JPH104959A - Alpha1 - 6 fucosyltransferase derived from human - Google Patents
Alpha1 - 6 fucosyltransferase derived from humanInfo
- Publication number
- JPH104959A JPH104959A JP8161648A JP16164896A JPH104959A JP H104959 A JPH104959 A JP H104959A JP 8161648 A JP8161648 A JP 8161648A JP 16164896 A JP16164896 A JP 16164896A JP H104959 A JPH104959 A JP H104959A
- Authority
- JP
- Japan
- Prior art keywords
- fucosyltransferase
- human
- enzyme
- 2manα1
- activity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Enzymes And Modification Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明が属する技術分野】本発明はヒト由来のα1→6
フコシルトランスフェラーゼに関し、特にアスパラギン
型糖鎖(Asn型糖鎖)の根幹部のAsnに結合したN
−アセチルグルコサミン(GlcNAc)に、α1→6
結合でもって、グアノシンジホスフェート(GDP)−
フコースからフコースを転移する酵素であって、糖鎖の
修飾や合成などの糖鎖工学および/または癌などの疾病
の診断に有用なヒト由来の新規なα1→6フコシルトラ
ンスフェラーゼに関する。TECHNICAL FIELD The present invention relates to human-derived α1 → 6
Regarding fucosyltransferase, in particular, N-linked to Asn in the base of asparagine-type sugar chain (Asn-type sugar chain)
-Α1 → 6 to acetylglucosamine (GlcNAc)
Guanosine diphosphate (GDP)
The present invention relates to a novel human-derived α1 → 6 fucosyltransferase which is an enzyme that transfers fucose from fucose and is useful for sugar chain engineering such as sugar chain modification and synthesis and / or diagnosis of diseases such as cancer.
【0002】[0002]
【従来の技術】近年、高等生物由来の糖蛋白質、糖脂質
等の複合糖質中の糖鎖部分の構造と機能に関する関心が
高まっており、その研究が盛んに行われている。糖鎖は
糖加水分解酵素及び糖転移酵素の作用により形成される
が、その中でも糖転移酵素が寄与するところが大きい。
糖転移酵素は糖ヌクレオチドを糖供与体として、受容体
となる糖鎖に糖を転移し、糖鎖伸長を行う酵素である。
その受容体糖鎖構造に対する特異性は、厳密であり、通
常、一つのグリコシド結合は対応する一つの転移酵素に
よって形成される。それ故、糖転移酵素は複合糖質の糖
鎖部分の構造研究、特定の糖鎖構造の簡便な合成、天然
の糖鎖構造の修飾に利用されている。また、糖鎖の人工
的な改変による複合糖質あるいは細胞の性質の改変への
利用が期待されている。これらのことから、基質特性の
明らかな種々の糖転移酵素の開発が望まれている。2. Description of the Related Art In recent years, interest in the structure and function of sugar chains in complex carbohydrates such as glycoproteins and glycolipids derived from higher organisms has been increasing, and research has been actively conducted. Sugar chains are formed by the action of sugar hydrolases and glycosyltransferases, of which the glycosyltransferases are the major contributors.
Glycosyltransferases are enzymes that use sugar nucleotides as sugar donors to transfer sugars to sugar chains serving as acceptors and extend sugar chains.
Its specificity for the receptor sugar chain structure is rigorous, and usually one glycosidic bond is formed by one corresponding transferase. Therefore, glycosyltransferases are used for structural studies of the sugar chain portion of glycoconjugates, convenient synthesis of specific sugar chain structures, and modification of natural sugar chain structures. Further, it is expected to be used for modifying the properties of glycoconjugates or cells by artificial modification of sugar chains. For these reasons, development of various glycosyltransferases whose substrate characteristics are clear is desired.
【0003】α1→6フコシルトランスフェラーゼは、
細胞内小器官のゴルジ体に存在する酵素であり、アスパ
ラギン結合型糖鎖のプロセッシングを制御する酵素のう
ちの一つであると考えられる重要な酵素である。該酵素
をアスパラギン結合型糖鎖に作用させることで、その制
御機構の解明、糖鎖構造形成の制御等に役立つと考えら
れる。[0003] α1 → 6 fucosyltransferase is
It is an enzyme that exists in the Golgi apparatus of organelles and is an important enzyme that is considered to be one of the enzymes that control the processing of asparagine-linked sugar chains. The action of the enzyme on an asparagine-linked sugar chain is thought to be useful for elucidation of its control mechanism, control of sugar chain structure formation, and the like.
【0004】また、肝臓癌や嚢胞性線維症などのいくつ
かの疾病におけるα1→6フコシルトランスフェラーゼ
活性の上昇、該酵素反応生成物の割合の増加が知られて
おり、該酵素の診断用途としての早急なる開発が望まれ
ている。It is also known that α1 → 6 fucosyltransferase activity is increased in some diseases such as liver cancer and cystic fibrosis, and the ratio of the enzyme reaction product is increased. Immediate development is desired.
