JPH104972A - Gene coding heat-resistant beta-galactosidase - Google Patents
Gene coding heat-resistant beta-galactosidaseInfo
- Publication number
- JPH104972A JPH104972A JP8178752A JP17875296A JPH104972A JP H104972 A JPH104972 A JP H104972A JP 8178752 A JP8178752 A JP 8178752A JP 17875296 A JP17875296 A JP 17875296A JP H104972 A JPH104972 A JP H104972A
- Authority
- JP
- Japan
- Prior art keywords
- galactosidase
- leu
- gly
- ala
- pro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Enzymes And Modification Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、耐熱性β−ガラク
トシダーゼをコードする遺伝子に関し、詳しくは高度好
熱性細菌であるサーマス(Thermus)属細菌に由来するβ
−ガラクトシダーゼをコードする遺伝子に関し、さらに
は該遺伝子を含むDNA断片を組み込んだ形質転換体お
よび該形質転換体を用いて耐熱性の高いβ−ガラクトシ
ダーゼを生産する方法に関するものである。The present invention relates to a gene encoding a thermostable β-galactosidase, and more particularly, to a gene derived from a bacterium belonging to the genus Thermus, which is a highly thermophilic bacterium.
The present invention relates to a gene encoding galactosidase, a transformant into which a DNA fragment containing the gene has been incorporated, and a method for producing β-galactosidase having high thermostability using the transformant.
【0002】[0002]
【従来の技術】本発明に係わるβ−ガラクトシダーゼは
β-(D) 1,4−ガラクトシド結合を加水分解する反応を触
媒する酵素である。また、本酵素は基質濃度によっては
加水分解により生じたガラクトシル基を受容体となる糖
分子に転移し、ガラクトオリゴ糖を生じる反応も触媒す
る。産業的には、本酵素はラクトースを基質とするグル
コースとガラクトースの生産、あるいはガラクトオリゴ
糖の生産に用いられる。β−ガラクトシダーゼは種々の
微生物中に存在し、その遺伝子についても良く研究され
ている。耐熱性β−ガラクトシダーゼについては、中度
好熱性細菌であるバチルス・ステアロサーモフィルス
(Bacillus stearothermophilus)および超好熱性細菌で
あるスルフォロブス・ソルファタリクス(Sulfolobus s
olfataricus)やサーモトガ・マリティマ(Thermotoga m
aritima)由来のものについてはその遺伝子構造まで調べ
られている。しかし、サーマス属細菌のβ−ガラクトシ
ダーゼについては、遺伝子の塩基配列は明らかになって
いない。2. Description of the Related Art β-galactosidase according to the present invention is an enzyme that catalyzes a reaction for hydrolyzing a β- (D) 1,4-galactoside bond. The enzyme also catalyzes a reaction that generates a galactooligosaccharide by transferring a galactosyl group generated by hydrolysis to a sugar molecule serving as an acceptor depending on the substrate concentration. Industrially, this enzyme is used for producing glucose and galactose using lactose as a substrate, or for producing galactooligosaccharides. β-galactosidase is present in various microorganisms, and its gene has been well studied. As for thermostable β-galactosidase, Bacillus stearothermophilus which is a moderately thermophilic bacterium and Sulfolobus sulphatarix which is a hyperthermophilic bacterium are used.
olfataricus) and Thermotoga maritima (Thermotoga m
aritima) has been investigated for its gene structure. However, the gene sequence of β-galactosidase of the genus Thermus has not been clarified.
【0003】[0003]
【発明が解決しようとする課題】β−ガラクトシダーゼ
は牛乳中に存在するラクトースをグルコースとガラクト
ースに加水分解するので、低ラクトース牛乳やチーズホ
エー中のラクトースからのシロップの生産などに用いら
れる。耐熱性β−ガラクトシダーゼは固定化して上記の
ような反応を行う際に高温での運転が可能となるため
に、他の微生物による汚染の危険を防ぐことができるな
どの利点がある。そこで、本発明が解決しようとする課
題は、耐熱性に優れたβ−ガラクトシダーゼをコードす
る遺伝子の塩基配列を明らかにし、また、この遺伝子を
他の微生物、例えばエシェリヒア・コリ(Escherichia
coli、大腸菌)などで発現させることにより、容易に耐
熱性β−ガラクトシダーゼを生産する方法を確立するこ
とである。Since β-galactosidase hydrolyzes lactose present in milk into glucose and galactose, it is used for producing low-lactose milk and syrup from lactose in cheese whey. Since thermostable β-galactosidase can be operated at a high temperature when the above reaction is carried out by immobilization, there is an advantage that the risk of contamination by other microorganisms can be prevented. Therefore, the problem to be solved by the present invention is to clarify the nucleotide sequence of a gene encoding β-galactosidase having excellent heat resistance, and to clarify this gene with other microorganisms such as Escherichia coli.
(E. coli, Escherichia coli) and the like to easily establish a method for producing thermostable β-galactosidase.
【0004】[0004]
【課題を解決するための手段】本発明者らは、先に温泉
土壌より分離したサーマス・エスピーA4株(FERM
P−15236)よりβ−ガラクトシダーゼを精製
し、その理化学的性質を明らかにするとともに、N−末
端アミノ酸配列を決定した(特願平7−305249号
明細書)。該β−ガラクトシダーゼは耐熱性に優れてお
り、工業用酵素としての用途が見込まれる。そこで、本
発明者らは、該酵素の大量生産を目指して、まず該酵素
をコードする遺伝子のクローニングを実施し、その塩基
配列を解明した。本発明では、上記したβ−ガラクトシ
ダーゼのN−末端アミノ酸配列よりオリゴヌクレオチド
を合成し、これをプローブに用いて、サーマス・エスピ
ーA4株の染色体DNAよりこのβ−ガラクトシダーゼ
をコードする領域を含む断片を得て、その塩基配列を解
析した。本発明のサーマス属細菌由来の耐熱性β−ガラ
クトシダーゼ遺伝子は従来報告されている他のβ−ガラ
クトシダーゼ遺伝子との相同性が低く、新規な遺伝子で
あることが明らかとなった。また、本遺伝子の塩基配列
が決定されたことにより、この配列を基にサーマス属や
他の属の細菌の耐熱性β−ガラクトシダーゼ遺伝子をク
ローニングすることも可能となる。Means for Solving the Problems The present inventors have determined that the Thermus sp. A4 strain (FERM) previously isolated from hot spring soil was used.
P-15236), β-galactosidase was purified, its physicochemical properties were clarified, and the N-terminal amino acid sequence was determined (Japanese Patent Application No. 7-305249). The β-galactosidase is excellent in heat resistance and is expected to be used as an industrial enzyme. Therefore, the present inventors first performed cloning of a gene encoding the enzyme and elucidated the nucleotide sequence thereof, aiming at mass production of the enzyme. In the present invention, an oligonucleotide is synthesized from the N-terminal amino acid sequence of β-galactosidase described above, and using this as a probe, a fragment containing a region encoding this β-galactosidase is obtained from chromosomal DNA of Thermus sp. A4 strain. Obtained and analyzed its base sequence. The thermostable β-galactosidase gene derived from a bacterium of the genus Thermus of the present invention has low homology to other β-galactosidase genes reported so far, and it has been revealed that the gene is a novel gene. Further, by determining the nucleotide sequence of the present gene, it becomes possible to clone a thermostable β-galactosidase gene of a bacterium of the genus Thermus or another genus based on this sequence.
【0005】次に、該塩基配列を含む形質転換体を作製
し、該酵素の生産を試みた。上記のβ−ガラクトシダー
ゼをコードする塩基配列を有するDNA断片を大腸菌に
導入し、β−ガラクトシダーゼを発現させることに成功
した。大腸菌内で発現した酵素のβ−ガラクトシダーゼ
活性を測定したところ、野性株から精製した酵素と同様
に耐熱性を有することが確認された。本発明はこれらの
知見に基づいて完成されたものである。[0005] Next, a transformant containing the nucleotide sequence was prepared, and production of the enzyme was attempted. The DNA fragment having the above-described base sequence encoding β-galactosidase was introduced into Escherichia coli, and β-galactosidase was successfully expressed. When the β-galactosidase activity of the enzyme expressed in Escherichia coli was measured, it was confirmed that the enzyme had the same heat resistance as the enzyme purified from the wild strain. The present invention has been completed based on these findings.
