JPH10503422A - Cobalt on alumina catalyst - Google Patents

Cobalt on alumina catalyst

Info

Publication number
JPH10503422A
JPH10503422A JP8506133A JP50613396A JPH10503422A JP H10503422 A JPH10503422 A JP H10503422A JP 8506133 A JP8506133 A JP 8506133A JP 50613396 A JP50613396 A JP 50613396A JP H10503422 A JPH10503422 A JP H10503422A
Authority
JP
Japan
Prior art keywords
cobalt
catalyst
surface area
transition alumina
alumina support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8506133A
Other languages
Japanese (ja)
Other versions
JP3514463B2 (en
Inventor
ボネ、レイモンド・ローレンチウス・キャサリーナ
ロク、コルネリス・マルティヌス
Original Assignee
クロスフィールド・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=10759249&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10503422(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by クロスフィールド・リミテッド filed Critical クロスフィールド・リミテッド
Publication of JPH10503422A publication Critical patent/JPH10503422A/en
Application granted granted Critical
Publication of JP3514463B2 publication Critical patent/JP3514463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/392Metal surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

(57)【要約】 コバルト表面積が、30m2/コバルトgより大きく、好ましくは50m2/コバルトgより大きく、最も好ましくは80m2/コバルトgより大きい、3乃至40重量%のコバルトを含有する、遷移アルミナ支持体上のコバルト触媒。 (57) Abstract: Cobalt surface area greater than 30 m 2 / g of cobalt, preferably greater than 50 m 2 / g of cobalt, most preferably greater than 80 m 2 / g of cobalt, containing from 3 to 40% by weight of cobalt; Cobalt catalyst on transition alumina support.