【0005】α1→6フコシルトランスフェラーゼは、
各種動物の体液あるは臓器中、各種動物の培養細胞に活
性は検出されているものの、精製された酵素標品として
は、ブタの脳から精製されたα1→6フコシルトランス
フェラーゼについては、平成7年年度第68回日本生化学
会大会にて既に発表されている。しかし、ヒト由来のも
のは未だ、ヒト嚢胞性線維症細胞破砕物[ジャーナル・
オブ・バイオロジカル・ケミストリー (Journal of Bi
ological Chemistry) 、第 266巻、第21572 〜21577 頁
(1991)]由来の酵素が知られているが、この酵素は膜結
合型酵素として得られ、さらに細胞の培養に牛血清を必
要とすることから、酵素の精製が困難なうえ、出発材料
となる細胞を培養するのに莫大な費用がかかることか
ら、該酵素標品を安定して供給することは事実上困難で
ある。[0005] α1 → 6 fucosyltransferase is
Although the activity was detected in cultured cells of various animals in the body fluids or organs of various animals, purified enzyme preparations include α1 → 6 fucosyltransferase purified from pig brain in 1995. It has already been announced at the 68th Annual Meeting of the Biochemical Society of Japan. However, human cystic fibrosis cell debris is still not available from humans [Journal
Journal of Biological Chemistry
266), 21572-21577
(1991)] is known, but this enzyme is obtained as a membrane-bound enzyme, and since bovine serum is required for cell culture, it is difficult to purify the enzyme. Because of the enormous cost of culturing such cells, it is practically difficult to stably supply the enzyme preparation.
【0006】[0006]
【発明が解決しようとする課題】本発明の目的は糖鎖構
造解析、糖鎖工学用試薬や診断薬として、安定して供給
可能なヒト由来α1→6フコシルトランスフェラーゼを
提供することにある。An object of the present invention is to provide a human α1 → 6 fucosyltransferase that can be stably supplied as a reagent for sugar chain structure analysis, sugar chain engineering or a diagnostic agent.
【0007】[0007]
【課題を解決するための手段】本発明者らは上記目的を
達成するために、種々検討した結果、ヒト細胞培養液か
らα1→6フコシルトランスフェラーゼ活性を有するタ
ンパク質を精製し、酵素学的性質を解明して、本発明に
到達した。Means for Solving the Problems The present inventors have conducted various studies in order to achieve the above object, and as a result, purified a protein having α1 → 6 fucosyltransferase activity from a human cell culture, and obtained an enzymatic property. Elucidated, and reached the present invention.
【0008】すなわち、本発明は下記理化学的性質を有
するヒト由来α1→6フコシルトランスフェラーゼであ
る。 (1)作用:(GlcNAcβ1−2Manα1−6)
(GlcNAcβ1─2Manα1−3)Manβ1─
4GlcNAcβ1−4GlucNAc−R(式中、R
はペプチド鎖を示す)を受容体として、グアノシンジホ
スフェート−フコースから、受容体の最もペプチド鎖に
近いGluNAcの6位の水酸基にフコースを転移し、
(GlcNAcβ1−2Manα1−6)(GlcNA
cβ1─2Manα1−3)Manβ1─4GlcNA
cβ1−4(Fucα1−6)GlucNAc−Rを生
成する。(2)至適pH:約7.5 (3)pH安定性:4℃、5時間の処理で、pH4.0
〜10.0の範囲で安定である。 (4)至適温度:約30〜37℃ (5)阻害または活性化:活性の発現に、2価金属を要
求せず、また、5mMEDTA存在下においても活性は
阻害されない。 (6)分子量:約60,000(SDS−ポリアクリル
アミドゲル電気泳動)That is, the present invention is a human α1 → 6 fucosyltransferase having the following physicochemical properties. (1) Action: (GlcNAcβ1-2Manα1-6)
(GlcNAcβ1 {2Manα1-3) Manβ1}
4GlcNAcβ1-4GlucNAc-R (where R
Represents a peptide chain) as a receptor, and transfers fucose from guanosine diphosphate-fucose to a hydroxyl group at position 6 of GluNAc closest to the peptide chain of the receptor,
(GlcNAcβ1-2Manα1-6) (GlcNAc
cβ1─2Manα1-3) Manβ1─4GlcNA
Generate cβ1-4 (Fucα1-6) GlucNAc-R. (2) Optimum pH: about 7.5 (3) pH stability: pH 4.0 after treatment at 4 ° C. for 5 hours.
It is stable in the range of up to 10.0. (4) Optimum temperature: about 30 to 37 ° C. (5) Inhibition or activation: The activity does not require a divalent metal for its expression, and its activity is not inhibited in the presence of 5 mM EDTA. (6) Molecular weight: about 60,000 (SDS-polyacrylamide gel electrophoresis)
【0009】[0009]
【発明の実施態様】本発明の酵素の精製出発材料として
は、α1→6フコシルトランスフェラーゼ活性を有する
ヒト細胞培養液であればいかなるものでもよい。α1→
6フコシルトランスフェラーゼ活性を有する細胞の具体
例としては、例えばヒト膵臓癌細胞、ヒト胃癌細胞、ヒ
ト骨髄腫細胞等が挙げられる。本発明のα1→6フコシ
ルトランスフェラーゼは膜結合型酵素として細胞膜に存
在するが、タンパク質分解酵素によって酵素活性に影響
のない部位で切断されることにより可溶型酵素として培
養液中に放出されるので、細胞の破砕、酵素の可溶化な
どの煩雑な操作なしに培養液を粗酵素液として用いるこ
とができる。また、無血清培養可能な細胞を用いること
で、高純度の粗酵素液を安価に得ることができる。培養
液を濃縮、脱塩した後、イオン交換クロマトグラフィ
ー、アフィニティクロマトグラフィーなどにより夾雑す
る他のトランスフェラーゼおよびグリコシダーゼ活性の
ない精製酵素標品を得ることができる。BEST MODE FOR CARRYING OUT THE INVENTION As a starting material for purifying the enzyme of the present invention, any human cell culture having α1 → 6 fucosyltransferase activity may be used. α1 →
Specific examples of cells having 6-fucosyltransferase activity include, for example, human pancreatic cancer cells, human gastric cancer cells, human myeloma cells, and the like. The α1 → 6 fucosyltransferase of the present invention is present in the cell membrane as a membrane-bound enzyme, but is released into the culture solution as a soluble enzyme by being cleaved by a protease at a site that does not affect the enzyme activity. The culture solution can be used as a crude enzyme solution without complicated operations such as cell disruption and enzyme solubilization. Further, by using cells capable of serum-free culture, a crude enzyme solution of high purity can be obtained at low cost. After concentrating and desalting the culture solution, a purified enzyme sample having no contaminating transferase and glycosidase activities can be obtained by ion exchange chromatography, affinity chromatography, or the like.