【0006】すなわち、請求項1記載の本発明は、サー
マス属細菌に由来し、耐熱性β−ガラクトシダーゼをコ
ードする、配列表の配列番号1に記載の塩基配列または
それと実質的に同一の機能を有するβ−ガラクトシダー
ゼ遺伝子である。請求項2記載の本発明は、請求項1記
載のβ−ガラクトシダーゼ遺伝子を含むDNA断片を組
み込んだ形質転換体である。請求項3記載の本発明は、
請求項2記載の形質転換体を培養し、その培養物から耐
熱性β−ガラクトシダーゼを採取することを特徴とする
耐熱性β−ガラクトシダーゼの生産方法である。なお、
本発明には以下の態様も包含される。 (1)サーマス属細菌が、サーマス・エスピーA4株
(FERM P−15236)である請求項1記載のβ
−ガラクトシダーゼ遺伝子。 (2)請求項1記載の塩基配列より推定されるアミノ酸
配列または該アミノ酸配列に対して1もしくは数個のア
ミノ酸残基が欠失、付加あるいは置換されたアミノ酸配
列をコードするβ−ガラクトシダーゼ遺伝子。That is, the present invention according to claim 1 has the nucleotide sequence of SEQ ID NO: 1 derived from a bacterium belonging to the genus Thermus and encoding a thermostable β-galactosidase or a substantially identical function thereto. Β-galactosidase gene. The present invention according to claim 2 is a transformant into which a DNA fragment containing the β-galactosidase gene according to claim 1 has been incorporated. The present invention according to claim 3 provides:
A method for producing thermostable β-galactosidase, comprising culturing the transformant according to claim 2, and collecting thermostable β-galactosidase from the culture. In addition,
The present invention also includes the following embodiments. (1) The β according to claim 1, wherein the bacterium belonging to the genus Thermus is Thermus SP A4 strain (FERM P-15236).
-The galactosidase gene. (2) A β-galactosidase gene encoding an amino acid sequence deduced from the nucleotide sequence according to claim 1, or an amino acid sequence in which one or several amino acid residues have been deleted, added or substituted with respect to the amino acid sequence.
【0007】[0007]
【発明の実施の形態】以下に本発明を詳細に説明する。
本発明に使用するサーマス属細菌としては、目的とする
耐熱性β−ガラクトシダーゼ遺伝子を有するものであれ
ばよいが、特にサーマス・エスピーA4株が好適であ
る。本菌株は通商産業省工業技術院生命工学工業技術研
究所に寄託番号FERM P−15236として保管さ
れており、何人も入手可能である。また、本発明で用い
られる遺伝子工学的な手法は既知のものであり、例えば
MolecularCloning (T. Maniatis他著、Cold Spring Har
bor Laboratory Press 刊、1989年)などに詳細に説明
されているので何人も実施可能である。さらに、本発明
に使用した菌株、ベクターDNA、酵素、試薬等はいず
れも市販されているもので、容易に入手できる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The Thermus bacterium used in the present invention may be any one having the desired thermostable β-galactosidase gene, and the Sirmas sp. A4 strain is particularly suitable. This strain is stored under the deposit number FERM P-15236 at the Institute of Biotechnology and Industrial Technology, Ministry of International Trade and Industry, and is available to anyone. The genetic engineering techniques used in the present invention are known, for example,
Molecular Cloning (T. Maniatis et al., Cold Spring Har
bor Laboratory Press, 1989) and so on. Furthermore, the strains, vector DNAs, enzymes, reagents and the like used in the present invention are all commercially available and can be easily obtained.
【0008】耐熱性に優れたβ−ガラクトシダーゼをコ
ードする遺伝子の取得とその塩基配列の決定は以下のよ
うにして実施することができる。まず、常法により、サ
ーマス属細菌を培養し、培養物から精製された耐熱性β
−ガラクトシダーゼを調製する。例えば、サーマス・エ
スピーA4株を用いて、β−ガラクトシダーゼ(以下、
A4−β-Galと略記する。)を精製する場合は、特願平
7−305249号明細書に記載の方法が好適である。
すなわち、本菌の培養物から固−液分離手段により菌体
を回収し、これをリン酸ナトリウム緩衝液等に懸濁し、
適当な手段によって破砕して粗酵素液を得る。この粗酵
素液について、ONPGに対する加水分解活性を指標と
してβ−ガラクトシダーゼを精製する。まず、この粗酵
素液を80%飽和の硫安等による硫安塩析を行い、沈澱
を回収し、該沈澱をトリス−塩酸緩衝液等に分散させた
後、同じ緩衝液に対して透析処理を行い、次にイオン交
換クロマトグラフィー、ゲル濾過クロマトグラフィーな
どの各種のクロマトグラフィーを用いて分画し、精製す
る。次に、得られた耐熱性β−ガラクトシダーゼである
A4−β-GalのN−末端アミノ酸配列をプロテインシー
クエンサー等を用いて決定し、該アミノ酸配列より推定
される塩基配列を有するオリゴヌクレオチドを常法によ
りDNAシンセサイザーなどで合成する。次いで、この
ヌクレオチドを常法により標識してプローブとする。[0008] Obtaining a gene encoding β-galactosidase having excellent thermostability and determining its base sequence can be carried out as follows. First, the bacterium of the genus Thermus is cultured by a conventional method, and the heat-resistant β purified from the culture is used.
-Prepare galactosidase. For example, β-galactosidase (hereinafter referred to as “thermus sp.
Abbreviated as A4-β-Gal. )), The method described in Japanese Patent Application No. 7-305249 is suitable.
That is, cells were collected from the culture of the present bacterium by solid-liquid separation means, suspended in a sodium phosphate buffer or the like,
The crude enzyme solution is obtained by crushing by a suitable means. For this crude enzyme solution, β-galactosidase is purified using the hydrolysis activity for ONPG as an index. First, this crude enzyme solution was subjected to ammonium sulfate salting-out with 80% saturated ammonium sulfate or the like, and the precipitate was recovered. The precipitate was dispersed in a Tris-HCl buffer or the like, and then dialyzed against the same buffer. Then, fractionation and purification are performed using various types of chromatography such as ion exchange chromatography and gel filtration chromatography. Next, the N-terminal amino acid sequence of A4-β-Gal, which is the obtained thermostable β-galactosidase, is determined using a protein sequencer or the like, and an oligonucleotide having a base sequence deduced from the amino acid sequence is obtained by a conventional method. With a DNA synthesizer. Next, the nucleotide is labeled by a conventional method to prepare a probe.
【0009】一方、サーマス属細菌を培養し、得られた
菌体から常法に従って染色体DNA溶液を調製する。こ
の染色体DNAを種々の制限酵素で消化したDNA断片
を調製する。次に、該DNA断片をターゲットとして、
上述のヌクレオチドプローブを用いたサザンハイブリダ
イゼーションを実施し、耐熱性β−ガラクトシダーゼを
コードする遺伝子の全部または一部を含むDNA断片の
各制限酵素消化物のサイズを特定する。これらから目的
の耐熱性β−ガラクトシダーゼをコードする遺伝子を含
むDNA断片のみを分離するために、例えばコロニーハ
イブリダイゼーションを実施することができる。On the other hand, a bacterium of the genus Thermus is cultured, and a chromosomal DNA solution is prepared from the obtained cells according to a conventional method. This chromosomal DNA is digested with various restriction enzymes to prepare DNA fragments. Next, using the DNA fragment as a target,
Southern hybridization using the nucleotide probe described above is performed to specify the size of each restriction enzyme digest of a DNA fragment containing all or a part of the gene encoding thermostable β-galactosidase. In order to isolate only a DNA fragment containing a gene encoding the desired thermostable β-galactosidase from these, for example, colony hybridization can be performed.
【0010】これにはまず、目的遺伝子を含むと考えら
れるDNA断片をベクターに連結して組換えプラスミド
を調製し、大腸菌に導入する。その後、上述のヌクレオ
チドプローブを用いて常法に従いコロニーハイブリダイ
ゼーションを行って、耐熱性β−ガラクトシダーゼをコ
ードする遺伝子の全部または一部を含むDNA断片が挿
入された組換えプラスミドを保持する組換え大腸菌を分
離する。分離した大腸菌から常法によりDNA断片を抽
出し、このようにして得たDNA断片を制限酵素で消化
して制限酵素地図を作製する。また、その塩基配列を例
えばDNAシーケンサーを用いて決定する。この配列は
配列表の配列番号1に示されている。本発明の耐熱性β
−ガラクトシダーゼをコードする遺伝子はかかる方法に
て取得されたものである。[0010] First, a recombinant plasmid is prepared by ligating a DNA fragment containing a target gene to a vector, and then introduced into Escherichia coli. Thereafter, colony hybridization is carried out according to a conventional method using the above-described nucleotide probe, and a recombinant Escherichia coli having a recombinant plasmid into which a DNA fragment containing all or a part of the gene encoding heat-resistant β-galactosidase has been inserted. Is separated. A DNA fragment is extracted from the separated E. coli by a conventional method, and the DNA fragment thus obtained is digested with a restriction enzyme to prepare a restriction enzyme map. The base sequence is determined using, for example, a DNA sequencer. This sequence is shown in SEQ ID NO: 1 in the sequence listing. Heat resistance β of the present invention
-The gene encoding galactosidase has been obtained by such a method.