Description

【発明の詳細な説明】 アルミナ触媒上のコバルト発明の分野 本願発明は、アルミナ触媒上のコバルト及びそれを製造する方法に関する。発明の背景 触媒において、コバルトは通常、シリカ、珪酸アルミニウム、アルミナのよう な担体上に固定される。 これらの触媒において、有用なコバルト原子は、コバルト粒子の表面において 露出されるものである。露出されない(すなわち、表面においてではない)コバ ルト原子は、触媒反応に参与しない。 コバルトは、高価な金属であり、触媒としての使用を最適にするために、触媒 の(露出したコバルト原子の数/コバルト原子の総数)比をできるだけ増加させ 、コバルトg当りコバルト表面積を増大させることが必須である。 欧州特許公開13,275号により、コバルトイオン、シリケートイオン及び固体の 多孔性担体粒子の反応混合物が調製されそしてコバルトイオン及びシリケートイ オンの共沈物を固体の多孔性担体粒子上に形成させる、担持された共沈コバルト -シリカ触媒を製造することが知られている。得られたコバルト-シリカ触媒は、 150乃至350m2/gのBET総表面積及び5乃至20m2/コバルトgのコバルト表 面積を有する。 又、米国特許第4,591,579号により、遷移金属(例えば、コバルト、ニッケル 又は銅)の不溶性の塩基性化合物をそのような金属塩の水溶液からアルカリ沈殿 剤で沈殿させ、その後に、この化合物を珪酸塩溶液と反応させる、珪酸- 遷移金 属塩触媒の調製の方法を提供することも知られている。実施例5では、コバルト 表面積が8.9m2/触媒gである触媒が記載されている。 “Stoichiometries of H2 and C0 Adsorptions on cobalt”、Journal of Cat alysis 85、63-77頁(1984年)では、67頁、表1において、異なる担体上のコバ ルト触媒が記載されている。その総最大H2取り込みから、触媒のg当り コバルト表面積及びコバルトg当りのコバルト表面積を算出することは可能であ る。シリカ触媒上のコバルトでは、コバルトのg当りのコバルト表面積は6乃至 65m2/gの範囲であり、遷移アルミナ触媒上のコバルトでは、コバルトのg当 りコバルト表面積は15乃至26m2/gであることが分かる。 従って、シリカ上のコバルト触媒では、コバルトのg当り高いコバルト表面積 を有するコバルト触媒が存在するが、遷移アルミナ上のコバルト触媒では、存在 しない。 それにもかかわらず、遷移アルミナ上のコバルト触媒は、他のコバルト触媒よ りいくつの明確な利点を有する。 第一には、遷移アルミナ上のコバルト触媒は、シリカ上のコバルト触媒よりも 押出により付形させることが容易であり、得られる触媒の機械的強度はより高い 。 水が存在する反応において(例えば、メタン化、Fisher Tropsch)、シリカは 不安定である。しかし、アルミナはそのような条件下においてより安定である。 従って、今まで得られたものよりも高い、コバルトのg当りのコバルト表面積 を有する、遷移アルミナ上のコバルト触媒に対する必要性がある。 本願発明の第一の目的は、今まで得られたものよりも高い、コバルトのg当り のコバルト表面積を有する、遷移アルミナ上のコバルト触媒を提供することであ る。 本願発明の第二の目的は、そのような触媒を製造する方法を提供することであ る。試験及び定義 i)コバルト表面積 約0.5gの試料を分析に用いた。金属表面積を算出するのに用いる重量は、予 備処理後に得られたものである。この予備処理の間に、試料をガス抜きし、120 ℃で真空下で乾燥させた。予備処理した試料を次に還元する。250ml/分の流量 で水素ガスを試料に通しながら試料を3℃/分の速度で425℃に加熱する。なお 、同じ水素流れで試料を425℃で18時間維持する。真空下で10分間に亘り試料を4 50℃まで加熱する。その試料を真空下で450℃で2時間維持する。 純粋な水素ガスを用いて150℃において化学吸着を行う。自動分析プログラム を用いて、水素の800mmHgまでの完全等温線を測定する。 この方法は、300乃至800mmHgの間の化学吸着等温線の直線部分を0圧力に外挿 して化学吸着されたガスの容量を算出する。 すべての場合において下記の等式を用いて金属表面積を算出する。 式中、 V=水素のml/gでの取り込み SF=化学量論係数(コバルトにおけるH2では2であると仮定する。)、 A=コバルトの1つの原子により占有される面積(0.0662nm2であると仮定され る) を表わす。 この等式は、Micromeretics in Operators Manual for ASAP 2000 Chemi Syst em V 1.00、Appendix C,Part No.200-42808-01,1991年1月18日により開示さ れている。 ii)遷移アルミナ 遷移アルミナは、“Ullmans Encyklopaedie der technischen Chemie”4.,ne ubearbeitete und erweiterte Auflage,Band 7(1974),298-299頁に定義されて いる。 その文献では、遷移アルミナをいくつかの分類に分けている。 γ- グループ γ- グループに含まれるのは、γ-Al203を除けば、η-Al203及びχ-Al203のよ うなすべて低温形態である。それらは、400乃至750℃での水酸化アルミニウムの 焼成で形成される。 アルミナのγ- グループ形態の比表面積は、150乃至400m2/gの範囲である 。 δ- グループ δ−グループのアルミナは、すべての高温形態、例えば、δ- 、θ- 及びχ- Al203が含まれる。δ−グループのアルミナは、γ- グループのアルミナを約800 ℃以上で加熱するときに生成される。 アルミナのδ−グループ形態の比表面積は、50乃至150m2/gの範囲である。本願発明の一般的な記載 コバルト表面積が、30m2/コバルトgより大きく、好ましくは40m2/コバル トgより大きく、より好ましくは50m2/コバルトgより大きく、さらにより好 ましくは80m2/コバルトgより大きい、3乃至40重量%のコバルトを含有する 、遷移アルミナ支持体上のコバルト触媒を提供することが本願発明の第一の目的 である。 好ましくは、遷移アルミナ支持体は、γ- アルミナ又はθ- アルミナであり、 より好ましくはθ- アルミナである。 好ましくは、コバルト触媒は、5乃至20重量%のコバルト、より好ましくは10 乃至20重量%のコバルトを含有する。 コバルトアムミンカーボネートの水溶液中の遷移アルミナのスラリーを60℃乃 至110℃の温度に加熱し、コバルトヒドロキシカーボネートを沈殿させるために 、次に、得られた生成物を乾燥させそして焼成させる、コバルト表面積が、30m2 /コバルトgより大きい、3乃至40重量%のコバルトを含有する、遷移アルミ ナ支持体上のコバルト触媒を製造する方法を提供することが本願発明の第二の目 的である。任意には、焼成させた生成物をさらに還元し得る。 好ましくは、遷移アルミナ支持体は、γ- アルミナ又はθ- アルミナであり、 より好ましくはθ- アルミナである。 コバルトアムミンカーボネートの水溶液で遷移アルミナ粒子を飽和させ、過剰 の溶液を濾過により除去し、得られた生成物を60℃乃至110℃の温度に加熱し、 コバルトヒドロキシカーボネートを沈殿させるために、次に、得られた生成物を 乾燥させそして焼成させる、コバルト表面積が、30m2/コバルトgより大きい 、3乃至40重量%のコバルトを含有する、遷移アルミナ支持体上のコバルト触媒 を製造する方法を提供することが本願発明の第三の目的である。 好ましくは、遷移金属支持体は、γ- アルミナ又はθ- アルミナであり、より 好ましくはθ- アルミナである。 連続する、含浸及び沈殿工程は、コバルト含量を増大させるために用いられ、 200乃至600℃の温度における焼成処理の間に、沈降されたコバルトヒドロキシカ ーボネートは、酸化コバルトに変換される。 次に、その生成物を、200乃至600℃の温度において、好ましくは350乃至550℃ において水素ガスで活性化し、次に任意に不動態化する。発明の特定の記載 本願発明をさらに下記の実施例において記載する。実施例1 i)含浸溶液の調製 35%の水酸化アンモニウム溶液の1764.0gを秤量し(比重0.88)(BDHから 入手可能)、そして脱イオン化水73.5gを添加した。炭酸アンモニウム312.5g (Merckから入手可能)を添加し、攪拌し始めた。穏やかに35℃に加熱し、粉末 を溶解するのを補助した。完全に溶解させたときに、塩基性炭酸コバルト(Merc kから入手でき、47乃至55重量%のコバルトを含有する)350gをゆっくりと添加 した。約2時間攪拌し続けた。ブフナー漏斗により濾過した。 ii)θ- アルミナ支持体の含浸 θ- アルミナを100g秤量し、ビーカーに入れ、0.5lの含浸溶液を添加した。 10分後、含浸した押出物をブフナー漏斗上に置き、過剰の液体を排出させた。次 に、その生成物を室温で1時間、次に、80℃で1時間そして最後に120℃で一晩 (16時間)乾燥させた。最後に、乾燥させた生成物を、回転式焼成器を用いて35 0℃における空気流れ中で2時間焼成させた。実施例2 実施例1において含浸の後にそして焼成の前に得られた乾燥させた生成物を実 施例1、ii)の下に記載されているように、再び含浸し、実施例1、ii)の下に 記載されているように乾燥させた。 最後に、乾燥させた生成物を、回転式焼成器を用いて350℃における空気流れ 中で2時間焼成させた。実施例3 実施例2において含浸の後でそして焼成の前に得られた乾燥させた生成物を実 施例1、ii)の下に記載されているように、再び含浸し、実施例1、ii)の下に 記載されているように乾燥させた。 最後に、乾燥させた生成物を、回転式焼成器を用いて350℃における空気流れ 中で2時間焼成させた。実施例4 実施例3において含浸の後でそして焼成の前に得られた乾燥させた生成物を実 施例1、ii)の下に記載されているように、再び含浸し、実施例1、ii)の下に 記載されているように乾燥させた。 最後に、乾燥させた生成物を、回転式焼成器を用いて350℃における空気流れ 中で2時間焼成させた。 実施例1乃至4で得られた生成物を分析した。その結果は下記の通りである。 非常に低いコバルト含量を有し、しかし従来技術において得られたものに匹敵 するコバルト表面積(触媒g当り)を有することを可能にする、非常に高いコバ ルト表面積(コバルトg当り)を有する、アルミナ支持体におけるコバルト触媒 が得られることがわかった。 活性化された後に、実施例3による触媒を、プローブとしてトルエンを用いて 芳香族物質の水素化における触媒活性において試験した。 反応条件: 圧力:40バールH2 LHSV:3 水素流れ:15ml/分 温度:200℃ 触媒投入:6ml(すなわち5g) トルエンの水素化生成物への変換は62%であり、本願発明の生成物が、水素化 触媒として用いられることができることを証明した。DETAILED DESCRIPTION OF THE INVENTION                         Cobalt on alumina catalystField of the invention   The present invention relates to cobalt on an alumina catalyst and a method for producing the same.Background of the Invention   In catalysts, cobalt is usually found in silica, aluminum silicate, and alumina. Immobilized on a suitable carrier.   