【0010】本発明では、例えばヒト胃癌細胞MKN4
5の無血清培養液を限外濾過膜で濾過濃縮、5mM 2
−メルカプトエタノールおよび0.1%CHAPS〔3
−((3−コラミドプロピル)ジメチルアンモニオ)−
1−プロパンスルフォネート〕を含むトリス−塩酸緩衝
液、pH7.5で緩衝液交換を行い、粗酵素液をするこ
とができる。In the present invention, for example, human gastric cancer cells MKN4
The serum-free culture solution of No. 5 was concentrated by filtration with an ultrafiltration membrane, and 5 mM 2
-Mercaptoethanol and 0.1% CHAPS [3
-((3-cholamidopropyl) dimethylammonio)-
1-propanesulfonate] and a buffer solution exchange with a Tris-HCl buffer solution (pH 7.5) to obtain a crude enzyme solution.
【0011】さらに、この酵素液をQ−セファロース、
GDP−ヘキサノールアミンセファロース、(GlcN
Acβ1−2Manα1−6)(GlcNAcβ1−2
Manα1−3)Manβ1−4GlucNAcβ1−
4GlucNAc−アスパラギンセファロース等のカラ
ムクロマトグラフィーに供し、活性画分を集めて、本発
明のフコシルトランスフェラーゼを精製することができ
る。Further, this enzyme solution is used in Q-Sepharose,
GDP-hexanolamine sepharose, (GlcN
Acβ1-2Manα1-6) (GlcNAcβ1-2
Manα1-3) Manβ1-4GlucNAcβ1-
The fucosyltransferase of the present invention can be purified by subjecting it to column chromatography such as 4GlucNAc-asparagine sepharose and collecting the active fraction.
【0012】本発明のα1→6フコシルトランスフェラ
ーゼの酵素化学的性質は、次のとおりである。 (1)作用:(GlcNAcβ1−2Manα1−6)
(GlcNAcβ1─2Manα1−3)Manβ1─
4GlcNAcβ1−4GlucNAc−R(式中、R
はペプチド鎖を示す)を受容体として、グアノシンジホ
スフェート−フコースから、受容体の最もペプチド鎖に
近いGluNAcの6位の水酸基にフコースを転移し、
(GlcNAcβ1−2Manα1−6)(GlcNA
cβ1─2Manα1−3)Manβ1─4GlcNA
cβ1−4(Fucα1−6)GlucNAc−Rを生
成する。The enzymatic properties of the α1 → 6 fucosyltransferase of the present invention are as follows. (1) Action: (GlcNAcβ1-2Manα1-6)
(GlcNAcβ1 {2Manα1-3) Manβ1}
4GlcNAcβ1-4GlucNAc-R (where R
Represents a peptide chain) as a receptor, and transfers fucose from guanosine diphosphate-fucose to a hydroxyl group at position 6 of GluNAc closest to the peptide chain of the receptor,
(GlcNAcβ1-2Manα1-6) (GlcNAc
cβ1─2Manα1-3) Manβ1─4GlcNA
Generate cβ1-4 (Fucα1-6) GlucNAc-R.
【0013】(2)酵素活性の測定 本発明のα1→6フコシルトランスフェラーゼ活性の測
定は、次のようにして行った。すなわち、糖鎖末端のア
スパラギンを4−(2−ピリジルアミノ)ブチルアミン
〔PABA:−NH2 (CH2 )4 −NH−pyrid
ine〕で蛍光標識した下記化1で示される化合物を酵
素活性の測定基質として用いた。該基質を用いることに
より、フコースのα1→6結合で転移した酵素反応の生
成物の高速液体クロマトグラフィーによる蛍光検出が可
能となる。(2) Measurement of Enzyme Activity The α1 → 6 fucosyltransferase activity of the present invention was measured as follows. That is, asparagine at the sugar chain terminal is converted to 4- (2-pyridylamino) butylamine [PABA: -NH 2 (CH 2 ) 4 -NH-pyrid.
Ine], a compound represented by the following formula 1 was used as a substrate for measuring the enzyme activity. By using the substrate, the product of the enzyme reaction transferred at the α1 → 6 bond of fucose can be subjected to fluorescence detection by high performance liquid chromatography.