【0011】さらに、耐熱性β−ガラクトシダーゼをコ
ードする遺伝子の全部を含むDNA断片が挿入された組
換えプラスミドを構築し、該プラスミドにて形質転換さ
れた大腸菌を培養し、その菌体から耐熱性β−ガラクト
シダーゼを取得することができる。形質転換に用いるD
NA断片は、常法により調製されるが、例えばBamHI 断
片やBamHI-PstI断片等を用いることができる。形質転換
に用いるプラスミドは、特に制限されないが、例えばpU
C118, pUC119等を用いることができる。形質転換体の培
養方法は特に限定されないが、lacプロモーターによ
り発現が調節されていると予想されるので、IPTGを添加
して培養することが望ましい。培養終了後、菌体から耐
熱性β−ガラクトシダーゼを取得する際に、熱処理を行
うことで、比活性を上昇させることもできる。Further, a recombinant plasmid into which a DNA fragment containing the entire gene encoding heat-resistant β-galactosidase has been inserted is constructed, and Escherichia coli transformed with the plasmid is cultured. β-galactosidase can be obtained. D used for transformation
The NA fragment is prepared by a conventional method. For example, a BamHI fragment or a BamHI-PstI fragment can be used. The plasmid used for the transformation is not particularly limited.
C118, pUC119 and the like can be used. The method for culturing the transformant is not particularly limited. However, since expression is expected to be regulated by the lac promoter, it is preferable to add IPTG for culturing. After the culture, when heat-resistant β-galactosidase is obtained from the cells, heat treatment can be performed to increase the specific activity.
【0012】[0012]
【実施例】以下に実施例を挙げて本発明をさらに具体的
に説明するが、本発明はこれにより制限されるものでは
ない。 実施例1 A4−β-Gal遺伝子を含むDNA断片のクローニング 前記の特願平7−305249号明細書に記載された方
法により、サーマス・エスピーA4株(FERM P−
15236)を用いて、耐熱性β−ガラクトシダーゼ
(以下、A4−β-Galと略記する。)を精製した。次
に、得られたA4−β-GalのN−末端アミノ酸配列をプ
ロテインシークエンサーを用いて決定した。このA4−
β-GalのN−末端アミノ酸配列より44 merの塩基配列
を推定した。この塩基配列を図1に記載した。この44
merの塩基配列を有するオリゴヌクレオチドを常法に従
いDNA Synthesizer (Applied Biosystems社製) にて
合成した。さらに、このオリゴヌクレオチドをECL 3'−
オリゴラベリングシステム(Amersham社製)によりラベ
リングして以下の実験に用いるプローブ(以後、A4B
GNと略記する。)とした。EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. Example 1 Cloning of DNA Fragment Containing A4-β-Gal Gene According to the method described in Japanese Patent Application No. 7-305249, the Thermus SP A4 strain (FERM P-
15236) was used to purify thermostable β-galactosidase (hereinafter abbreviated as A4-β-Gal). Next, the N-terminal amino acid sequence of the obtained A4-β-Gal was determined using a protein sequencer. This A4-
The 44mer base sequence was estimated from the N-terminal amino acid sequence of β-Gal. This nucleotide sequence is shown in FIG. This 44
Oligonucleotides having a mer base sequence were synthesized using a DNA Synthesizer (Applied Biosystems) according to a conventional method. In addition, this oligonucleotide was ECL 3'-
A probe (hereinafter referred to as A4B) which is labeled by an oligo labeling system (Amersham) and used in the following experiments.
Abbreviated as GN. ).
【0013】A4株の染色体DNAの抽出は常法に従っ
て行った。A4株をサーマス属細菌用液体培地500m
lに接種し、70℃で2日間好気的に培養した。この培
養液から遠心分離にて回収した菌体より得られたDNA
を2mlのTE緩衝液に溶解し、A4株染色体DNA溶
液として以下の実験に用いた。A4株染色体DNA約5
0μgを約50unitの制限酵素で完全消化し、染色
体DNA断片を調製した。制限酵素としてはBamHI 、Ec
oRI 、HincII、HindIII 、KpnI、PstI、SacI、SalI、Sp
hI、XhoI(いずれもBoehringer Mannheim 社製)を用い
た。得られた染色体DNA断片を0.8%アガロースゲ
ル中で電気泳動し、泳動終了後、常法に従ってナイロン
メンブラン(Hybond-N+ 、Amersham社製)に転写した。
このメンブランとプローブA4BGNを用いたサザンハ
イブリダイゼーション法により、A4−β-Gal遺伝子の
全部もしくはその一部を含む染色体DNA断片の大きさ
を決定した。得られた結果を図2に示す。プローブA4
BGNとハイブリダイズすることが確認されたいくつか
のDNA断片のうち、A4−β-Gal遺伝子の全長が約
2.2kbpと見積もられることから、5.5kbpの
BamHI 断片、2.1kbpのSacI断片および3.4kb
pのSphI断片を取得することを目的として以下の実験を
進めた。The chromosomal DNA of the A4 strain was extracted according to a conventional method. A4 strain was transformed into 500m liquid medium for bacteria of the genus Thermos
1 and inoculated aerobically at 70 ° C. for 2 days. DNA obtained from cells recovered from this culture by centrifugation
Was dissolved in 2 ml of TE buffer and used as an A4 strain chromosomal DNA solution in the following experiments. A4 strain chromosomal DNA about 5
0 μg was completely digested with about 50 units of restriction enzyme to prepare a chromosomal DNA fragment. BamHI, Ec as restriction enzymes
oRI, HincII, HindIII, KpnI, PstI, SacI, SalI, Sp
hI and XhoI (both manufactured by Boehringer Mannheim) were used. The obtained chromosomal DNA fragment was subjected to electrophoresis in a 0.8% agarose gel, and after completion of the electrophoresis, was transferred to a nylon membrane (Hybond-N + , manufactured by Amersham) according to a conventional method.
The size of a chromosomal DNA fragment containing the whole or a part of the A4-β-Gal gene was determined by Southern hybridization using this membrane and the probe A4BGN. FIG. 2 shows the obtained results. Probe A4
Among several DNA fragments confirmed to hybridize with BGN, the total length of the A4-β-Gal gene is estimated to be about 2.2 kbp, so that 5.5 kbp
BamHI fragment, 2.1 kbp SacI fragment and 3.4 kb
The following experiment was conducted for the purpose of obtaining the SphI fragment of p.
【0014】上記の方法で得た染色体DNA断片を0.
8% 低融点アガロースゲル中で電気泳動し、それぞれ
目的の大きさのDNA断片を含むゲルを切り出して、フ
ェノール処理、クロロホルム抽出、エタノール沈殿を行
うことで染色体DNA断片を抽出した。一方、ベクター
pUC118またはpUC119は染色体DNA断片と同じ末端を生
じる制限酵素であらかじめ消化し、自己連結を防止する
ためアルカリフォスファターゼ処理を行った。このベク
ターDNA約0.1μgと染色体DNA断片約1μgを
混合し、T4DNAリガーゼを加えて16℃で1時間反
応させ、DNAを連結させた。T4DNAリガーゼおよ
びその反応液にはDNA ligation kit ver.1 (宝酒造
製)を用いた。連結反応終了後、生じた組換えプラスミ
ドをエタノール沈殿により回収し、3μlの滅菌水に溶
解して形質転換に用いた。The chromosomal DNA fragment obtained by the above-mentioned method is
Electrophoresis was carried out in an 8% low-melting point agarose gel, a gel containing a DNA fragment of the desired size was cut out, and phenol treatment, chloroform extraction, and ethanol precipitation were performed to extract a chromosomal DNA fragment. Vector
pUC118 or pUC119 was previously digested with a restriction enzyme generating the same end as the chromosomal DNA fragment, and treated with alkaline phosphatase to prevent self-ligation. About 0.1 μg of this vector DNA and about 1 μg of a chromosomal DNA fragment were mixed, T4 DNA ligase was added, and the mixture was reacted at 16 ° C. for 1 hour to ligate the DNA. DNA ligation kit ver.1 (Takara Shuzo) was used for T4 DNA ligase and its reaction solution. After completion of the ligation reaction, the resulting recombinant plasmid was recovered by ethanol precipitation, dissolved in 3 μl of sterilized water, and used for transformation.
【0015】大腸菌(Escherichia coli、 MV1184 株、
以下、 MV1184 株と略記する。)は常法に従い、電気パ
ルスによる形質転換(エレクトロポレーション法)に適
した状態とした。形質転換は、MV1184株菌体懸濁液40
μlに上記の方法で得た組換えプラスミド溶液3μlを
加え、Gene-Pulser (BIO-RAD 社製)にてパルスをかけ
ることにより行った。パルスをかけた後、直ちに1ml
のSOC培地(2%バクトトリプトン、0.5%酵母エ
キス、0.05% NaCl 、0.019%KCl 、10mM
MgCl2 、20mM グルコース)に懸濁して37℃で
1時間保温した後、アンピシリン(0.125g/
L)、X-gal (0.005g/L)およびIPTG(0.0
5mM)を含むLB平板培地(1%バクトトリプトン、
0.5%酵母エキス、0.5%NaCl、1.5%寒天)上
においたHybond-N+ メンブラン上に塗沫して37℃で一
晩培養し、アンピシリン耐性をもつ形質転換体を得た。Escherichia coli (strain MV1184,
Hereinafter, it is abbreviated as MV1184 strain. ) Was in a state suitable for transformation by an electric pulse (electroporation method) according to a conventional method. The transformation was performed using the MV1184 strain cell suspension 40.