In these catalysts, the useful cobalt atoms form at the surface of the cobalt particles. What is exposed. Edge not exposed (ie not on the surface) The ruto atom does not participate in the catalytic reaction.   Cobalt is an expensive metal and, to optimize its use as a catalyst, The ratio of (number of exposed cobalt atoms / total number of cobalt atoms) It is essential to increase the cobalt surface area per g of cobalt.   According to European Patent Publication No. 13,275, cobalt ions, silicate ions and solid A reaction mixture of porous carrier particles is prepared and cobalt ions and silicate Supported coprecipitated cobalt forming on coprecipitate on solid porous carrier particles -It is known to produce silica catalysts. The resulting cobalt-silica catalyst is 150-350mTwo/ G BET total surface area and 5-20mTwo/ Cobalt g cobalt table With area.   Also, according to U.S. Pat. No. 4,591,579, transition metals (e.g., cobalt, nickel Or copper) insoluble basic compounds from aqueous solutions of such metal salts with alkali Silicate-transition gold, after which the compound is reacted with a silicate solution. It is also known to provide a method for the preparation of genus salt catalysts. In Example 5, cobalt Surface area is 8.9mTwo/ Catalyst g is described.   “Stoichiometries of HTwo and C0 Adsorptions on cobalt ”, Journal of Cat alysis 85, pages 63-77 (1984), page 67, Table 1 shows that Catalysts are described. The total maximum HTwoFrom incorporation, per g of catalyst It is possible to calculate the cobalt surface area and the cobalt surface area per g of cobalt. You. For cobalt on silica catalyst, the cobalt surface area per g of cobalt is 6 to 65mTwo/ G of cobalt on a transition alumina catalyst. Cobalt surface area is 15-26mTwo/ G.   Thus, for a cobalt catalyst on silica, a high cobalt surface area per gram of cobalt There is a cobalt catalyst having do not do.   Nevertheless, the cobalt catalyst on transition alumina is not as good as other cobalt catalysts. It has several distinct advantages.   First, the cobalt catalyst on transition alumina is better than the cobalt catalyst on silica. Easy to shape by extrusion, resulting in higher mechanical strength of the catalyst .   In reactions where water is present (eg, methanation, Fisher Tropsch), silica It is unstable. However, alumina is more stable under such conditions.   Thus, a higher surface area of cobalt per gram of cobalt than previously obtained There is a need for a cobalt catalyst on transition alumina having   The first object of the present invention is to achieve a higher cobalt gram per gram than previously obtained. To provide a cobalt catalyst on transition alumina having a cobalt surface area of You.   A second object of the present invention is to provide a method for producing such a catalyst. You.Testing and definition i) Cobalt surface area   About 0.5 g of sample was used for analysis. The weight used to calculate the metal surface area is It is obtained after the preparatory treatment. During this pretreatment, the sample was vented and 120 Dried under vacuum at ° C. The pretreated sample is then reduced. 250ml / min flow rate The sample is heated to 425 ° C. at a rate of 3 ° C./min while passing hydrogen gas through the sample. Note that The sample is maintained at 425 ° C. for 18 hours with the same flow of hydrogen. Apply the sample for 4 minutes under vacuum. Heat to 50 ° C. The sample is maintained under vacuum at 450 ° C. for 2 hours.   Chemisorption is performed at 150 ° C. using pure hydrogen gas. Automatic analysis program The complete isotherm of hydrogen up to 800 mmHg is measured using.   This method extrapolates the linear part of the chemisorption isotherm between 300 and 800 mmHg to zero pressure. To calculate the volume of the chemisorbed gas.   In all cases, the metal surface area is calculated using the equation below. Where: V = uptake of hydrogen in ml / g SF = stoichiometric coefficient (H in cobaltTwoNow assume that it is 2. ), A = area occupied by one atom of cobalt (0.0662 nmTwoIs assumed to be ) Represents   This equation is described in the Micromeretics in Operators Manual for ASAP 2000 Chemi Syst em V 1.00, Appendix C, Part No. 200-42808-01, disclosed on January 18, 1991 Have been. ii) Transition alumina   Transition alumina is described in “Ullmans Encyklopaedie der technischen Chemie” 4., ne ubearbeitete und erweiterte Auflage, as defined in Band 7 (1974), pages 298-299 I have.   The literature classifies transition alumina into several categories. γ-group   Included in the γ-group are η-Al203 and χ-Al203, except for γ-Al203. All are in low temperature form. They are made of aluminum hydroxide at 400-750 ° C. It is formed by firing.   Specific surface area of alumina γ-group form is 150-400mTwo/ G range . δ-group   The alumina of the δ-group has all high temperature forms, such as δ-, θ- and χ- Al203 is included. The alumina of the δ-group is approximately 800 Produced when heated above ℃.   