【0014】[0014]
【化1】 Embedded image
【0015】具体的な測定方法を以下に述べる。上記化
1で示される受容体蛍光標識基質62.5μMおよび供
与体基質(GDP−フコース)625μMを含む250
mMメス(MES)緩衝液、pH7.0、40μlに、
酵素液10μlを加えて混合し、37℃で1時間反応さ
せた。5分間の煮沸により反応を停止させた後、反応液
を高速液体クロマトグラフィーに供し、生成物のピーク
を蛍光検出器で定量する。酵素量1単位は、この条件下
で、1分間に1pmoleのGlcNAcβ1−2Ma
nα1−6(GlcNAcβ1−2Manα1−3)M
anβ1→4GlcNAcβ1−4(Fucα1−6)
GlcNAc−R〔RはAsn−NH−(CH2 )4 −
PA、PAは2−ピリジルアミノ基を意味する。〕を生
じるものとした。A specific measuring method will be described below. 250 containing 62.5 μM of the acceptor fluorescently labeled substrate represented by the above formula 1 and 625 μM of the donor substrate (GDP-fucose)
mM female (MES) buffer, pH 7.0, 40 μl,
An enzyme solution (10 μl) was added and mixed, and reacted at 37 ° C. for 1 hour. After stopping the reaction by boiling for 5 minutes, the reaction solution is subjected to high performance liquid chromatography, and the peak of the product is quantified with a fluorescence detector. One unit of the enzyme amount is 1 pmole of GlcNAcβ1-2 Ma per minute under these conditions.
nα1-6 (GlcNAcβ1-2Manα1-3) M
anβ1 → 4GlcNAcβ1-4 (Fucα1-6)
GlcNAc-R [R is Asn-NH- (CH 2) 4 -
PA and PA mean a 2-pyridylamino group. ].
【0016】(3)至適pH 本発明の酵素の至適pHは図1の曲線で表されるごと
く、pH約7.0〜7.5付近に高い活性を有してい
る。図1において、pH4.5〜7.5は500mMメ
ス(MES)緩衝液(黒丸)を、pH7.0〜9.0は
100mMトリス−塩酸緩衝液(白丸)を用いて測定を
行った。(3) Optimum pH As shown by the curve in FIG. 1, the enzyme of the present invention has a high activity at a pH of about 7.0 to 7.5. In FIG. 1, pH 4.5 to 7.5 was measured using a 500 mM female (MES) buffer (black circles), and pH 7.0 to 9.0 was measured using a 100 mM Tris-HCl buffer (white circles).
【0017】(4)pH安定性 本発明の酵素のpH安定性は図2に示すように、pH約
4〜10であり、特にpH5〜9の間において安定であ
る。測定に用いた緩衝液はpH3.5〜5.5は50m
M酢酸緩衝液(黒三角)を、pH5.5〜7.5は50
mMメス(MES)緩衝液(黒丸)を、pH7.5〜
9.0は50mMトリス−塩酸緩衝液(白丸)を、pH
9.0〜11.5は炭酸水素ナトリウム緩衝液(白三
角)を用いた。本発明の酵素を各緩衝液中で、それぞれ
のpHにおいて、4℃、5時間処理した後の残存活性の
測定を行った。なお、図1は本発明により得られるα−
1,6−フコシルトランスフェラーゼのpH(横軸)と
相対活性(%、縦軸)の関係を示すグラフ、図2はpH
(横軸)と残存活性(%、縦軸)との活性を示すグラフ
である。(4) pH Stability As shown in FIG. 2, the pH stability of the enzyme of the present invention is about 4 to 10, especially between 5 and 9. The buffer used for the measurement was 50 m at pH 3.5 to 5.5.
M acetate buffer (closed triangle), pH 5.5-7.5 at 50
mM female (MES) buffer (filled circle) at pH 7.5
9.0: 50 mM Tris-HCl buffer (open circles), pH
For 9.0 to 11.5, a sodium bicarbonate buffer (open triangle) was used. The residual activity was measured after treating the enzyme of the present invention in each buffer at 4 ° C. for 5 hours at each pH. FIG. 1 shows the α-value obtained by the present invention.
FIG. 2 is a graph showing the relationship between the pH (horizontal axis) and the relative activity (%, vertical axis) of 1,6-fucosyltransferase.
It is a graph which shows activity of (horizontal axis) and residual activity (%, vertical axis).
【0018】(5)至適温度 本発明の酵素の至適温度は図3に示すように、約37℃
付近であり、また、20〜40℃の範囲で使用可能であ
る。凍結品は−20℃で少なくとも数カ月安定である。(5) Optimal temperature The optimal temperature of the enzyme of the present invention is, as shown in FIG.
Around, and can be used in the range of 20 to 40 ° C. The frozen product is stable at -20 ° C for at least several months.
【0019】(6)2価金属イオン要求性 多くの糖転移酵素はその活性にマグネシウム、マンガン
などの2価金属を必要とするが、本発明の酵素は2価金
属非存在下あるいはキレート剤であるEDTA存在下で
十分な活性を示し、2価金属イオン要求性を示さない。(6) Requirement of divalent metal ion Many glycosyltransferases require a divalent metal such as magnesium or manganese for their activity. The enzyme of the present invention is used in the absence of a divalent metal or with a chelating agent. It shows sufficient activity in the presence of certain EDTA and does not show divalent metal ion requirement.
【0020】(7)分子量 本発明の酵素の精製標品は、SDS−ポリアクリルアミ
ドゲル電気泳動において、分子量約60,000のとこ
ろに単一バンドを示す。(7) Molecular weight The purified sample of the enzyme of the present invention shows a single band at a molecular weight of about 60,000 in SDS-polyacrylamide gel electrophoresis.