To 3 μl, 3 μl of the recombinant plasmid solution obtained by the above method was added, and pulsed with Gene-Pulser (BIO-RAD). Immediately after applying pulse, 1ml
SOC medium (2% bactotryptone, 0.5% yeast extract, 0.05% NaCl, 0.019% KCl, 10 mM
After suspending in MgCl 2 , 20 mM glucose) and keeping at 37 ° C. for 1 hour, ampicillin (0.125 g /
L), X-gal (0.005 g / L) and IPTG (0.0
LB plate medium (1% bactotryptone, 5 mM),
A 0.5% yeast extract, 0.5% NaCl, 1.5% agar) was spread on Hybond-N + membrane and cultured overnight at 37 ° C to obtain a transformant having ampicillin resistance. Was.
【0016】形質転換体のコロニーのDNAを固定した
メンブランとプローブA4BGNを用いたコロニーハイ
ブリダイゼーション法により、A4−β-Gal遺伝子の全
部もしくはその一部を含む染色体DNA断片が挿入され
た組換えプラスミドを保持する組換え大腸菌の特定と分
離を行った。なお、コロニーハイブリダイゼーションの
手順はECL 3'−オリゴラベリングシステムの製造者によ
るプロトコールに従った。その結果、染色体DNAのSa
cI断片が挿入された組換え体約1200株のうち3株の
コロニーがプローブA4BGNとハイブリダイズするこ
とが最初に確認できた。後述の方法で塩基配列を決定
し、他の細菌由来のβ−ガラクトシダーゼ遺伝子の塩基
配列と比較した結果、これら3株が保持する組換えプラ
スミドはいずれもA4−β-Gal遺伝子の5'−側の一部を
含む約1.7kbpのSacI断片が挿入されていると判明
した。この組換えプラスミドをpBGS2と名付けた。A recombinant plasmid into which a chromosomal DNA fragment containing the whole or a part of the A4-β-Gal gene has been inserted by a colony hybridization method using a membrane on which the DNA of the colony of the transformant has been fixed and the probe A4BGN. Were identified and separated. In addition, the procedure of colony hybridization followed the protocol by the manufacturer of the ECL 3'-oligolabeling system. As a result, the chromosomal DNA Sa
At first, it was confirmed that three colonies out of about 1200 recombinants into which the cI fragment was inserted hybridized with the probe A4BGN. The nucleotide sequence was determined by the method described below, and the results were compared with the nucleotide sequences of β-galactosidase genes derived from other bacteria. As a result, the recombinant plasmids held by these three strains were all 5′-side of A4-β-Gal gene. It was found that an approximately 1.7 kbp SacI fragment containing a part of was inserted. This recombinant plasmid was named pBGS2.
【0017】常法に従って作成したSacI断片の制限酵素
切断地図を図3(A)に示した。図中の矢印はA4−β-G
al遺伝子の位置と向きを表している。A4−β-Gal遺伝
子の全長を含むプラスミドを取得するため、より長いBa
mHI 断片、あるいはSphI断片が挿入されている組換え体
についてもコロニーハイブリダイゼーションを行った。
なお、実験手順を簡略化するため、上記のSacI断片を低
融点アガロースゲル電気泳動、フェノール処理、クロロ
ホルム抽出、エタノール沈殿により回収し、これをECL
ダイレクトラベリングシステム(Amersham社製)でラベ
リングしてプローブとして用いた。コロニーハイブリダ
イゼーションの手順はECL ダイレクトラベリングシステ
ムの製造者によるプロトコールに従った。これらの結
果、染色体DNAのBamHI 断片が挿入された組換え体約
2000株のうち1株がA4−β-Gal遺伝子の全部もし
くはその一部を含むと判明した。この組換えプラスミド
はpBGB1と名付けた。制限酵素消化地図を作成したとこ
ろ(図3(B))、pBGB1はA4−β-Gal遺伝子の全長を含
むと推定された。FIG. 3 (A) shows a restriction map of the SacI fragment prepared by a conventional method. The arrow in the figure is A4-β-G
Indicates the position and orientation of the al gene. To obtain a plasmid containing the full length of the A4-β-Gal gene, a longer Ba
Colony hybridization was also performed on the recombinant into which the mHI fragment or the SphI fragment had been inserted.
In order to simplify the experimental procedure, the above SacI fragment was recovered by low-melting point agarose gel electrophoresis, phenol treatment, chloroform extraction, and ethanol precipitation.
Labeling was performed using a direct labeling system (manufactured by Amersham) and used as a probe. The colony hybridization procedure followed the protocol provided by the manufacturer of the ECL direct labeling system. As a result, it was found that one out of about 2,000 recombinant strains into which the BamHI fragment of the chromosomal DNA had been inserted contained all or a part of the A4-β-Gal gene. This recombinant plasmid was named pBGB1. When a restriction map was created (FIG. 3 (B)), pBGB1 was estimated to contain the full length of the A4-β-Gal gene.
【0018】実施例2 A4−β-Gal遺伝子の全塩基配列の決定 上記の実施例1にて分離された組換え大腸菌より抽出し
たプラスミドpBGB1の挿入断片の塩基配列を、373A DNA
Sequencer(Applied Biosystems社製)にて決定した。
配列表の配列番号1に耐熱性β−ガラクトシダーゼA4
−β-Galの構造遺伝子のDNA配列と、それから推定さ
れるアミノ酸配列を示す。A4−β-Gal遺伝子は215
7塩基対から成り、開始コドンはATG、終止コドンは
TGAであった。塩基配列より推定されるアミノ酸配列
は719アミノ酸残基から成り、推定分子量は7956
9Daであった。他の細菌のβ−ガラクトシダーゼのア
ミノ酸配列との相同性を調べた結果、最も相同性の高い
バチルス・ステアロサーモフィルス(Bacillus stearoth
ermophilus) との間でも相同性は約30%と低く、A4
−β-Gal遺伝子は新規なβ−ガラクトシダーゼ遺伝子と
判断することができる。Example 2 Determination of the Complete Nucleotide Sequence of the A4-β-Gal Gene The nucleotide sequence of the inserted fragment of plasmid pBGB1 extracted from the recombinant Escherichia coli isolated in Example 1 above was determined using the 373A DNA
It was determined by Sequencer (Applied Biosystems).
SEQ ID NO: 1 in the sequence listing contains heat-stable β-galactosidase A4
1 shows the DNA sequence of the structural gene of -β-Gal and the amino acid sequence deduced therefrom. A4-β-Gal gene is 215
Consisting of 7 base pairs, the start codon was ATG and the stop codon was TGA. The amino acid sequence deduced from the base sequence consists of 719 amino acid residues, and the deduced molecular weight is 7956.
It was 9 Da. As a result of examining the homology with the amino acid sequence of β-galactosidase of other bacteria, the most homologous Bacillus stearothermophilus (Bacillus stearothil) was found.
ermophilus), the homology is as low as about 30%.
-Β-Gal gene can be determined as a novel β-galactosidase gene.
【0019】実施例3 A4−β-Gal遺伝子の大腸菌における発現とその確認 A4−β-Gal遺伝子を大腸菌内で発現させることを目的
として、新たにプラスミドpBGB3を構築した(図3
(C))。これはpBGB1の挿入断片よりA4−β-Gal遺伝
子上流のBamHI-PstI断片約1kbpを除き、さらにA4
−β-Gal遺伝子とpUC119ベクター中のlacプロモータ
ーの向きを揃えるように結合させたものである。また、
同様にプラスミドpBGB2を構築した。これはpBGB1の挿
入断片の向きを逆にして、pUC118ベクター中のlacプ
ロモーターとA4−β-Gal遺伝子の向きを揃えたもので
ある。これらのプラスミドを用いて形質転換した大腸菌
を、アンピシリン(80μg/ml)およびIPTG(0.0
6mM)を含む3mlのL−ブロス(1%バクトトリプ
トン、0.5%酵母エキス、0.5% NaCl、0.1%グルコー
ス、pH7.0)に接種して、37℃で一晩振盪培養し
た。対照としてベクターDNAだけで形質転換した大腸
菌も同様に培養した。Example 3 Expression of A4-β-Gal Gene in E. coli and Confirmation Thereof A new plasmid pBGB3 was constructed for the purpose of expressing the A4-β-Gal gene in E. coli (FIG. 3).
(C)). This was done by removing about 1 kbp of the BamHI-PstI fragment upstream of the A4-β-Gal gene from the inserted fragment of pBGB1.