The specific surface area of the δ-group form of alumina is 50 to 150 mTwo/ G range.General description of the invention   Cobalt surface area is 30mTwo/ Greater than cobalt g, preferably 40mTwo/ Kobal Larger than g, more preferably 50mTwo/ Greater than cobalt g, even better Preferably 80mTwoContaining from 3 to 40% by weight of cobalt, greater than / g of cobalt It is a first object of the present invention to provide a cobalt catalyst on a transition alumina support It is.   Preferably, the transition alumina support is γ-alumina or θ-alumina, More preferably, it is θ-alumina.   Preferably, the cobalt catalyst comprises 5 to 20% by weight of cobalt, more preferably 10 to 20% by weight. Contains about 20% by weight of cobalt.   Slurry transition alumina in aqueous solution of cobalt ammine carbonate at 60 ° C Heating to a temperature of 110 ° C to precipitate cobalt hydroxycarbonate The product obtained is then dried and calcined, the cobalt surface area being 30 mTwo / Transition aluminum containing 3-40% by weight of cobalt, greater than g of cobalt It is a second object of the present invention to provide a method for producing a cobalt catalyst on a It is a target. Optionally, the calcined product may be further reduced.   Preferably, the transition alumina support is γ-alumina or θ-alumina, More preferably, it is θ-alumina.   Saturate the transition alumina particles with an aqueous solution of cobalt ammine carbonate and add excess Is removed by filtration and the resulting product is heated to a temperature of 60 ° C to 110 ° C, To precipitate cobalt hydroxycarbonate, the resulting product is then Dried and fired, cobalt surface area is 30mTwo/ Greater than cobalt g Cobalt catalyst on transition alumina support containing from 3 to 40% by weight of cobalt It is a third object of the present invention to provide a method for producing.   Preferably, the transition metal support is γ-alumina or θ-alumina, and more Preferred is θ-alumina.   Successive impregnation and precipitation steps are used to increase the cobalt content, During the calcination treatment at a temperature of 200 to 600 ° C., the precipitated cobalt hydroxyca Carbonate is converted to cobalt oxide.   Next, the product is brought to a temperature of 200-600 ° C., preferably 350-550 ° C. And then optionally passivated.Specific description of the invention   The present invention is further described in the following examples.Example 1 i) Preparation of impregnation solution   Weigh 1764.0 g of 35% ammonium hydroxide solution (specific gravity 0.88) (from BDH Available), and 73.5 g of deionized water was added. 312.5 g of ammonium carbonate (Available from Merck) was added and stirring was started. Gently heat to 35 ° C and powder To help dissolve the When completely dissolved, basic cobalt carbonate (Merc 350 g), which is available from K and contains 47-55% by weight of cobalt) did. Stirring was continued for about 2 hours. Filtered through a Buchner funnel. ii) Impregnation of θ-alumina support   100 g of θ-alumina was weighed, placed in a beaker, and 0.5 l of the impregnating solution was added. After 10 minutes, the impregnated extrudate was placed on a Buchner funnel to drain excess liquid. Next The product at room temperature for 1 hour, then at 80 ° C. for 1 hour and finally at 120 ° C. overnight Dry (16 hours). Finally, the dried product is transferred to a rotary calciner for 35 Calcination was carried out in a stream of air at 0 ° C. for 2 hours.Example 2   The dried product obtained in Example 1 after impregnation and before calcining was obtained. Re-impregnation as described under Example 1, ii) and under Example 1, ii) Dry as described.   Finally, the dried product is subjected to air flow at 350 ° C using a rotary calciner. Baked for 2 hours.Example 3   The dried product obtained in Example 2 after impregnation and before calcining was obtained. Re-impregnation as described under Example 1, ii) and under Example 1, ii) Dry as described.   Finally, the dried product is subjected to air flow at 350 ° C using a rotary calciner. Baked for 2 hours.Example 4   The dried product obtained in Example 3 after impregnation and before calcining was obtained. Re-impregnation as described under Example 1, ii) and under Example 1, ii) Dry as described.   Finally, the dried product is subjected to air flow at 350 ° C using a rotary calciner. Baked for 2 hours.   The products obtained in Examples 1 to 4 were analyzed. The results are as follows.   Has very low cobalt content, but comparable to that obtained in the prior art Very high edge area, which makes it possible to have a high cobalt surface area (per g catalyst) Cobalt catalyst on alumina support having a specific surface area (per g of cobalt) Was obtained.   After being activated, the catalyst according to example 3 was used with toluene as probe The catalytic activity in the hydrogenation of aromatics was tested. Reaction conditions:   Pressure: 40 bar HTwo   LHSV: 3   Hydrogen flow: 15ml / min   Temperature: 200 ° C   Catalyst charge: 6 ml (ie 5 g)   The conversion of toluene to hydrogenated products is 62%, indicating that the product of the present invention is hydrogenated. It has been proved that it can be used as a catalyst.