【0021】(8)形態 本発明の酵素は、本来、膜結合型酵素として細胞膜に存
在するが、これまでに報告がなされているブタα1→6
フコシルトランスフェラーゼおよびヒト嚢胞生繊維症細
胞のα1→6フコシルトランスフェラーゼとは異なり、
培養細胞中のタンパク質分解酵素によって酵素活性に影
響のない部位で切断されることにより培養液中に放出さ
れるため、取扱いの容易な可溶型酵素として存在する。
上記性質から見て、本発明のα1→6フコシルトランス
フェラーゼは、至適pH、金属要求性、分子量の点で、
従来のヒト嚢胞性繊維症細胞由来のα1→6フコシルト
ランスフェラーゼ(至適pH6.5、分子量34,00
0および39,000)とは明らかに相違する新規な酵
素である。(8) Morphology The enzyme of the present invention originally exists in the cell membrane as a membrane-bound enzyme, but porcine α1 → 6 has been reported so far.
Unlike fucosyltransferase and α1 → 6 fucosyltransferase of human cystic fibrosis cells,
Since it is released into the culture solution by being cleaved at a site where the enzyme activity is not affected by proteolytic enzymes in the cultured cells, it exists as a soluble enzyme that is easy to handle.
In view of the above properties, the α1 → 6 fucosyltransferase of the present invention has an optimum pH, metal requirement, and molecular weight.
Conventional α1 → 6 fucosyltransferase derived from human cystic fibrosis cells (optimum pH 6.5, molecular weight 34,000
0 and 39,000).
【0022】本発明のα1→6フコシルトランスフェラ
ーゼを利用して、下記事項を解明することができる。 (1)アスパラギン結合型糖鎖に新たにフコースを導入
し、糖鎖構造を人工的に改変することができる。そのこ
とによって、細胞装置や複合糖質の糖鎖のプロセッシン
グ制御機構の解明及び糖鎖の役割を解明することができ
る。 (2)本発明の酵素活性を測定することにより、種々の
疾病の診断を行うことができる。 (3)本発明の酵素により誘導される抗体を用いること
により、種々の疾病の診断を行うことができる。Using the α1 → 6 fucosyltransferase of the present invention, the following matters can be elucidated. (1) Fucose can be newly introduced into an asparagine-linked sugar chain to artificially modify the sugar chain structure. By doing so, it is possible to elucidate the mechanism of controlling the processing of sugar chains of cell devices and glycoconjugates, and to elucidate the role of sugar chains. (2) Various diseases can be diagnosed by measuring the enzyme activity of the present invention. (3) Various diseases can be diagnosed by using an antibody induced by the enzyme of the present invention.
【0023】[0023]
【実施例】次に、実施例を挙げて本発明を具体的に説明
する。実施例1 (1)ヒト胃癌細胞MKN45無血清培養液からの粗酵
素液の調製 ヒト胃癌細胞MKN45を亜セレン酸ナトリウム及びカ
ナマイシンを含むRPMI1640培地:Ham’s
F−12培地=1:1の無血清培地にて、37℃、二酸
化炭素濃度5%の条件で培養を行った。得られた無血清
培養液100リットルを限外濾過により2リットルに濃
縮し、5mM 2−メルカプトエタノールおよび0.1
%CHAPS〔3−((3−コラミドプロピル)ジメチ
ルアンモニオ)−1−プロパンスルフォネート〕を含む
トリス−塩酸緩衝液、pH7.5で緩衝液交換を行い、
粗酵素液とした。さらに、この粗酵素液をQ−セファロ
ース、GDPヘキサノールアミンセファロース、(Gl
cNAcβ1−2Manα1−6)(GlcNAcβ1
−2Manα1−3)Manβ1−4GlcNAcβ1
−4GlcNAc−アスパラギンセファロース等のカラ
ムクロマトグラフィーに供し、活性画分を集めて本発明
のフコシルトランスフェラーゼを精製することができ
た。Next, the present invention will be described specifically with reference to examples. Example 1 (1) Preparation of Crude Enzyme Solution from Serum-Free Culture Solution of Human Gastric Cancer Cell MKN45 Human RPMI 1640 medium containing sodium selenite and kanamycin: Ham's
The cells were cultured in a serum-free medium of F-12 medium = 1: 1 at 37 ° C. and a carbon dioxide concentration of 5%. 100 liters of the resulting serum-free culture was concentrated to 2 liters by ultrafiltration, and 5 mM 2-mercaptoethanol and 0.1 liters were added.
% CHAPS [3-((3-cholamidopropyl) dimethylammonio) -1-propanesulfonate] containing Tris-HCl buffer, pH 7.5, buffer exchange,
A crude enzyme solution was used. Further, this crude enzyme solution was used for Q-sepharose, GDP hexanolamine sepharose, (Gl
cNAcβ1-2Manα1-6) (GlcNAcβ1
-2Manα1-3) Manβ1-4GlcNAcβ1
The resultant was subjected to column chromatography such as -4GlcNAc-asparagine sepharose, and the active fractions were collected to purify the fucosyltransferase of the present invention.