-It is linked so that the orientation of the β-Gal gene and the lac promoter in the pUC119 vector are aligned. Also,
Similarly, plasmid pBGB2 was constructed. This is one in which the orientation of the lac promoter and the A4-β-Gal gene in the pUC118 vector are aligned with the orientation of the insert fragment of pBGB1 reversed. E. coli transformed with these plasmids were transformed with ampicillin (80 μg / ml) and IPTG (0.0
3 mM L-broth (1% bactotryptone, 0.5% yeast extract, 0.5% NaCl, 0.1% glucose, pH 7.0) containing 6 mM) and shaken at 37 ° C. overnight. Cultured. As a control, Escherichia coli transformed only with the vector DNA was similarly cultured.
【0020】菌体を遠心分離にて集めて50mMのリン
酸ナトリウム緩衝液(pH6.5)にて一度洗浄した
後、同じ緩衝液3mlに分散させて超音波破砕した。破
砕物を遠心分離(15000rpm、5分間)して得ら
れた上清について、タンパク質濃度およびONPGを基質と
したときの70℃におけるβ−ガラクトシダーゼ活性を
以下のようにして測定した。キュベット中の反応混合液
(50mMリン酸ナトリウム緩衝液 (pH6.5)、1
mM MgCl2、2.8mM ONPG 、全量は2.9ml)を
70℃に保ち、酵素液を100μl加えて30秒後から
1分間の405nmにおける吸光度の変化を測定した。
o-ニトロフェノールの405nmにおけるモル吸光係数
は3.1×103 M-1cm -1 として計算した。酵素1
unitは、1分間に1μmolのo−ニトロフェノー
ルを生じさせる酵素量として定義した。タンパク質濃度
についてはBio-Rad Protein assay (Bio-Rad社製)を用
いて測定した。標準にはウシ血清アルブミンを用いた。The cells were collected by centrifugation, washed once with 50 mM sodium phosphate buffer (pH 6.5), dispersed in 3 ml of the same buffer, and sonicated. The supernatant obtained by centrifuging the crushed product (15000 rpm, 5 minutes) was measured for protein concentration and β-galactosidase activity at 70 ° C. using ONPG as a substrate as follows. Reaction mixture in cuvette (50 mM sodium phosphate buffer (pH 6.5), 1
mM MgCl 2 , 2.8 mM ONPG, 2.9 ml in total) was kept at 70 ° C., and 100 μl of the enzyme solution was added, and after 30 seconds, the change in absorbance at 405 nm for 30 minutes was measured.
The molar extinction coefficient of o-nitrophenol at 405 nm was calculated as 3.1 × 10 3 M −1 cm −1 . Enzyme 1
Unit was defined as the amount of enzyme that produced 1 μmol of o-nitrophenol per minute. The protein concentration was measured using a Bio-Rad Protein assay (manufactured by Bio-Rad). Bovine serum albumin was used as a standard.
【0021】その結果、どちらの形質転換体もβ−ガラ
クトシダーゼを生産したが、pBGB3にて形質転換した大
腸菌菌体破砕物の方が活性が高く、その比活性は2.5
2unit/mgであった。さらに、75℃で15分間
熱処理した後の比活性はさらに上昇して10.9uni
t/mgとなった。すなわち、pBGB3にて形質転換した
大腸菌は耐熱性β−ガラクトシダーゼを産生することが
明らかとなった。一方、対照のベクターDNAだけで形
質転換した大腸菌の場合は、活性はほとんど0であっ
た。As a result, both transformants produced β-galactosidase, but the E. coli crushed cells transformed with pBGB3 had higher activity, and the specific activity was 2.5.
It was 2 units / mg. Furthermore, the specific activity after heat treatment at 75 ° C. for 15 minutes further increased to 10.9 uni.
t / mg. That is, it was revealed that E. coli transformed with pBGB3 produced heat-resistant β-galactosidase. On the other hand, in the case of Escherichia coli transformed with the control vector DNA alone, the activity was almost 0.
【0022】[0022]
【発明の効果】本発明によって、サーマス属の細菌、例
えばサーマス・エスピーA4株が有する耐熱性β−ガラ
クトシダーゼをコードする遺伝子の塩基配列、およびそ
れから推定されるアミノ酸配列が提供される。また、こ
の塩基配列を含むプラスミドにて形質転換された大腸菌
の菌体破砕物はサーマス・エスピーA4株のそれと同様
に70℃で高いβ−ガラクトシダーゼ活性を有する。し
たがって、本発明により食品工業用として有用な耐熱性
β−ガラクトシダーゼを遺伝子組換えの手法を用いて大
量生産することが可能になる。さらに、本発明のDNA
配列を利用して、他のサーマス属細菌、あるいは他の属
の細菌のβ−ガラクトシダーゼ遺伝子をクローニングす
ることも可能である。Industrial Applicability According to the present invention, there are provided a nucleotide sequence of a gene encoding a thermostable β-galactosidase possessed by a bacterium of the genus Thermus, for example, a Thermus sp. A4 strain, and an amino acid sequence deduced therefrom. In addition, the disrupted E. coli cells transformed with the plasmid containing the nucleotide sequence have a high β-galactosidase activity at 70 ° C., similar to that of the Thermus sp. A4 strain. Therefore, according to the present invention, heat-resistant β-galactosidase useful for the food industry can be mass-produced using a genetic recombination technique. Further, the DNA of the present invention
Using the sequence, it is also possible to clone the β-galactosidase gene of another bacterium of the genus Thermus or a bacterium of another genus.
【0023】[0023]
【0024】配列番号:1 配列の長さ:2157 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源 生物名:サーマス属細菌(Thermus sp.) 株名:A4 配列の特徴 特徴を表す記号:CDS 存在位置:1..2157 特徴を決定した方法:S 配列 ATG CTC GGC GTT TGC TAT TAC CCC GAA CAC TGG CCC AAG GAG CGC TGG 48 Met Leu Gly Val Cys Tyr Tyr Pro Glu His Trp Pro Lys Glu Arg Trp 1 5 10 15 AAG GAG GAC GCC CGG CGC ATG CGG GAA GCG GGG CTT TCC CAT GTA CGT 96 Lys Glu Asp Ala Arg Arg Met Arg Glu Ala Gly Leu Ser His Val Arg 20 25 30 ATA GGG GAG TTC GCC TGG GCC TTA TTG GAA CCG GAG CCT GGA AGG CTG 144 Ile Gly Glu Phe Ala Trp Ala Leu Leu Glu Pro Glu Pro Gly Arg Leu 35 40 45 GAG TGG GGT TGG TTG GAC GAG GCC ATC GCC ACC CTG GCC GCC GAG GGG 192 Glu Trp Gly Trp Leu Asp Glu Ala Ile Ala Thr Leu Ala Ala Glu Gly 50 55 60 CTT AAG GTG GTC CTG GGC ACG CCC ACG GCC ACG CCG CCC AAG TGG CTC 240 Leu Lys Val Val Leu Gly Thr Pro Thr Ala Thr Pro Pro Lys Trp Leu 65 70 75 80 GTA GAC CGT TAT CCG GAG ATC CTC CCC GTG GAC CGG GAA GGG CGG AGG 288 Val Asp Arg Tyr Pro Glu Ile Leu Pro Val Asp Arg Glu Gly Arg Arg 85 90 95 CGG CGG TTT GGG GGG CGG CGG CAC TAC TGC TTT TCC AGC CCC GTT TAC 336 Arg Arg Phe Gly Gly Arg Arg His Tyr Cys Phe Ser Ser Pro Val Tyr 100 105 110 CGG GAA GAG GCC CGG CGC ATC GTG ACG CTA CTC GCC GAG CGC TAC GGG 384 Arg Glu Glu Ala Arg Arg Ile Val Thr Leu Leu Ala Glu Arg Tyr Gly 115 120 125 GGC CTC GAG GCC GTG GCG GGC TTC CAG ACC GAC AAC GAG TAC GGC TGC 432 Gly Leu Glu Ala Val Ala Gly Phe Gln Thr Asp Asn Glu Tyr Gly Cys 130 135 140 CAC GAC ACC GTG CGC TGC TAC TGC CCC CGC TGC CAA GAG GCC TTC CGG 480 His Asp Thr Val Arg Cys Tyr Cys Pro Arg Cys Gln Glu Ala Phe Arg 145 150 155 160 GGG TGG CTC GAG GCC CGG TAC GGC ACC ATT GAA GCC CTG AAC GAG GCC 528 Gly Trp Leu Glu Ala Arg Tyr Gly Thr Ile Glu Ala Leu Asn Glu Ala 165 170 175 TGG GGG ACG GCC TTC TGG AGC