curves of A1, B1, C1, D1, E1, and F1, respectively. .
【0015】A1は、回路の抵抗Rが500Ωで、回路
のインダクンスLが1μHの時のインピーダンスZ1の
周波数特性を示す。B1は、回路の抵抗Rが500Ω
で、回路のインダクンスLが1μHの時の実数部の抵抗
R1の周波数特性を示す。C1は、回路の抵抗Rが500
Ωで、回路のインダクンスLが1μHの時の虚数部のリ
アクタンス成分X1の周波数特性を示す。D1は、回路の
抵抗Rが500Ωで、回路のインダクンスLが2μHの
時のインピーダンスZ1の周波数特性を示す。E1は、回
路の抵抗Rが500Ωで、回路のインダクンスLが2μ
Hの時の実数部の抵抗R1の周波数特性を示す。F1は、
回路の抵抗Rが500Ωで、インダクンスLが2μHの
時の虚数部のリアクタンス成分X1の周波数特性を示
す。A1 shows the frequency characteristic of the impedance Z1 when the resistance R of the circuit is 500Ω and the inductance L of the circuit is 1 μH. B1 is the resistance R of the circuit is 500Ω
Shows the frequency characteristic of the resistor R1 in the real part when the inductance L of the circuit is 1 μH. C1 is the resistance R of the circuit is 500
Ω indicates the frequency characteristic of the reactance component X1 of the imaginary part when the inductance L of the circuit is 1 μH. D1 indicates the frequency characteristic of the impedance Z1 when the resistance R of the circuit is 500Ω and the inductance L of the circuit is 2 μH. E1 is that the circuit resistance R is 500Ω and the circuit inductance L is 2μ.
The frequency characteristic of the resistor R1 in the real part when H is shown. F1 is
The frequency characteristic of the imaginary part reactance component X1 when the resistance R of the circuit is 500Ω and the inductance L is 2 μH is shown.
【0016】前記回路のインダクタンスLの値を1μ
H、または2μHとし、前記回路の抵抗Rの値を300
Ωにした場合、その各々の両端子間のインピーダンスZ
2及びその実数部の抵抗成分R2、虚数部のリアクタンス
成分X2の周波数特性を各々順にA2,B2,C2,D2,
E2,F2の曲線として図3に示す。The value of the inductance L of the circuit is 1 μm.
H or 2 μH, and the value of the resistance R of the circuit is 300
Ω, the impedance Z between both terminals
2 and its real part, the resistance component R2, and the imaginary part, the reactance component X2, are represented by A2, B2, C2, D2,
FIG. 3 shows curves of E2 and F2.
【0017】A2は、回路の抵抗Rが300Ωで、回路
のインダクンスLが1μHの時のインピーダンスZ2の
周波数特性を示す。B2は、回路の抵抗Rが300Ω
で、回路のインダクンスLが1μHの時の実数部の抵抗
成分R2の周波数特性を示す。C2は、回路の抵抗Rが3
00Ωで、回路のインダクンスLが1μHの時の虚数部
のリアクタンス成分X2の周波数特性を示す。D2は、回
路の抵抗Rが300Ωで、回路のインダクンスLが2μ
Hの時のインピーダンスZ2の周波数特性を示す。E2
は、回路の抵抗Rが300Ωで、回路のインダクンスL
が2μHの時の実数部の抵抗成分R2の周波数特性を示
す。F2は、回路の抵抗Rが300Ωで、回路のインダ
クンスLが2μHの時の虚数部のリアクタンス成分X2
の周波数特性を示す。A2 shows the frequency characteristic of the impedance Z2 when the resistance R of the circuit is 300Ω and the inductance L of the circuit is 1 μH. B2 indicates that the resistance R of the circuit is 300Ω.