【0024】(2)酵素の調製 上記(1)によって得た粗酵素抽出液を以下の精製に用
いた。5mM 2−メルカプトエタノール及び0.1%
CHAPSを含むトリス−塩酸緩衝液、pH7.5で平
衡化したQ−セファロースのカラムに供した。カラムを
その5倍容量の同一の緩衝液で洗浄した後、0.1M
NaClを含む同緩衝液で溶出してきた活性画分を集め
た。活性画分を限外濾過膜にて濃縮し、5mM2−メル
カプトエタノール及び0.7%CHAPSを含むトリス
−塩酸緩衝液、pH7.5で緩衝液交換をを行った後、
同緩衝液で平衡化したGDPヘキサノールアミンセファ
ロースのカラムに供した。溶出は0〜0.5MまでのN
aCl直線濃度勾配によって行った。0.15〜0.3
Mの活性画分を集めて限外濾過膜で濃縮し、脱塩を行っ
た後、5mM 2−メルカプトエタノールおよび0.7
%CHAPSを含むトリス−塩酸緩衝液、pH7.5で
平衡化した(GlcNAcβ1−2Manα1−6)
(GlcNAcβ1−2Manα1−3)Manβ1−
4GlcNAcβ1−4GlcNAc−アスパラギンセ
ファロースのカラムに供した。溶出は0〜0.5Mまで
のNaCl直線濃度勾配によって行った。0.2〜0.
5Mの活性画分を集めて限外濾過膜で濃縮し、脱塩を行
うことにより、α1→6フコシルトランスフェラーゼを
得ることができた。得られたα1→6フコシルトランス
フェラーゼ画分は、SDSポリアクリルアミドゲル電気
泳動で分子量60,000の位置に単一バンドを示し、
他のトランスフェラーゼおよびグリコシダーゼなどの活
性はなく、精製酵素標品は糖鎖研究用試薬として十分使
用可能であった。(2) Preparation of enzyme The crude enzyme extract obtained in the above (1) was used for the following purification. 5 mM 2-mercaptoethanol and 0.1%
It was applied to a column of Q-Sepharose equilibrated with a Tris-HCl buffer containing CHAPS, pH 7.5. After washing the column with 5 volumes of the same buffer, 0.1 M
The active fraction eluted with the same buffer containing NaCl was collected. The active fraction was concentrated with an ultrafiltration membrane, and buffer exchange was performed with a Tris-HCl buffer containing 5 mM 2-mercaptoethanol and 0.7% CHAPS, pH 7.5,
The sample was applied to a column of GDP hexanolamine sepharose equilibrated with the same buffer. Elution is from 0 to 0.5M N
Performed by a linear concentration gradient of aCl. 0.15-0.3
The active fraction of M was collected, concentrated with an ultrafiltration membrane, desalted, and then treated with 5 mM 2-mercaptoethanol and 0.7 mM.
Equilibrated with Tris-HCl buffer containing 7.5% CHAPS, pH 7.5 (GlcNAcβ1-2Manα1-6)
(GlcNAcβ1-2Manα1-3) Manβ1-
The sample was applied to a column of 4GlcNAcβ1-4GlcNAc-asparagine sepharose. Elution was performed with a linear gradient of NaCl from 0 to 0.5M. 0.2-0.
The 5M active fraction was collected, concentrated by an ultrafiltration membrane, and desalted to obtain α1 → 6 fucosyltransferase. The obtained α1 → 6 fucosyltransferase fraction showed a single band at a molecular weight of 60,000 by SDS polyacrylamide gel electrophoresis,
There was no activity of other transferases and glycosidases, and the purified enzyme preparation was sufficiently usable as a sugar chain research reagent.
【0025】本発明の酵素の至適pHを緩衝液のpHを
変化させたて求めた結果を図1に示す。該酵素はpH
7.0〜7.5付近に高い活性を示した。図中、黒丸は
メス緩衝液を使用した場合、白丸はトリス−塩酸緩衝液
を使用した場合を示す。本発明の酵素のpH安定性につ
いても、同様に検討した。図2は該酵素を各緩衝液中で
それぞれのpHにおいて、4℃、5時間処理した後の残
存活性を示しているが、該酵素はpH4〜10で比較的
安定であり、特にpH5〜9の間においてより良好な安
定性を示した。図中、黒三角は酢酸緩衝液、黒丸はメス
緩衝液、白丸はトリス−塩酸緩衝液および白三角は炭酸
水素ナトリウム緩衝液を使用した場合を示す。本発明の
酵素の至適温度は、図3に示すように37℃付近に認め
られた。また、20〜40℃の範囲で十分な作用を保持
すると考えられた。また、凍結品は−20℃で少なくと
も数ケ月間は安定にその活性を保持した。また、本発明
の酵素は2価金属イオン非存在下でも十分な活性を示し
た。さらに、キレート剤であるEDTA5mMの存在下
でも十分な活性を示したことから、2価金属イオンの要
求性は示さないと結論した。FIG. 1 shows the results obtained by determining the optimum pH of the enzyme of the present invention by changing the pH of the buffer solution. The enzyme has a pH
High activity was shown around 7.0 to 7.5. In the figure, black circles indicate the case where a female buffer was used, and white circles indicate the case where a Tris-HCl buffer was used. The pH stability of the enzyme of the present invention was similarly examined. FIG. 2 shows the residual activity after treating the enzyme in each buffer at the respective pH at 4 ° C. for 5 hours. The enzyme is relatively stable at pH 4 to 10, particularly at pH 5 to 9. Showed better stability between In the figure, the closed triangles indicate the case where the acetate buffer, the closed circles the case where the female buffer, the open circles where the Tris-HCl buffer, and the open triangle the case where the sodium bicarbonate buffer were used. The optimum temperature of the enzyme of the present invention was found around 37 ° C. as shown in FIG. Further, it was considered that sufficient action was maintained in the range of 20 to 40 ° C. The frozen product stably retained its activity at -20 ° C for at least several months. Further, the enzyme of the present invention exhibited a sufficient activity even in the absence of divalent metal ions. Furthermore, since sufficient activity was exhibited even in the presence of 5 mM EDTA as a chelating agent, it was concluded that the requirement for divalent metal ions was not exhibited.