CAG CGT TAT CGG AGC TTT GCC GAG GTG 576 Trp Gly Thr Ala Phe Trp Ser Gln Arg Tyr Arg Ser Phe Ala Glu Val 180 185 190 GAG CTC CCC CAC CTC ACC GTG GCC GAG CCT AAC CCG AGC CAC CTC CTG 624 Glu Leu Pro His Leu Thr Val Ala Glu Pro Asn Pro Ser His Leu Leu 195 200 205 GAC TAC TAC CGC TTC GCC TCG GAC CAG GTG AGG GCC TTT AAC CGC CTC 672 Asp Tyr Tyr Arg Phe Ala Ser Asp Gln Val Arg Ala Phe Asn Arg Leu 210 215 220 CAG GTG GAG ATC CTG AGG GCC CAT GCC CCC GGG AAG TTC GTC ACC CAC 720 Gln Val Glu Ile Leu Arg Ala His Ala Pro Gly Lys Phe Val Thr His 225 230 235 240 AAC TTC ATG GGC TTC TTC ACC GAC TTG GAC GCT TTC GCC TTG GCC CAG 768 Asn Phe Met Gly Phe Phe Thr Asp Leu Asp Ala Phe Ala Leu Ala Gln 245 250 255 GAC CTG GAC TTC GCC AGC TGG GAC AGC TAC CCT CTG GGC TTC ACC GAC 816 Asp Leu Asp Phe Ala Ser Trp Asp Ser Tyr Pro Leu Gly Phe Thr Asp 260 265 270 CTC ATG CCC CTA CCT CCG GAG GAG AAG CTC CGC TAC GCC CGC ACC GGC 864 Leu Met Pro Leu Pro Pro Glu Glu Lys Leu Arg Tyr Ala Arg Thr Gly 275 280 285 CAC CCC GAC GTG GCC GCC TTC CAC CAC GAC CTC TAC CGG GGG GTG GGA 912 His Pro Asp Val Ala Ala Phe His His Asp Leu Tyr Arg Gly Val Gly 290 295 300 CGG GGG AGG TTT TGG GTG ATG GAG CAA CAG CCG GGC CCT GTG AAC TGG 960 Arg Gly Arg Phe Trp Val Met Glu Gln Gln Pro Gly Pro Val Asn Trp 305 310 315 320 GCC CCT CAC AAC CCG AGC CCC GCT CCC GGG ATG GTG CGG CTT TGG ACC 1008 Ala Pro His Asn Pro Ser Pro Ala Pro Gly Met Val Arg Leu Trp Thr 325 330 335 TGG GAG GCC CTG GCC CAC GGT GCG GAG GTG GTT TCC TAC TTC CGC TGG 1056 Trp Glu Ala Leu Ala His Gly Ala Glu Val Val Ser Tyr Phe Arg Trp 340 345 350 CGC CAG GCG CCT TTT GCC CAG GAG CAG ATG CAC GCC GGG CTC CAC CGA 1104 Arg Gln Ala Pro Phe Ala Gln Glu Gln Met His Ala Gly Leu His Arg 355 360 365 CCG GAT TCT GCC CCC GAC CAA GGC TTC TTT GAG GCG AAG CGC GTG GCC 1152 Pro Asp Ser Ala Pro Asp Gln Gly Phe Phe Glu Ala Lys Arg Val Ala 370 375 380 GAG GAG CTC GCC GCC CTG GCC CTG CCT CCC GTG GCC CAG GCC CCT GTG 1200 Glu Glu Leu Ala Ala Leu Ala Leu Pro Pro Val Ala Gln Ala Pro Val 385 390 395 400 GCC CTG GTT TTT GAC TAC GAG GCC GCC TGG ATT TAC GAG GTC CAG CCC 1248 Ala Leu Val Phe Asp Tyr Glu Ala Ala Trp Ile Tyr Glu Val Gln Pro 405 410 415 CAA GGG GCA GAG TGG AGC TAT CTG GGC CTC GTC TAT CTC TTT TAC AGC 1296 Gln Gly Ala Glu Trp Ser Tyr Leu Gly Leu Val Tyr Leu Phe Tyr Ser 420 425 430 GCC CTC CGG CGG CTG GGA CTG GAT GTG GAT GTG GTT CCC CCG GGG GCT 1344 Ala Leu Arg Arg Leu Gly Leu Asp Val Asp Val Val Pro Pro Gly Ala 435 440 445 TCT TTA AGG GGC TAC GCC TTC GCC GTG GTC CCG AGC CTC CCC ATC GTG 1392 Ser Leu Arg Gly Tyr Ala Phe Ala Val Val Pro Ser Leu Pro Ile Val 450 455 460 CGG GAG GAG GCC TTG GAA GCC TTC CGG GAA GCC GAG GGG CCT GTC CTC 1440 Arg Glu Glu Ala Leu Glu Ala Phe Arg Glu Ala Glu Gly Pro Val Leu 465 470 475 480 TTC GGT CCC CGC TCG GGG AGC AAG ACG GAA ACT TTT CAG ATT CCC AAG 1488 Phe Gly Pro Arg Ser Gly Ser Lys Thr Glu Thr Phe Gln Ile Pro Lys 485 490 495 GAG CTT CCT CCC GGC CCC CTC CAG GCC CTC CTT CCC CTT AAG GTG GTT 1536 Glu Leu Pro Pro Gly Pro Leu Gln Ala Leu Leu Pro Leu Lys Val Val 500 505 510 CGG GTG GAA AGC CTT CCC CCG GGT CTT CTA GAG GTG GCG GAG GGG GCG 1584 Arg Val Glu Ser Leu Pro Pro Gly Leu Leu Glu Val Ala Glu Gly Ala 515 520 525 CTC GGC CGC TTC CCT CTG GGT CTG TGG CGG GAA TGG GTG GAG GCT CCC 1632 Leu Gly Arg Phe Pro Leu Gly Leu Trp Arg Glu Trp Val Glu Ala Pro 530 535 540 CTA AAG CCC CTC CTT ACC TTC CAG GAC GGG AAG GGA GCC CTC TAC CGG 1680 Leu Lys Pro Leu Leu Thr Phe Gln Asp Gly Lys Gly Ala Leu Tyr Arg 545 550 555 560 GAG GGG CGA TAC CTC TAC CTT GCG GCC TGG CCC TCG CCC GAA CTC GCG 1728 Glu Gly Arg Tyr Leu Tyr Leu Ala Ala Trp Pro Ser Pro Glu Leu Ala 565 570 575 GGG AGG CTC CTC TCC GCT CTC GCC GCC GAG GCG GGC CTA AAG GTC CTT 1776 Gly Arg Leu Leu Ser Ala Leu Ala Ala Glu Ala Gly Leu Lys Val Leu 580 585 590 TCC CTG CCC GAG GGC CTA AGG CTC AGG CGG CGG GGG ACC TGG GTC TTT 1824 Ser Leu Pro Glu Gly Leu Arg Leu Arg Arg Arg Gly Thr Trp Val Phe 595 600 605 GCC TTC AAC TAC GGG CCG GAG GCG GTG GAG GCC CCC GCC TCA GAG GGG 1872 Ala Phe Asn Tyr Gly Pro Glu Ala Val Glu Ala Pro Ala Ser Glu Gly 610 615 620 GCC CGG TTC CTC CTG GGG AGT AGG CGG GTG GGC CTT ATG ACC TCG CCG 1920 Ala Arg Phe Leu Leu Gly Ser Arg Arg Val Gly Leu Met Thr Ser Pro 625 630 635 640 TCT GGG AGG AGG CAT GAG GCT GAG GTT GGG GGA ACT GGA GGT TTT CGT 1968 Ser Gly Arg Arg His Glu Ala Glu Val Gly Gly Thr Gly Gly Phe Arg 645 650 655 GGA GGC GGA GGG CCT GGA GGA GGC CCC GGG GGG AGT GCG CCT TTG GGG 2016 Gly Gly Gly Gly Pro Gly Gly Gly Pro Gly Gly Ser Ala Pro Leu Gly 660 665 670 CAG GGA GGT GCG GGT CTT TCC CCC TTT CCC CGC CAA GGG GTT CTT CCG 2064 Gln Gly Gly Ala Gly Leu Ser Pro Phe Pro Arg Gln Gly Val Leu Pro 675 680 685 CCA CGG CTG GCA GAG CTG GAG CCT CGC CGC CTG GGT GGA CCC CGC TCA 2112 Pro Arg Leu Ala Glu Leu Glu Pro Arg Arg Leu Gly Gly Pro Arg Ser 690 695 700 GGC CCC CAC GCC CCT CCT CCC CGA GGC GCG CCG CCC CCA GGC GGA 2157 Gly Pro His Ala Pro Pro Pro Arg Gly Ala Pro Pro Pro Gly Gly 705 710 715 719SEQ ID NO: 1 Sequence length: 2157 Sequence type: number of nucleic acid chains: double-stranded Topology: linear Sequence type: Genomic DNA Origin Organism: Thermus sp. : Characteristic of A4 sequence Symbol indicating characteristic: CDS Location: 1. . 