Shows the frequency characteristic of the resistance component R2 of the real part when the inductance L of the circuit is 1 μH. C2 indicates that the resistance R of the circuit is 3
9 shows the frequency characteristic of the reactance component X2 of the imaginary part when the inductance L of the circuit is 1 μH at 00Ω. D2 has a circuit resistance R of 300Ω and a circuit inductance L of 2μ.
The frequency characteristic of the impedance Z2 at the time of H is shown. E2
Means that the circuit resistance R is 300Ω and the circuit inductance L
4 shows the frequency characteristic of the resistance component R2 of the real part when is 2 μH. F2 is a reactance component X2 of an imaginary part when the resistance R of the circuit is 300Ω and the inductance L of the circuit is 2 μH.
FIG.
【0018】図2、図3から明らかなように、低周波領
域では、インピーダンス値の低いコイル部分のインピー
ダンス値が支配的となり、2端子間のインピーダンス値
を決めるが、高周波領域になり、インダクタンスのイン
ピーダンス値が回路の抵抗を越えるようになってくる
と、2端子間のインピーダンス値は、実数部の抵抗成分
が支配的となり、実数部の抵抗成分の値に収束してしま
う。As is clear from FIGS. 2 and 3, in the low frequency region, the impedance value of the coil portion having a low impedance value is dominant, and the impedance value between the two terminals is determined. When the impedance value exceeds the resistance of the circuit, the impedance value between the two terminals is dominated by the resistance component of the real part and converges to the value of the resistance component of the real part.
【0019】又、インダクタンス値によって、インピー
ダンス値の周波数特性でインピーダンス値の立ち上がり
に変化を与えることも可能である。Further, it is possible to change the rise of the impedance value by the frequency characteristic of the impedance value depending on the inductance value.
【0020】ところで、インピーダンス素子をフェライ
トのような磁性材料をコアに用いて作製すると、周波数
の上昇に伴いリアクタンス成分は減少し、同時に損失が
増大する。When the impedance element is manufactured by using a magnetic material such as ferrite for the core, the reactance component decreases as the frequency increases, and the loss increases at the same time.
【0021】結果として、インピーダンス値の周波数特
性は、前述の純インダクタンスLと抵抗Rの並列回路の
周波数特性に似た変化を示す。As a result, the frequency characteristic of the impedance value shows a change similar to the frequency characteristic of the above-described parallel circuit of the pure inductance L and the resistor R.
【0022】ところが、所望の周波数特性を得る場合、
周波数特性を制御するものは、材料の損失特性が主で、
他はスパイラルコイルの巻数、形状調整によるインダク
タンス値程度で自由度が少なく、必ずしも目的の周波数
特性が得られる訳ではない。However, when a desired frequency characteristic is obtained,
The frequency characteristics are controlled mainly by the loss characteristics of the material.
In other cases, the degree of freedom is small due to the number of turns of the spiral coil and the inductance value obtained by adjusting the shape, and a desired frequency characteristic is not always obtained.
【0023】しかしながら、このインダクタンス素子と
並列に抵抗を結線した場合、高周波領域でのインピーダ
ンスの実数部の成分は、抵抗と並列に接続することによ
る効果を示し、インピーダンスの実数部の成分を制御す
ることが可能で、高周波領域の抵抗値は、きわめて容易
にコントロールすることが可能になる。However, when a resistor is connected in parallel with the inductance element, the component of the real part of the impedance in the high frequency region shows the effect of connecting in parallel with the resistor, and controls the component of the real part of the impedance. It is possible to control the resistance value in the high frequency range very easily.
【0024】しかしながら、抵抗素子を新たに付加する
ことは、部品の小型化や表面実装作業の場合、工数増加
の点で好ましくない。インダクタンス素子の表面に抵抗
素子を形成することが可能であれば、きわめて実用性に
富むインピーダンス素子の提供が可能になる。However, it is not preferable to newly add a resistance element in terms of downsizing of components and surface mounting work because of an increase in man-hours. If a resistance element can be formed on the surface of the inductance element, it is possible to provide an extremely practical impedance element.