【0026】[0026]
【発明の効果】本発明のヒト由来α1→6フコシルトラ
ンスフェラーゼは、公知のヒトα1→6フコシルトラン
スフェラーゼとは、理化学的性質が種々の点で大きく異
なり、より生理学的条件に近い反応至適条件で作用を示
す。したがって、本発明により、糖鎖の修飾や合成など
の糖鎖工学および/または癌などの疾病の診断に、有用
な新規なα1→6フコシルトランスフェラーゼを提供す
ることができる。EFFECT OF THE INVENTION The human α1 → 6 fucosyltransferase of the present invention differs from known human α1 → 6 fucosyltransferases in various points in physicochemical properties and under optimal reaction conditions closer to physiological conditions. Show action. Therefore, the present invention can provide a novel α1 → 6 fucosyltransferase useful for sugar chain engineering such as sugar chain modification or synthesis and / or diagnosis of diseases such as cancer.
【図1】本発明のα1→6フコシルトランスフェラーゼ
の至適pHを示す。FIG. 1 shows the optimum pH of α1 → 6 fucosyltransferase of the present invention.
【図2】本発明のα1→6フコシルトランスフェラーゼ
のpH安定性を示す。FIG. 2 shows the pH stability of α1 → 6 fucosyltransferase of the present invention.
【図3】本発明のα1→6フコシルトランスフェラーゼ
の至適温度を示す。FIG. 3 shows the optimum temperature of α1 → 6 fucosyltransferase of the present invention.
Claims (3)
→6フコシルトランスフェラーゼ。 (1)作用:(GlcNAcβ1−2Manα1−6)
(GlcNAcβ1─2Manα1−3)Manβ1─
4GlcNAcβ1−4GlucNAc−R(式中、R
はペプチド鎖を示す)を受容体として、グアノシンジホ
スフェート−フコースから、受容体の最もペプチド鎖に
近いGluNAcの6位の水酸基にフコースを転移し、
(GlcNAcβ1−2Manα1−6)(GlcNA
cβ1─2Manα1−3)Manβ1─4GlcNA
cβ1−4(Fucα1−6)GlucNAc−Rを生
成する。 (2)至適pH:約7.5 (3)pH安定性:4℃、5時間の処理で、pH4.0
〜10.0の範囲で安定である。 (4)至適温度:約30〜37℃ (5)阻害または活性化:活性の発現に、2価金属を要
求せず、また、5mMEDTA存在下においても活性は
阻害されない。 (6)分子量:約60,000(SDS−ポリアクリル
アミドゲル電気泳動)1. A human-derived α1 having the following physicochemical properties:
→ 6 Fucosyltransferase. (1) Action: (GlcNAcβ1-2Manα1-6)
(GlcNAcβ1 {2Manα1-3) Manβ1}
4GlcNAcβ1-4GlucNAc-R (where R
Represents a peptide chain) as a receptor, and transfers fucose from guanosine diphosphate-fucose to a hydroxyl group at position 6 of GluNAc closest to the peptide chain of the receptor,
(GlcNAcβ1-2Manα1-6) (GlcNAc
cβ1─2Manα1-3) Manβ1─4GlcNA
Generate cβ1-4 (Fucα1-6) GlucNAc-R. (2) Optimum pH: about 7.5 (3) pH stability: pH 4.0 after treatment at 4 ° C. for 5 hours.
It is stable in the range of up to 10.0. (4) Optimum temperature: about 30 to 37 ° C. (5) Inhibition or activation: The activity does not require a divalent metal for its expression, and its activity is not inhibited in the presence of 5 mM EDTA. (6) Molecular weight: about 60,000 (SDS-polyacrylamide gel electrophoresis)
記載のヒト由来α1→6フコシルトランスフェラーゼ。2. The method according to claim 1, which is purified from a human cell culture solution.
The human-derived α1 → 6 fucosyltransferase according to the above.