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FR,GB,GR,IE,IT,LU,M C,NL,PT,SE),OA(BF,BJ,CF,CG ,CI,CM,GA,GN,ML,MR,NE,SN, TD,TG),AP(KE,MW,SD,SZ,UG), AM,AT,AU,BB,BG,BR,BY,CA,C H,CN,CZ,DE,DK,EE,ES,FI,GB ,GE,HU,IS,JP,KE,KG,KP,KR, KZ,LK,LR,LT,LU,LV,MD,MG,M N,MW,MX,NO,NZ,PL,PT,RO,RU ,SD,SE,SG,SI,SK,TJ,TM,TT, UA,UG,US,UZ,VN────────────────────────────────────────────────── ─── Continuation of front page    (81) Designated countries EP (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, M C, NL, PT, SE), OA (BF, BJ, CF, CG , CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP (KE, MW, SD, SZ, UG), AM, AT, AU, BB, BG, BR, BY, CA, C H, CN, CZ, DE, DK, EE, ES, FI, GB , GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, M N, MW, MX, NO, NZ, PL, PT, RO, RU , SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, US, UZ, VN

Claims (1)

【特許請求の範囲】 1.コバルトの表面積が30m2コバルトgより大きい、3乃至40重量%のコバル トを含有する、遷移アルミナ支持体上のコバルト触媒。 2.コバルトの表面積が40m2/コバルトgより大きい、請求項1に記載の、遷 移アルミナ支持体上のコバルト触媒。 3.コバルトの表面積が50m2/コバルトgより大きい、請求項2に記載の、遷 移アルミナ支持体上のコバルト触媒。 4.コバルトの表面積が80m2/コバルトgより大きい、請求項3に記載の、遷 移アルミナ支持体上のコバルト触媒。 5.遷移アルミナ支持体がθ- アルミナである、請求項1乃至4のいずれか1請 求項に記載の、遷移アルミナ支持体上のコバルト触媒。 6.5乃至20重量%のコバルトを含有する、請求項1乃至4のいずれか1請求項 に記載の、遷移アルミナ支持体上のコバルト触媒。 7.コバルトアミンカーボネートの水溶液中の遷移アルミナの混合物を60℃乃至 110℃の温度に加熱し、コバルトヒドロキシカーボネートを沈殿させるために、 次に、得られた生成物を焼成する、コバルトの表面積が30m2/コバルトgより 大きい、3乃至40重量%のコバルトを含有する、遷移アルミナ支持体上のコバル ト触媒を製造する方法。 8.遷移アルミナ支持体がθ- アルミナである、請求項7に記載の方法。 9.遷移アルミナ粒子をコバルトアミンカーボネートの水溶液で飽和し、過剰の 溶液を除去し、得られた生成物を60℃乃至110℃の温度に加熱し、コバルトヒド ロキシカーボネートを沈殿させるために、次に、得られた生成物を乾燥しそして 焼成する、コバルトの表面積が30m2/コバルトgより大きい、3乃至40重量% のコバルトを含有する、遷移アルミナ支持体上のコバルト触媒を製造する方法。 10.遷移アルミナ支持体がθ- アルミナである、請求項9に記載の方法。[Claims] 1. A cobalt catalyst on a transition alumina support, wherein the cobalt surface area is greater than 30 m 2 g of cobalt and contains from 3 to 40% by weight of cobalt. 2. The surface area of the cobalt is greater than 40 m 2 / cobalt g, according to claim 1, the transition alumina support on a cobalt catalyst. 3. 3. The cobalt catalyst on a transition alumina support according to claim 2, wherein the surface area of the cobalt is greater than 50 m < 2 > / g of cobalt. 4. 4. The cobalt catalyst on a transition alumina support according to claim 3, wherein the surface area of the cobalt is greater than 80 m < 2 > / g of cobalt. 5. The cobalt catalyst on a transition alumina support according to any one of claims 1 to 4, wherein the transition alumina support is θ-alumina. The cobalt catalyst on a transition alumina support according to any one of claims 1 to 4, comprising 6.5 to 20% by weight of cobalt. 7. A mixture of transition alumina in an aqueous solution of cobalt amine carbonate is heated to a temperature of 60 ° C. to 110 ° C., in order to precipitate the cobalt hydroxycarbonate, then calcining the resulting product, the surface area of the cobalt 30 m 2 A process for preparing a cobalt catalyst on a transition alumina support containing 3 to 40% by weight cobalt, greater than g / cobalt. 8. The method of claim 7, wherein the transition alumina support is θ-alumina. 9. The transition alumina particles were saturated with an aqueous solution of cobalt amine carbonate, excess solution was removed, and the resulting product was heated to a temperature of 60-110 ° C. to precipitate cobalt hydroxycarbonate. A method for producing a cobalt catalyst on a transition alumina support, containing 3 to 40% by weight of cobalt, wherein the surface area of the cobalt is greater than 30 m 2 / g of cobalt, and the product obtained is dried and calcined. Ten. The method according to claim 9, wherein the transition alumina support is θ-alumina.
JP50613396A 1994-08-02 1995-07-17 Cobalt on alumina catalyst Expired - Lifetime JP3514463B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9415554A GB9415554D0 (en) 1994-08-02 1994-08-02 Cobalt on alumina catalysts
GB9415554.6 1994-08-02
PCT/EP1995/002836 WO1996004072A1 (en) 1994-08-02 1995-07-17 Cobalt on alumina catalysts