【0025】[0025]
【実施例】本発明の実施例について説明する。An embodiment of the present invention will be described.
【0026】セラミック粉末として、Ni−Cuフェラ
イトの粉末を用意した。この粉末をそれぞれバインダ、
溶剤と表1の比率で配合し、配合物を三本ロールで混練
して酸化物磁性材料からなるセラミックペーストを作製
した。As a ceramic powder, a Ni—Cu ferrite powder was prepared. This powder is used as a binder,
It was blended with the solvent at a ratio shown in Table 1, and the blend was kneaded with a three-roll mill to prepare a ceramic paste composed of an oxide magnetic material.
【0027】 [0027]
【0028】導体用粉末として、平均粒径0.5μmの
AgとPdの混合粉(Ag70%、Pd30%)を用意
した。As a conductor powder, a mixed powder of Ag and Pd (Ag 70%, Pd 30%) having an average particle size of 0.5 μm was prepared.
【0029】この粉末を表2の比率でバインダ、溶剤と
配合し、三本ロールで混練して、導体用ペーストを作製
した。This powder was mixed with a binder and a solvent in the ratios shown in Table 2 and kneaded with a three-roll mill to prepare a paste for a conductor.
【0030】 [0030]
【0031】次に、作製したセラミックペーストを印刷
法により、所定の厚さ500μmに積層した。この上
に、セラミックペーストと導体用ペーストを用いて、
3.5ターンの導電体のスパイラルコイルを形成し、順
次積層を行い、この上に、セラミックペーストを300
μmの印刷法で積層した。Next, the produced ceramic paste was laminated to a predetermined thickness of 500 μm by a printing method. On top of this, using ceramic paste and conductor paste,
A 3.5-turn spiral coil of a conductor is formed and sequentially laminated, and a ceramic paste is applied on top of this.
The layers were laminated by a printing method of μm.
【0032】上記作製した積層体は、所定の寸法(2.
4mm×1.5mm)に切断し、これを脱脂した後、9
50℃で一体焼成した。図4は、このコイル1と磁性体
2からなる素子の内部構造を示している。コイル1のリ
ード部が露出している面に、Agを主とする導電性ペー
ストを塗布して、外部端子とした。この状態の素子を試
料Aとした。The above-prepared laminate has a predetermined size (2.
4 mm x 1.5 mm), and after degreased, 9
It was baked at 50 ° C. FIG. 4 shows an internal structure of an element including the coil 1 and the magnetic body 2. A conductive paste mainly composed of Ag was applied to the surface of the coil 1 where the lead portions were exposed to form external terminals. The element in this state was designated as Sample A.
【0033】次に、電極端子間のセラミック表面にカー
ボンを薄く蒸着した後、直流抵抗計を用いて抵抗を測定
しながらトリミング装置で端子間の直流抵抗を180Ω
に調整したものを試料Bとした。Next, after a thin carbon is deposited on the ceramic surface between the electrode terminals, the DC resistance between the terminals is set to 180Ω by a trimming device while measuring the resistance using a DC resistance meter.
The sample adjusted to the above was designated as Sample B.
【0034】又、外部端子を形成したものについて、環
状炉に入れて水素雰囲気中で、700℃×30分、及び
10分の熱処理を行った。この試料について、端子間の
直流抵抗を測定したところ、それぞれ480Ω、及び9
70Ω抵抗値を確認した。これを試料C、及びDとし
た。Further, the external terminal was formed and heat-treated in a ring furnace in a hydrogen atmosphere at 700 ° C. for 30 minutes and for 10 minutes. The DC resistance between the terminals of this sample was measured to be 480Ω and 9Ω, respectively.
A 70Ω resistance value was confirmed. These were designated as Samples C and D.