2157 Characterization method: S sequence ATG CTC GGC GTT TGC TAT TAC CCC GAA CAC TGG CCC AAG GAG CGC TGG 48 Met Leu Gly Val Cys Tyr Tyr Pro Glu His Trp Pro Lys Glu Arg Trp 1 5 10 15 AAG GAG GAC GCC CGG CGC ATG CGG GAA GCG GGG CTT TCC CAT GTA CGT 96 Lys Glu Asp Ala Arg Arg Met Arg Glu Ala Gly Leu Ser His Val Arg 20 25 30 ATA GGG GAG TTC GCC TGG GCC TTA TTG GAA CCG GAG CCT GGA AGG CTG 144 Ile Gly Glu Phe Ala Trp Ala Leu Leu Glu Pro Glu Pro Gly Arg Leu 35 40 45 GAG TGG GGT TGG TTG GAC GAG GCC ATC GCC ACC CTG GCC GCC GAG GGG 192 Glu Trp Gly Trp Leu Asp Glu Ala Ile Ala Thr Leu Ala Ala Glu Gly 50 55 60 CTT AAG GTG GTC CTG GGC ACG CCC ACG GCC ACG CCG CCC AAG TGG CTC 240 Leu Lys Val Val Leu Gly Thr Pro Thr Ala Thr Pro Pro Lys Trp Leu 65 70 75 80 GTA GAC CGT TAT CCG GAG ATC CTC CCC GTG GAC CGG GAA GGG CGG AGG 288 Val Asp Arg Tyr Pro Glu Ile Leu Pro Val Asp Arg Glu Gly Arg Arg 85 90 95 CGG CGG TTT GGG GGG CGG CGG CAC TAC TGC TTT TCC AGC CCC GTT TAC 336 Arg Arg Phe Gly Gly Arg Arg H is Tyr Cys Phe Ser Ser Pro Val Tyr 100 105 110 CGG GAA GAG GCC CGG CGC ATC GTG ACG CTA CTC GCC GAG CGC TAC GGG 384 Arg Glu Glu Ala Arg Arg Ile Val Thr Leu Leu Ala Glu Arg Tyr Gly 115 120 125 GGC CTC GAG GCC GTG GCG GGC TTC CAG ACC GAC AAC GAG TAC GGC TGC 432 Gly Leu Glu Ala Val Ala Gly Phe Gln Thr Asp Asn Glu Tyr Gly Cys 130 135 140 CAC GAC ACC GTG CGC TGC TAC TGC CCC CGC TGC CAA GAG GCC TTC CGG 480 His Asp Thr Val Arg Cys Tyr Cys Pro Arg Cys Gln Glu Ala Phe Arg 145 150 155 160 GGG TGG CTC GAG GCC CGG TAC GGC ACC ATT GAA GCC CTG AAC GAG GCC 528 Gly Trp Leu Glu Ala Arg Tyr Gly Thr Ile Glu Ala Leu Asn Glu Ala 165 170 175 TGG GGG ACG GCC TTC TGG AGC CAG CGT TAT CGG AGC TTT GCC GAG GTG 576 Trp Gly Thr Ala Phe Trp Ser Gln Arg Tyr Arg Ser Phe Ala Glu Val 180 185 190 GAG CTC CCC CAC CTC ACC GTG GCC GAG CCT AAC CCG AGC CAC CTC CTG 624 Glu Leu Pro His Leu Thr Val Ala Glu Pro Asn Pro Ser His Leu Leu 195 200 205 GAC TAC TAC CGC TTC GCC TCG GAC CAG GTG AGG GCC TTT AAC CGC CTC 672 Asp Tyr Tyr Arg P he Ala Ser Asp Gln Val Arg Ala Phe Asn Arg Leu 210 215 220 CAG GTG GAG ATC CTG AGG GCC CAT GCC CCC GGG AAG TTC GTC ACC CAC 720 Gln Val Glu Ile Leu Arg Ala His Ala Pro Gly Lys Phe Val Thr His 225 230 235 240 AAC TTC ATG GGC TTC TTC ACC GAC TTG GAC GCT TTC GCC TTG GCC CAG 768 Asn Phe Met Gly Phe Phe Thr Asp Leu Asp Ala Phe Ala Leu Ala Gln 245 250 255 GAC CTG GAC TTC GCC AGC TGG GAC AGC TAC CCT CTG GGC TTC ACC GAC 816 Asp Leu Asp Phe Ala Ser Trp Asp Ser Tyr Pro Leu Gly Phe Thr Asp 260 265 270 CTC ATG CCC CTA CCT CCG GAG GAG AAG CTC CGC TAC GCC CGC ACC GGC 864 Leu Met Pro Leu Pro Pro Glu Glu Lys Leu Arg Tyr Ala Arg Thr Gly 275 280 285 285 CAC CCC GAC GTG GCC GCC TTC CAC CAC GAC CTC TAC CGG GGG GTG GGA 912 His Pro Asp Val Ala Ala Pla His His Asp Leu Tyr Arg Gly Val Gly 290 295 300 CGG GGG AGG TTT TGG GTG ATG GAG CAA CAG CCG GGC CCT GTG AAC TGG 960 Arg Gly Arg Phe Trp Val Met Glu Gln Gln Pro Gly Pro Val Asn Trp 305 310 315 320 GCC CCT CAC AAC CCG AGC CCC GCT CCC GGG ATG GTG CGG CTT TGG ACC 1008 Ala Pro His Asn Pro Ser Pro Ala Pro Gly Met Val Arg Leu Trp Thr 325 330 335 TGG GAG GCC CTG GCC CAC GGT GCG GAG GTG GTT TCC TAC TTC CGC TGG 1056 Trp Glu Ala Leu Ala His Gly Ala Glu Val Val Ser Tyr Phe Arg Trp 340 345 350 CGC CAG GCG CCT TTT GCC CAG GAG CAG ATG CAC GCC GGG CTC CAC CGA 1104 Arg Gln Ala Pro Phe Ala Gln Glu Gln Met His Ala Gly Leu His Arg 355 360 365 CCG GAT TCT GCC CCC GAC CAA GGC TTC TTT GAG GCG AAG CGC GTG GCC 1152 Pro Asp Ser Ala Pro Asp Gln Gly Phe Phe Glu Ala Lys Arg Val Ala 370 375 380 GAG GAG CTC GCC GCC CTG GCC CTG CCT CCC GTG GCC CAG GCC CCT GTG 1200 Glu Glu Leu Ala Ala Leu Ala Leu Pro Pro Val Ala Gln Ala Pro Val 385 390 395 400 GCC CTG GTT TTT GAC TAC GAG GCC GCC TGG ATT TAC GAG GTC CAG CCC 1248 Ala Leu Val Phe Asp Tyr Glu Ala Ala Trp Ile Tyr Glu Val Gln Pro 405 410 415 CAA GGG GCA GAG TGG AGC TAT CTG GGC CTC GTC TAT CTC TTT TAC AGC 1296 Gln Gly Ala Glu Trp Ser Tyr Leu Gly Leu Val Tyr Leu Phe Tyr Ser 420 425 430 GCC CTC CGG CGG CTG GGA CTG GAT GTG GAT GTG GTT C CC CCG GGG GCT 1344 Ala Leu Arg Arg Leu Gly Leu Asp Val Asp Val Val Pro Pro Gly Ala 435 440 445 TCT TTA AGG GGC TAC GCC TTC GCC GTG GTC CCG AGC CTC CCC ATC GTG 1392 Ser Leu Arg Gly Tyr Ala Phe Ala Val Val Pro Ser Leu Pro Ile Val 450 455 460 CGG GAG GAG GCC TTG GAA GCC TTC CGG GAA GCC GAG GGG CCT GTC CTC 1440 Arg Glu Glu Ala Leu Glu Ala Phe Arg Glu Ala Glu Gly Pro Val Leu 465 470 475 475 480 TTC GGT CCC CGC TCG GGG AGC AAG ACG GAA ACT TTT CAG ATT CCC AAG 1488 Phe Gly Pro Arg Ser Gly Ser Lys Thr Glu Thr Phe Gln Ile Pro Lys 485 490 495 GAG CTT CCT CCC GGC CCC CTC CAG GCC CTC CTT CCC CTT AAG GTG GTT 1536 Glu Leu Pro Pro Gly Pro Leu Gln Ala Leu Leu Pro Leu Lys Val Val 500 505 510 CGG GTG GAA AGC CTT CCC CCG GGT CTT CTA GAG GTG GCG GAG GGG GCG 1584 Arg Val Glu Ser Leu Pro Pro Gly Leu Leu Glu Val Ala Glu Gly Ala 515 520 525 CTC GGC CGC TTC CCT CTG GGT CTG TGG CGG GAA TGG GTG GAG GCT CCC 1632 Leu Gly Arg Phe Pro Leu Gly Leu Trp Arg Glu Trp Val Glu Ala Pro 530 535 540 CTA AAG CCC CTC CTT ACC TTC CA G GAC GGG AAG GGA GCC CTC TAC CGG 1680 Leu Lys Pro Leu Leu Thr Phe Gln Asp Gly Lys Gly Ala Leu Tyr Arg 545 550 555 560 GAG GGG CGA TAC CTC TAC CTT GCG GCC TGG CCC TCG CCC GAA CTC GCG 1728 Glu Gly Arg Tyr Leu Tyr Leu Ala Ala Trp Pro Ser Pro Glu Leu Ala 565 570 575 GGG AGG CTC CTC TCC GCT CTC GCC GCC GAG GCG GGC CTA AAG GTC CTT 1776 Gly Arg Leu Leu Ser Ala Leu Ala Ala Glu Ala Gly Leu Lys Val Leu 580 585 590 TCC CTG CCC GAG GGC CTA AGG CTC AGG CGG CGG GGG ACC TGG GTC TTT 1824 Ser Leu Pro Glu Gly Leu Arg Leu Arg Arg Arg Gly Thr Trp Val Phe 595 600 605 GCC TTC AAC TAC GGG CCG GAG GCG GTG GAG GCC CCC GCC TCA GAG GGG 1872 Ala Phe Asn Tyr Gly Pro Glu Ala Val Glu Ala Pro Ala Ser Glu Gly 610 615 620 GCC CGG TTC CTC CTG GGG AGT AGG CGG GTG GGC CTT ATG ACC TCG CCG 1920 Ala Arg Phe Leu Leu Gly Ser Arg Arg Val Gly Leu Met Thr Ser Pro 625 630 635 640 TCT GGG AGG AGG CAT GAG GCT GAG GTT GGG GGA ACT GGA GGT TTT CGT 1968 Ser Gly Arg Arg His Glu Ala Glu Val Gly Gly Thr Gly Gly Phe Arg 645 650 655 GGA GG C GGA GGG CCT GGA GGA GGC CCC GGG GGG AGT GCG CCT TTG GGG 2016 Gly Gly Gly Gly Gly Gly Gly Gly Pro Gly Gly Ser Ala Pro Leu Gly 660 665 670 CAG GGA GGT GCG GGT CTT TCC CCC TTT CCC CGC CAA GGG GTT CTT CCG 2064 Gln Gly Gly Ala Gly Leu Ser Pro Phe Pro Arg Gln Gly Val Leu Pro 675 680 685 CCA CGG CTG GCA GAG CTG GAG CCT CGC CGC CTG GGT GGA CCC CGC TCA 2112 Pro Arg Leu Ala Glu Leu Glu Pro Arg Arg Leu Gly Gly Pro Arg Ser 690 695 700 GGC CCC CAC GCC CCT CCT CCC CGA GGC GCG CCG CCC CCA GGC GGA 2157 Gly Pro His Ala Pro Pro Pro Arg Gly Ala Pro Pro Pro Gly Gly 705 710 715 715 719