Publications (2)

Publication Number Publication Date
JPH10503422A true JPH10503422A (en) 1998-03-31
JP3514463B2 JP3514463B2 (en) 2004-03-31

Family

ID=10759249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50613396A Expired - Lifetime JP3514463B2 (en) 1994-08-02 1995-07-17 Cobalt on alumina catalyst

Country Status (12)

Country Link
US (1) US5874381A (en)
EP (1) EP0775018B2 (en)
JP (1) JP3514463B2 (en)
KR (1) KR100366385B1 (en)
CN (1) CN1089632C (en)
AT (1) ATE218920T1 (en)
AU (1) AU3115195A (en)
BR (1) BR9508465A (en)
DE (1) DE69527069T3 (en)
DK (1) DK0775018T4 (en)
GB (1) GB9415554D0 (en)
WO (1) WO1996004072A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038217A (en) * 2005-07-30 2007-02-15 Oxeno Olefinchemie Gmbh Hydrogenation catalyst, and catalytic hydrogenation method for ester-containing aldehyde mixture

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0003961D0 (en) * 2000-02-21 2000-04-12 Ici Plc Catalysts
AU2005204343B2 (en) * 2000-05-19 2006-12-07 Johnson Matthey Plc Methods of making catalysts with high cobalt surface area
EA005420B1 (en) * 2000-05-19 2005-02-24 Джонсон Мэтти Плс Catalysts with high cobalt surface area
US6914423B2 (en) * 2000-09-05 2005-07-05 Cascade Microtech, Inc. Probe station
US7621887B2 (en) * 2000-10-10 2009-11-24 Meridian Medical Technologies, Inc. Wet/dry automatic injector assembly
GB0030170D0 (en) * 2000-12-11 2001-01-24 Norske Stats Oljeselskap Fischer-tropsch catalyst
US7452844B2 (en) 2001-05-08 2008-11-18 Süd-Chemie Inc High surface area, small crystallite size catalyst for Fischer-Tropsch synthesis
RU2210432C1 (en) * 2001-12-21 2003-08-20 Институт катализа им. Г.К. Борескова СО РАН Catalyst and method of preparing hydrocarbons and their oxygen-containing derivatives from synthesis gas
GB0222240D0 (en) 2002-09-25 2002-10-30 Ici Plc Cobalt catalysts
US7341976B2 (en) * 2002-10-16 2008-03-11 Conocophillips Company Stabilized boehmite-derived catalyst supports, catalysts, methods of making and using
WO2004035511A2 (en) * 2002-10-16 2004-04-29 Conocophillips Company Fischer-tropsch processes and catalysts using stabilized supports
US7176160B2 (en) * 2002-10-16 2007-02-13 Conocophillips Company Method for forming a Fischer-Tropsch catalyst using a boehmite support
CA2500546A1 (en) * 2002-10-16 2004-04-29 Conocophillips Company Fischer-tropsch processes and catalysts made from a material comprising boehmite
CA2500553A1 (en) * 2002-10-16 2004-04-29 Conocophillips Company A stabilized transition alumina catalyst support from boehmite and catalysts made therefrom
CA2500549A1 (en) * 2002-10-16 2004-04-29 Conocophillips Company High hydrothermal stability catalyst support
WO2005005033A2 (en) * 2003-06-30 2005-01-20 New Jersey Institute Of Technology Catalysts and methods for making same
US7541310B2 (en) * 2003-10-16 2009-06-02 Conocophillips Company Silica-alumina catalyst support, catalysts made therefrom and methods of making and using same
US7186757B2 (en) * 2003-10-16 2007-03-06 Conocophillips Company Silica-alumina catalyst support with bimodal pore distribution, catalysts, methods of making and using same
GB2410449B (en) * 2004-01-28 2008-05-21 Statoil Asa Fischer-Tropsch catalysts
GB0410408D0 (en) * 2004-05-11 2004-06-16 Johnson Matthey Plc Catalysts
GB0426473D0 (en) 2004-12-03 2005-01-05 Johnson Matthey Plc Catalysts
GB0501783D0 (en) * 2005-01-28 2005-03-09 Johnson Matthey Plc Catalysts and preparation method
GB0503818D0 (en) * 2005-02-25 2005-04-06 Johnson Matthey Plc Catalysts
GB0506976D0 (en) 2005-04-06 2005-05-11 Johnson Matthey Plc Catalyst supports
GB2446127A (en) * 2007-01-30 2008-08-06 Gtl F1 Ag Preparation of Fischer-Tropsch Catalysts
US8216963B2 (en) 2008-12-29 2012-07-10 Chevron U.S.A. Inc. Preparation of cobalt-ruthenium fischer-tropsch catalysts
GB2473071B (en) 2009-09-01 2013-09-11 Gtl F1 Ag Fischer-tropsch catalysts
GB2475492B (en) 2009-11-18 2014-12-31 Gtl F1 Ag Fischer-Tropsch synthesis
FR2963345B1 (en) 2010-07-29 2012-07-27 IFP Energies Nouvelles PROCESS FOR THE SYNTHESIS OF C5 + HYDROCARBONS IN THE PRESENCE OF A CATALYST PREPARED BY MEANS OF AT LEAST ONE CYCLIC OLIGOSACCHARIDE
FR2963344B1 (en) 2010-07-29 2012-07-27 IFP Energies Nouvelles METHOD OF SELECTIVE HYDROGENATION IN THE PRESENCE OF A CATALYST BASED ON A GROUP VIII METAL PREPARED BY MEANS OF AT LEAST ONE CYCLIC OLIGOSACCHARIDE
WO2012020210A2 (en) 2010-08-09 2012-02-16 Gtl.F1 Ag Fischer-tropsch catalysts
FR3011844A1 (en) 2013-10-16 2015-04-17 IFP Energies Nouvelles SELECTIVE HYDROGENATION PROCESS USING CATALYST CONTAINING COPPER AND AT LEAST ONE METAL SELECTED FROM NICKEL OR COBALT
FR3011843A1 (en) 2013-10-16 2015-04-17 IFP Energies Nouvelles METHOD FOR SELECTIVE HYDROGENATION USING A CATALYST CONTAINING IRON AND AT LEAST ONE METAL SELECTED FROM ZINC OR COPPER
US11426717B2 (en) * 2014-11-17 2022-08-30 The Regents Of The University Of Colorado, A Body Corporate Catalyst, structures, reactors, and methods of forming same