【0035】上記のようにして作製した積層インダクタ
ーのインピーダンスの周波数特性をYHP製インピーダ
ンスアナライザーHP4191Aを用いて評価した。試
料A、試料B、試料C、試料Dの結果をそれぞれ図5、
図6、図7、及び図8に示す。The frequency characteristics of the impedance of the multilayer inductor manufactured as described above were evaluated using a YHP impedance analyzer HP4191A. The results of Sample A, Sample B, Sample C, and Sample D are shown in FIG.
6, 7, and 8.
【0036】図5に示すように、ZAは、抵抗素子を付
加しない時の試料AのインピーダンスZAの周波数特性
を示す。RAは、抵抗素子を付加しない時の試料Aの実
数部の抵抗成分RAの周波数特性を示す。XAは、抵抗素
子を付加しない時の試料Aの虚数部のリアクタンス成分
XAの周波数特性を示す。As shown in FIG. 5, ZA indicates the frequency characteristic of the impedance ZA of the sample A when no resistance element is added. RA indicates the frequency characteristic of the resistance component RA of the real part of the sample A when no resistance element is added. XA indicates the frequency characteristic of the reactance component XA of the imaginary part of the sample A when no resistance element is added.
【0037】図6に示すように、ZBは、試料Bのイン
ピーダンスZBの周波数特性を示す。RBは、試料Bの実
数部の抵抗成分RBの周波数特性を示す。XBは、試料B
の虚数部のリアクタンス成分XBの周波数特性を示す。As shown in FIG. 6, ZB indicates the frequency characteristic of the impedance ZB of the sample B. RB indicates the frequency characteristic of the resistance component RB of the real part of the sample B. XB is sample B
5 shows the frequency characteristic of the reactance component XB of the imaginary part of FIG.
【0038】図7に示すように、ZCは、試料Cのイン
ピーダンスZCの周波数特性を示す。RCは、試料Cの実
数部の抵抗成分RCの周波数特性を示す。XCは、試料C
の虚数部のリアクタンス成分XCの周波数特性を示す。As shown in FIG. 7, ZC indicates a frequency characteristic of the impedance ZC of the sample C. RC indicates the frequency characteristic of the resistance component RC of the real part of the sample C. XC is the sample C
5 shows the frequency characteristic of the reactance component XC of the imaginary part of FIG.
【0039】図8に示すように、ZDは、試料Dのイン
ピーダンスZDの周波数特性を示す。RDは、試料Dの実
数部の抵抗成分RDの周波数特性を示す。XDは、試料D
の虚数部のリアクタンス成分XDの周波数特性を示す。As shown in FIG. 8, ZD indicates the frequency characteristic of the impedance ZD of the sample D. RD indicates the frequency characteristic of the resistance component RD of the real part of the sample D. XD is sample D
5 shows the frequency characteristic of the reactance component XD of the imaginary part of FIG.
【0040】図5において、抵抗素子を付加しない試料
Aの高周波領域(>50MHz)でのインピーダンス
値、約200Ωを決定しているものは、NiZnフェラ
イトの損失係数が持つ周波数特性と素子の形状に係わ
る。ところが、素子形状は、表面実装部品の場合、寸法
に関する制約が多く、高域周波数のインピーダンス特性
の制御は、容易ではない。In FIG. 5, the impedance value of the sample A in the high frequency region (> 50 MHz) of about 200 Ω in which no resistance element is added is determined by the frequency characteristic and the element shape of the loss coefficient of the NiZn ferrite. Get involved. However, in the case of a surface-mounted component, there are many dimensional restrictions on the element shape, and it is not easy to control impedance characteristics at high frequencies.
【0041】一方、図6、図7、図8に示す試料B、試
料C、及び試料Dの場合、高周波数領域でのインピーダ
ンス値は、ほぼ付加した抵抗素子の値によって制御され
ており、作製上、きわめて容易に高周波領域でのインピ
ーダンス特性を制御できることが証明された。On the other hand, in the case of Samples B, C, and D shown in FIGS. 6, 7, and 8, the impedance value in the high frequency region is almost controlled by the value of the added resistance element. In addition, it has been proved that impedance characteristics in a high frequency region can be controlled very easily.