養液である請求項2記載のヒト由来α1→6フコシルト
ランスフェラーゼ。3. The human α1 → 6 fucosyltransferase according to claim 2, wherein the human cell culture is a serum-free culture of human gastric cancer cells.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16164896A JP3726355B2 (en) | 1996-06-21 | 1996-06-21 | Human-derived α1 → 6 fucosyltransferase |
EP97900780A EP0816503B1 (en) | 1996-01-24 | 1997-01-23 | Alpha-1-6 fucosyltransferases |
US08/913,805 US6054304A (en) | 1996-01-24 | 1997-01-23 | α1-6 fucosyltransferase |
DE69736261T DE69736261T2 (en) | 1996-01-24 | 1997-01-23 | ALPHA-1-6-fucosyltransferases |
PCT/JP1997/000171 WO1997027303A1 (en) | 1996-01-24 | 1997-01-23 | Alpha-1-6 fucosyltransferases |
US09/442,629 US6291219B1 (en) | 1996-01-24 | 1999-11-18 | α1-6 fucosyltransferase |
US09/839,136 US20020081694A1 (en) | 1996-01-24 | 2001-04-23 | Alpha 1-6 fucosyltransferase |
US10/844,432 US7264955B2 (en) | 1996-01-24 | 2004-05-13 | α1-6 fucosyltransferase |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16164896A JP3726355B2 (en) | 1996-06-21 | 1996-06-21 | Human-derived α1 → 6 fucosyltransferase |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH104959A true JPH104959A (en) | 1998-01-13 |
JP3726355B2 JP3726355B2 (en) | 2005-12-14 |
Family
ID=15739187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16164896A Expired - Lifetime JP3726355B2 (en) | 1996-01-24 | 1996-06-21 | Human-derived α1 → 6 fucosyltransferase |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3726355B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2078455A1 (en) | 2001-03-06 | 2009-07-15 | The Dow Chemical Company | Plant cell having animal-type sugar chain adding function |
JP2009539350A (en) * | 2006-06-02 | 2009-11-19 | ロバート サックステイン, | Compositions and methods for modifying cell surface glycans |
-
1996
- 1996-06-21 JP JP16164896A patent/JP3726355B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2078455A1 (en) | 2001-03-06 | 2009-07-15 | The Dow Chemical Company | Plant cell having animal-type sugar chain adding function |
JP2009539350A (en) * | 2006-06-02 | 2009-11-19 | ロバート サックステイン, | Compositions and methods for modifying cell surface glycans |
JP2016188242A (en) * | 2006-06-02 | 2016-11-04 | サックステイン, ロバート | Compositions and methods for modifying cell surface glycans |
JP2018153192A (en) * | 2006-06-02 | 2018-10-04 | サックステイン, ロバート | Compositions and methods for modifying cell surface glycans |
JP2020137523A (en) * | 2006-06-02 | 2020-09-03 | サックステイン, ロバート | Compositions and Methods for Modifying Cell Surface Glycans |
JP2022033352A (en) * | 2006-06-02 | 2022-02-28 | サックステイン, ロバート | Compositions and Methods for Modifying Cell Surface Glycans |
Also Published As
Publication number | Publication date |
---|---|
JP3726355B2 (en) | 2005-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bosmann et al. | Glycoprotein biosynthesis: the characterization of two glycoprotein: fucosyl transferases in HeLa cells | |
Yamagata et al. | Purification and properties of bacterial chondroitinases and chondrosulfatases | |
US7264955B2 (en) | α1-6 fucosyltransferase | |
Sadler et al. | [41] Purification of mammalian glycosyltransferases | |
Beyer et al. | Purification to homogeneity of H blood group beta-galactoside alpha 1 leads to 2 fucosyltransferase from porcine submaxillary gland. | |
Wang et al. | Purification and characterization of a UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase specific for glycosylation of threonine residues. | |
Schwyzer et al. | Porcine A blood group-specific N-acetylgalactosaminyltransferase. I. Purification from porcine submaxillary glands. | |
Chen et al. | Purification and properties of glycogen phosphorylase from Escherichia coli | |
Sarnesto et al. | Purification of H gene-encoded beta-galactoside alpha 1—-2 fucosyltransferase from human serum. | |
Ashby et al. | [48] Purification and characterization of an inhibitor protein of cyclic AMP-dependent protein kinases | |
Meagher et al. | Subsite mapping of Aspergillus niger glucoamylases I and II with malto‐and isomaltooligosaccharides | |
EP0619837A4 (en) | A method for obtaining glycosyltransferases. | |
US7935792B2 (en) | Antibody reacting with N-acetylglucosamine-6-O-sulfotransferase product | |
DE69729449T2 (en) | RECOMBINANT ALPHA-2,3-SIALYLTRANSFERASES AND THEIR USE | |
Mendicino et al. | Purification and properties of UDP-gal: N-acetylgalactosaminide mucin: beta 1, 3-galactosyltransferase from swine trachea mucosa. | |
Elices et al. | Purification and characterization of a UDP-Gal: beta-D-Gal (1, 4)-D-GlcNAc alpha (1, 3)-galactosyltransferase from Ehrlich ascites tumor cells. | |
Taniguchi et al. | Purification and properties of rat liver globotriaosylceramide synthase, UDP-galactose: lactosylceramide alpha 1-4-galactosyltransferase. | |
Taniguchi et al. | UDP-N-acetylgalactosamine: globoside alpha-3-N-acetylgalactosaminyltransferase. Purification, characterization, and some properties. | |
Taniguchi et al. | Purification and characterization of UDP-N-acetylgalactosamine: globotriaosylceramide beta-3-N-acetylgalactosaminyltransferase, a synthase of human blood group P antigen, from canine spleen. | |
Anttinen et al. | Affinity chromatography of collagen glucosyltransferase on a UDP-glucose derivative coupled to agarose | |
US5300630A (en) | Oncofetal fibronectin epitope | |
Darrow et al. | Subunit association and catalytic activity of uridine diphosphate galactose-4-epimerase from yeast. | |
Chang et al. | Prostaglandin 9-ketoreductase and type II 15-hydroxyprostaglandin dehydrogenase from swine kidney are alternate activities of a single enzyme protein | |
Hasegawa et al. | Isolation of an oligogalacturonate hydrolase from a Bacillus specie | |
JPH104959A (en) | Alpha1 - 6 fucosyltransferase derived from human |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050106 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050919 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081007 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091007 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091007 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101007 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111007 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111007 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111007 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121007 Year of fee payment: 7 |