CN106582662B (en) * 2015-10-20 2019-03-22 中国石油化工股份有限公司 Loaded catalyst and its preparation method and application and method by preparing low-carbon olefin
FR3050659B1 (en) 2016-04-29 2021-09-03 Ifp Energies Now COBALT CATALYST BASED ON A SUPPORT CONTAINING A MIXED OXIDE PHASE CONTAINING COBALT AND / OR NICKEL PREPARED BY THE USE OF AN ESTER COMPOUND
FR3050660B1 (en) 2016-04-29 2021-09-03 Ifp Energies Now COBALT CATALYST BASED ON A SUPPORT CONTAINING A MIXED OXIDE PHASE CONTAINING COBALT AND / OR NICKEL PREPARED BY THE USE OF A COMPONENT CONTAINING TWO CARBOXYL ACID FUNTIONS AND AT LEAST THREE CARBON ATOMS
FR3050663A1 (en) 2016-04-29 2017-11-03 Ifp Energies Now COBALT CATALYST BASED ON A SUPPORT COMPRISING A MIXED OXIDE PHASE CONTAINING COBALT AND / OR NICKEL PREPARED BY THE USE OF OXALIC ACID OR OXALATE
FR3056597A1 (en) 2016-09-28 2018-03-30 IFP Energies Nouvelles HYDROTREATMENT PROCESS USING A CATALYST BASED ON A GROUP VIIIB METAL AND A GROUP VIB METAL PREPARED IN SUPERCRITICAL FLUID
FR3057472B1 (en) 2016-10-17 2018-11-16 IFP Energies Nouvelles COBALT CATALYST BASED ON A SUPPORT CONTAINING A MIXED OXIDE PHASE CONTAINING COBALT AND / OR NICKEL PREPARED BY USING A HYDROGENOCARBON COMPOUND
US11493274B2 (en) 2019-12-04 2022-11-08 Greyrock Technology, Llc Process for the commercial production of high-quality catalyst materials
FR3087673B1 (en) 2018-10-25 2022-12-02 Ifp Energies Now COBALT CATALYST BASED ON A SUPPORT COMPRISING A MIXED OXIDE PHASE CONTAINING COBALT AND/OR NICKEL PREPARED FROM A DILACTONE COMPOUND
FR3087672B1 (en) 2018-10-25 2023-09-29 Ifp Energies Now COBALT CATALYST BASED ON A SUPPORT COMPRISING A MIXED OXIDE PHASE CONTAINING COBALT AND/OR NICKEL PREPARED FROM AN ORGANIC COMPOUND OF THE CARBOXYANHYDRIDE FAMILY
FR3087671B1 (en) 2018-10-25 2023-09-29 Ifp Energies Now COBALT CATALYST BASED ON A SUPPORT COMPRISING A MIXED OXIDE PHASE CONTAINING COBALT AND/OR NICKEL PREPARED FROM AN ETHER COMPOUND
KR102352363B1 (en) 2019-12-06 2022-01-17 한국세라믹기술원 Manufacturing method of cobalt aluminum oxide
KR102241091B1 (en) 2019-12-13 2021-04-19 한국세라믹기술원 Manufacturing method of cobalt aluminum oxide
FR3119556A1 (en) 2021-02-11 2022-08-12 IFP Energies Nouvelles Process for preparing a Fischer-Tropsch catalyst in the presence of an additive and a specific calcination step
CN113546627B (en) * 2021-07-30 2022-12-09 宁夏大学 Low-temperature carbon dioxide methanation catalyst and preparation method and application thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB926235A (en) 1959-10-01 1963-05-15 Chemetron Corp Catalyst and the production thereof
US3883444A (en) * 1971-07-20 1975-05-13 Grace W R & Co Auto exhaust catalyst
JPS51104488A (en) * 1975-03-13 1976-09-16 Toyota Motor Co Ltd Shokubaitantai oyobi shokubai
SU728222A1 (en) * 1977-07-01 1980-04-15 Предприятие П/Я В-8584 Voltage-to-code convertor
CA1140910A (en) * 1979-01-02 1983-02-08 James L. Carter Supported cobalt-silica coprecipitated hydrogenation catalyst
CA1146930A (en) * 1979-11-06 1983-05-24 Allan E. Barnett Production and use of novel non-ferrous group viii aluminum coprecipitated hydrogenation catalysts
GB2101005B (en) * 1981-06-02 1984-09-05 Asia Oil Co Ltd Hydrogenation catalyst
US4605679A (en) 1981-10-13 1986-08-12 Chevron Research Company Activated cobalt catalyst and synthesis gas conversion using same
NL8201696A (en) 1982-04-23 1983-11-16 Unilever Nv METHOD FOR PREPARING METHANATION CATALYSTS
US4927857A (en) * 1982-09-30 1990-05-22 Engelhard Corporation Method of methanol production
NL190602C (en) * 1983-12-06 1994-05-16 Unilever Nv Process for preparing a nickel / nickel silicate catalyst and process for hydrogenating organic compounds therewith.
FR2556235A1 (en) * 1983-12-09 1985-06-14 Pro Catalyse METHOD FOR MANUFACTURING AN ALUMINA BASED CATALYST
NL8501945A (en) * 1984-12-07 1986-07-01 Unilever Nv CATALYST SUITABLE FOR DESULFULDIFYING AND PREPARING THIS CATALYST.
US4717702A (en) 1985-04-26 1988-01-05 Shell Internationale Research Maatschappij Bv Catalyst for conversion of synthesis gas to diesel fuel and process for preparation of such catalyst
DE3770920D1 (en) * 1986-12-03 1991-07-25 Catalyst And Chemicals Inc Far FIRE-RESISTANT CATALYST AND METHOD FOR THE PRODUCTION THEREOF.
US5268091A (en) * 1989-08-08 1993-12-07 Institut Francais De Petrole Method for removing arsenic and phosphorus contained in liquid hydrocarbon cuts, nickel based retaining material
SU1728222A1 (en) * 1990-03-19 1992-04-23 Мариупольский металлургический институт Method of obtaining cobalt acetate
US5358633A (en) * 1993-05-28 1994-10-25 Texaco Inc. Hydrodesulfurization of cracked naphtha with low levels of olefin saturation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038217A (en) * 2005-07-30 2007-02-15 Oxeno Olefinchemie Gmbh Hydrogenation catalyst, and catalytic hydrogenation method for ester-containing aldehyde mixture