【0042】更に、試料C、試料Dから還元雰囲気中の
熱処理によって、素子表面に導電層が形成され、これが
抵抗素子として利用できること、更に、熱処理の条件に
よって抵抗値が制御できることも確認できた。Further, it was confirmed that a conductive layer was formed on the element surface by heat treatment in a reducing atmosphere from Samples C and D, and that this could be used as a resistance element, and that the resistance value could be controlled by the heat treatment conditions.
【0043】[0043]
【発明の効果】以上、説明したとおり、本発明によれ
ば、形状寸法に関して制約の多いSMD部品であるイン
ピーダンス素子について、特定の高周波領域でインピー
ダンス値を目的の値に形状に支配されず、容易に制御で
きる素子及びその製造方法の提供が可能になった。又、
一つの磁性材料が多種のインピーダンス値の素子及びそ
の製造方法に共用できることの利点があり、工業上、き
わめて有益な発明である。As described above, according to the present invention, the impedance element, which is an SMD component having many restrictions on the shape and size, is not controlled by the shape of the impedance value to a desired value in a specific high-frequency region, and is easily controlled. It has become possible to provide an element which can be controlled at a high speed and a method for manufacturing the same. or,
The present invention has an advantage that one magnetic material can be used for elements having various impedance values and a method for manufacturing the same, which is an industrially extremely useful invention.
【図1】インダクタンスLと抵抗Rからなる並列回路を
示す図。FIG. 1 is a diagram showing a parallel circuit including an inductance L and a resistance R.
【図2】回路のインダクタンスLの値を1μH、または
2μHとし、回路の抵抗の値を500Ωとした場合、そ
の各々の両端子間のインピーダンスZ1、及びその実数
部の抵抗成分R1、虚数部のリアクタンス成分X1の周波
数特性を示す図。FIG. 2 shows a case where the value of the inductance L of the circuit is 1 μH or 2 μH and the value of the resistance of the circuit is 500Ω, the impedance Z1 between both terminals thereof, the resistance component R1 of the real part thereof, and the resistance of the imaginary part thereof. The figure which shows the frequency characteristic of the reactance component X1.
【図3】回路のインダクタンスLの値を1μH、または
2μHとし、回路の抵抗の値を300Ωとした場合、そ
の各々の両端子間のインピーダンスZ2、及びその実数
部の抵抗成分R2、虚数部のリアクタンス成分X2の周波
数特性を示す図。FIG. 3 is a graph showing the relationship between the impedance Z2 between both terminals of the circuit and the resistance component R2 of the real part and the imaginary part of the circuit when the inductance value of the circuit is 1 μH or 2 μH and the resistance value of the circuit is 300Ω. The figure which shows the frequency characteristic of the reactance component X2.
【図4】試料Aを示す斜視図。FIG. 4 is a perspective view showing a sample A.
【図5】試料Aの周波数特性を示す図。FIG. 5 is a diagram illustrating frequency characteristics of a sample A;
【図6】試料Bの周波数特性を示す図。FIG. 6 is a diagram illustrating frequency characteristics of a sample B;
【図7】試料Cの周波数特性を示す図。FIG. 7 is a diagram illustrating frequency characteristics of a sample C;
【図8】試料Dの周波数特性を示す図。FIG. 8 is a diagram illustrating frequency characteristics of a sample D;
1 コイル 2 磁性体 1 coil 2 magnetic material
Claims (2)
ストを積層し、その上に前記セラミックペーストと導体
用ペーストを交互に積層し、導体をスパイラルコイル状
に形成し、その上に前記セラミックペーストを積層して
積層体を作り、該積層体を焼成し、該積層体の表面に形
成された導電物質からなる皮膜と、スパイラルコイルの
両端と並列に結線したことを特徴とするインピーダンス
素子。1. A ceramic paste made of an oxide magnetic material is laminated, a ceramic paste and a conductor paste are alternately laminated thereon, a conductor is formed in a spiral coil shape, and the ceramic paste is laminated thereon. An impedance element, comprising: forming a laminate, firing the laminate, and connecting a film made of a conductive substance formed on the surface of the laminate and both ends of the spiral coil in parallel.