【図1】 耐熱性β−ガラクトシダーゼA4−β-Galの
N−末端アミノ酸配列より推定したオリゴヌクレオチド
の塩基配列を示した図である。FIG. 1 shows the nucleotide sequence of an oligonucleotide deduced from the N-terminal amino acid sequence of thermostable β-galactosidase A4-β-Gal.
【図2】 サーマス・エスピーA4株の染色体DNAの
制限酵素消化物をターゲットとしたサザンハイブリダイ
ゼーションの結果を示した図である。FIG. 2 is a diagram showing the results of Southern hybridization targeting a restriction enzyme digest of chromosomal DNA of Thermus SP A4 strain.
【図3】 制限酵素消化地図を示した図であり、(A) は
pBGS2、(B) はpBGB1、(C) はpBGB3の挿入断片の制限
酵素消化地図を示したものである。FIG. 3 is a diagram showing a restriction enzyme digestion map, (A)
pBGS2, (B) shows pBGB1 and (C) shows restriction enzyme digestion maps of the inserted fragment of pBGB3.
Claims (3)
ラクトシダーゼをコードする、配列表の配列番号1に記
載の塩基配列またはそれと実質的に同一の機能を有する
β−ガラクトシダーゼ遺伝子。1. A β-galactosidase gene which is derived from a bacterium belonging to the genus Thermus and encodes a thermostable β-galactosidase, having the nucleotide sequence of SEQ ID NO: 1 or having substantially the same function as the nucleotide sequence.
伝子を含むDNA断片を組み込んだ形質転換体。2. A transformant into which a DNA fragment containing the β-galactosidase gene according to claim 1 has been incorporated.
の培養物から耐熱性β−ガラクトシダーゼを採取するこ
とを特徴とする耐熱性β−ガラクトシダーゼの生産方
法。3. A method for producing thermostable β-galactosidase, which comprises culturing the transformant according to claim 2, and collecting thermostable β-galactosidase from the culture.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8178752A JPH104972A (en) | 1996-06-20 | 1996-06-20 | Gene coding heat-resistant beta-galactosidase |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8178752A JPH104972A (en) | 1996-06-20 | 1996-06-20 | Gene coding heat-resistant beta-galactosidase |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH104972A true JPH104972A (en) | 1998-01-13 |
Family
ID=16053980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8178752A Pending JPH104972A (en) | 1996-06-20 | 1996-06-20 | Gene coding heat-resistant beta-galactosidase |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH104972A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000041693A (en) * | 1998-07-27 | 2000-02-15 | Morinaga Milk Ind Co Ltd | Production of galactooligosaccharide |
CN109852597A (en) * | 2019-03-21 | 2019-06-07 | 云南师范大学 | A kind of beta galactosidase galRBM20_1 and its preparation method and application |
CN113493777A (en) * | 2021-06-25 | 2021-10-12 | 青岛大学 | Beta-galactosidase and application thereof in lactose degradation |
-
1996
- 1996-06-20 JP JP8178752A patent/JPH104972A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000041693A (en) * | 1998-07-27 | 2000-02-15 | Morinaga Milk Ind Co Ltd | Production of galactooligosaccharide |
CN109852597A (en) * | 2019-03-21 | 2019-06-07 | 云南师范大学 | A kind of beta galactosidase galRBM20_1 and its preparation method and application |
CN109852597B (en) * | 2019-03-21 | 2022-11-18 | 云南师范大学 | Beta-galactosidase galRBM20_1 and preparation method and application thereof |
CN113493777A (en) * | 2021-06-25 | 2021-10-12 | 青岛大学 | Beta-galactosidase and application thereof in lactose degradation |
CN113493777B (en) * | 2021-06-25 | 2023-11-07 | 青岛大学 | Beta-galactosidase and application thereof in lactose degradation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3198842B2 (en) | Geranylgeranyl diphosphate synthase and DNA encoding the same | |
JP4301529B2 (en) | Production of non-cariogenic sugar substitutes | |
KR101704890B1 (en) | L-arabinose isomerase variants with improved conversion activity and method for production of d-tagatose using them | |
JPH08149980A (en) | Recombination type heat-resistant enzyme capable of converting maltose into trehalose | |
JP3086115B2 (en) | Hyperthermostable β-galactosidase gene | |
AU708538B2 (en) | Sucrose metabolism mutants | |
JPH104972A (en) | Gene coding heat-resistant beta-galactosidase | |
JPH09173077A (en) | Ultrathermoresistant acidic alpha-amylase and dna fragment containing gene for producing the alpha-amylase | |
JPH08263A (en) | Recombination enzyme for converting maltose into trehalose | |
US6884611B2 (en) | Preparation of acariogenic sugar substitutes | |
JPH05146296A (en) | Dna fragment containing beta-galactosidase gene and plasmid containing the same dna fragment integrated thereinto | |
KR20010102209A (en) | α-Agarase and process for producing the same | |
JP3512237B2 (en) | Thermostable methionine aminopeptidase and its gene | |
JP3427984B2 (en) | A novel thermostable sclerooligosaccharide-forming enzyme and its use | |
JP3463951B2 (en) | Thermostable pyroglutamyl peptidase and its gene | |
KR100380970B1 (en) | Levan fructotransferase derived from arthrobacter ureafaciense and process for preparing difructose dianhidride iv from levan by using same | |
JP3508871B2 (en) | DNA having genetic information of protein having creatinine deiminase activity and method for producing creatinine deiminase | |
JPH0889255A (en) | Novel creatine amidinohydrolase gene, novel recombinant dna and production of creatine amidinohydrolase | |
JP3498808B2 (en) | DNA polymerase gene | |
JPH10174585A (en) | Stable creatine amidinohydrolase | |
US20040091998A1 (en) | Method for microbial production of difructose anhydride III , micro-organism used therefor and enzyme with inulase II activity and dna sequences coding therefor | |
JPH06303981A (en) | Dna having genetic information on protein having formaldehyde dehydrogenase activity and production of formaldehyde dehydrogenase | |
JP2001321179A (en) | New method for producing raffinose | |
JP3811215B2 (en) | Novel α-glucosidase | |
JP2002253254A (en) | Dna encoding l-ribose isomerase and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050726 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051206 |