Also Published As

Publication number Publication date
DK0775018T4 (en) 2009-01-26
DE69527069T2 (en) 2002-10-02
AU3115195A (en) 1996-03-04
DE69527069D1 (en) 2002-07-18
MX9700735A (en) 1997-09-30
CN1154667A (en) 1997-07-16
EP0775018B1 (en) 2002-06-12
US5874381A (en) 1999-02-23
EP0775018B2 (en) 2008-11-26
ATE218920T1 (en) 2002-06-15
CN1089632C (en) 2002-08-28
GB9415554D0 (en) 1994-09-21
JP3514463B2 (en) 2004-03-31
DE69527069T3 (en) 2009-06-25
WO1996004072A1 (en) 1996-02-15
DK0775018T3 (en) 2002-09-30
KR100366385B1 (en) 2003-05-16
BR9508465A (en) 1997-12-30
EP0775018A1 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
JPH10503422A (en) Cobalt on alumina catalyst
KR880001778B1 (en) A process for coating a catalyst support and a catalyst support thereby
CN108144645B (en) Alkane isomerization catalyst and preparation and application thereof
RU2201392C2 (en) Synthesis gas generation process
CN102795647B (en) Macro-porous aluminum oxide and preparation method thereof
RU2585766C2 (en) Catalyst and catalyst preparation method
US20030186805A1 (en) Ceria-based mixed-metal oxide structure, including method of making and use
AU779102B2 (en) Method for the production of cobalt catalysts supported on silicon dioxide and their use
US20130143731A1 (en) Supported noble metal catalyst and process for preparing the same in situ
EP1301273A1 (en) Nickel/silica hydrogenation catalysts and method of preparation
CN108144651B (en) Hydroisomerization catalyst and preparation and application thereof
JP2002536165A (en) Nickel catalyst on transition alumina
EP0155868A1 (en) Process for the preparation of catalysts comprising copper, zinc, aluminium and at least one other metal selected from the group formed by rare earth metals and zirconium, and use of such catalysts in reactions of a synthesis gas
US4273680A (en) Supported non-ferrous group VIII aluminate coprecipitated hydrogenation catalysts and process for their preparation
KR20010071134A (en) Copper-Containing Materials
AU2012351782A1 (en) Catalysts
JP2017013040A (en) Preparation method of catalyst comprising ruthenium-containing catalyst layer formed on structure body surface
JP2002523230A (en) Nickel catalyst
JP6670843B2 (en) Catalyst containing dispersed gold and palladium and its use in selective hydrogenation
JP3136336B2 (en) Method for reforming CO2 of methane and method for producing metal catalyst supported on highly heat-resistant alumina airgel used in this method
JPH05253481A (en) Molded catalyst body
US4318829A (en) Non-ferrous group VIII aluminum coprecipitated hydrogenation catalysts
JP2001070793A (en) Dimethyl ether synthesis catalyst and synthesis method
WO2021119899A1 (en) Process for producing a catalyst, catalyst and use thereof
JPS63123445A (en) Manufacture of hydrogenating treating catalyst prepared from hydrogel and manufactured catalyst

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term