酸化物の焼結体からなる素子の表面を部分的に還元させ
て所定の導電率を有する膜を形成することを特徴とする
インピーダンス素子の製造方法。2. The means for forming a film according to claim 1,
A method for manufacturing an impedance element, comprising forming a film having a predetermined conductivity by partially reducing the surface of an element made of a sintered oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8215343A JPH1050523A (en) | 1996-07-26 | 1996-07-26 | Impedance device and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8215343A JPH1050523A (en) | 1996-07-26 | 1996-07-26 | Impedance device and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1050523A true JPH1050523A (en) | 1998-02-20 |
Family
ID=16670738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8215343A Pending JPH1050523A (en) | 1996-07-26 | 1996-07-26 | Impedance device and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1050523A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2397441A (en) * | 2003-01-10 | 2004-07-21 | Murata Manufacturing Co | Noise filter with alternating ground and line conductor arrangements laminated in a magnetic oxide body |
US10074467B2 (en) | 2017-01-06 | 2018-09-11 | Murata Manufacturing Co., Ltd. | Resistance element and method for manufacturing the same |
-
1996
- 1996-07-26 JP JP8215343A patent/JPH1050523A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2397441A (en) * | 2003-01-10 | 2004-07-21 | Murata Manufacturing Co | Noise filter with alternating ground and line conductor arrangements laminated in a magnetic oxide body |
GB2397441B (en) * | 2003-01-10 | 2006-11-01 | Murata Manufacturing Co | Noise filter |
US7161446B2 (en) | 2003-01-10 | 2007-01-09 | Murata Manufacturing Co., Ltd. | Noise filter |
US10074467B2 (en) | 2017-01-06 | 2018-09-11 | Murata Manufacturing Co., Ltd. | Resistance element and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6525395B1 (en) | Chip-type composite electronic component and manufacturing method thereof | |
JP4216917B2 (en) | Chip bead element and manufacturing method thereof | |
JP2000182834A (en) | Laminate inductance element and manufacture thereof | |
CN101441921B (en) | Inducer and method of manufacturing the same | |
JPH1197256A (en) | Laminated chip inductor | |
JPH1050523A (en) | Impedance device and its manufacture | |
CN101441920A (en) | Inducer and method of manufacturing the same | |
JPH09148118A (en) | Laminated compressed powder magnetic core | |
JPH05121241A (en) | Inductance part and its manufacture | |
JPH02109202A (en) | Ceramic inductor parts and ceramic lc parts | |
JPH05121240A (en) | Inductance part and its manufacture | |
JPH1027712A (en) | Large-current multilayer chip inductor | |
JPH1050525A (en) | Impedance element and manufacture thereof | |
JPH0353606A (en) | Manufacture of laminated lr filter | |
CN201285697Y (en) | Inducer | |
JP2705706B2 (en) | Manufacturing method of laminated LR filter | |
JPH0353607A (en) | Manufacture of laminated lr filter | |
JPH04239107A (en) | Electromagnetic interference preventive element | |
JP3035479B2 (en) | Multilayer inductance element | |
JPH08148338A (en) | Multilayer chip inductor and production thereof | |
JPH08167523A (en) | Laminated inductor and manufacture thereof | |
JP2705705B2 (en) | Manufacturing method of laminated LR filter | |
JPH09186019A (en) | Laminated magnetic element | |
JPH03106005A (en) | Manufacture of chip type lr filter | |
JPH11329844A (en) | Laminated impedance element |