JP3726355B2 - Human-derived α1 → 6 fucosyltransferase - Google Patents

Human-derived α1 → 6 fucosyltransferase Download PDF

Info

Publication number
JP3726355B2
JP3726355B2 JP16164896A JP16164896A JP3726355B2 JP 3726355 B2 JP3726355 B2 JP 3726355B2 JP 16164896 A JP16164896 A JP 16164896A JP 16164896 A JP16164896 A JP 16164896A JP 3726355 B2 JP3726355 B2 JP 3726355B2
Authority
JP
Japan
Prior art keywords
fucosyltransferase
human
enzyme
2manα1
glcnacβ1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16164896A
Other languages
Japanese (ja)
Other versions
JPH104959A (en
Inventor
直之 谷口
尚史 魚住
周作 柳谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP16164896A priority Critical patent/JP3726355B2/en
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to US08/913,805 priority patent/US6054304A/en
Priority to PCT/JP1997/000171 priority patent/WO1997027303A1/en
Priority to EP97900780A priority patent/EP0816503B1/en
Priority to DE69736261T priority patent/DE69736261T2/en
Publication of JPH104959A publication Critical patent/JPH104959A/en
Priority to US09/442,629 priority patent/US6291219B1/en
Priority to US09/839,136 priority patent/US20020081694A1/en
Priority to US10/844,432 priority patent/US7264955B2/en
Application granted granted Critical
Publication of JP3726355B2 publication Critical patent/JP3726355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)

Description

【0001】
【発明が属する技術分野】
本発明はヒト由来のα1→6フコシルトランスフェラーゼに関し、特にアスパラギン型糖鎖(Asn型糖鎖)の根幹部のAsnに結合したN−アセチルグルコサミン(GlcNAc)に、α1→6結合でもって、グアノシンジホスフェート(GDP)−フコースからフコースを転移する酵素であって、糖鎖の修飾や合成などの糖鎖工学および/または癌などの疾病の診断に有用なヒト由来の新規なα1→6フコシルトランスフェラーゼに関する。
【0002】
【従来の技術】
近年、高等生物由来の糖蛋白質、糖脂質等の複合糖質中の糖鎖部分の構造と機能に関する関心が高まっており、その研究が盛んに行われている。糖鎖は糖加水分解酵素及び糖転移酵素の作用により形成されるが、その中でも糖転移酵素が寄与するところが大きい。
糖転移酵素は糖ヌクレオチドを糖供与体として、受容体となる糖鎖に糖を転移し、糖鎖伸長を行う酵素である。その受容体糖鎖構造に対する特異性は、厳密であり、通常、一つのグリコシド結合は対応する一つの転移酵素によって形成される。それ故、糖転移酵素は複合糖質の糖鎖部分の構造研究、特定の糖鎖構造の簡便な合成、天然の糖鎖構造の修飾に利用されている。
また、糖鎖の人工的な改変による複合糖質あるいは細胞の性質の改変への利用が期待されている。これらのことから、基質特性の明らかな種々の糖転移酵素の開発が望まれている。
【0003】
α1→6フコシルトランスフェラーゼは、細胞内小器官のゴルジ体に存在する酵素であり、アスパラギン結合型糖鎖のプロセッシングを制御する酵素のうちの一つであると考えられる重要な酵素である。該酵素をアスパラギン結合型糖鎖に作用させることで、その制御機構の解明、糖鎖構造形成の制御等に役立つと考えられる。
【0004】
また、肝臓癌や嚢胞性線維症などのいくつかの疾病におけるα1→6フコシルトランスフェラーゼ活性の上昇、該酵素反応生成物の割合の増加が知られており、該酵素の診断用途としての早急なる開発が望まれている。
【0005】
α1→6フコシルトランスフェラーゼは、各種動物の体液あるは臓器中、各種動物の培養細胞に活性は検出されているものの、精製された酵素標品としては、ブタの脳から精製されたα1→6フコシルトランスフェラーゼについては、平成7年年度第68回日本生化学会大会にて既に発表されている。
しかし、ヒト由来のものは未だ、ヒト嚢胞性線維症細胞破砕物[ジャーナル・オブ・バイオロジカル・ケミストリー (Journal of Biological Chemistry) 、第 266巻、第21572 〜21577 頁(1991)]由来の酵素が知られているが、この酵素は膜結合型酵素として得られ、さらに細胞の培養に牛血清を必要とすることから、酵素の精製が困難なうえ、出発材料となる細胞を培養するのに莫大な費用がかかることから、該酵素標品を安定して供給することは事実上困難である。
【0006】
【発明が解決しようとする課題】
本発明の目的は糖鎖構造解析、糖鎖工学用試薬や診断薬として、安定して供給可能なヒト由来α1→6フコシルトランスフェラーゼを提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは上記目的を達成するために、種々検討した結果、ヒト細胞培養液からα1→6フコシルトランスフェラーゼ活性を有するタンパク質を精製し、酵素学的性質を解明して、本発明に到達した。
【0008】
すなわち、本発明は下記理化学的性質を有するヒト由来α1→6フコシルトランスフェラーゼである。
(1)作用:
(GlcNAcβ1−2Manα1−6)(GlcNAcβ1─2Manα1−3)Manβ1─4GlcNAcβ1−4GlucNAc−R(式中、Rはペプチド鎖を示す)を受容体として、グアノシンジホスフェート−フコースから、受容体の最もペプチド鎖に近いGluNAcの6位の水酸基にフコースを転移し、(GlcNAcβ1−2Manα1−6)(GlcNAcβ1─2Manα1−3)Manβ1─4GlcNAcβ1−4(Fucα1−6)GlucNAc−Rを生成する。
(2)至適pH:約7.5
(3)pH安定性:4℃、5時間の処理で、pH4.0〜10.0の範囲で安定である。
(4)至適温度:約30〜37℃
(5)阻害または活性化:活性の発現に、2価金属を要求せず、また、5mMEDTA存在下においても活性は阻害されない。
(6)分子量:約60,000(SDS−ポリアクリルアミドゲル電気泳動)
【0009】
【発明の実施態様】
本発明の酵素の精製出発材料としては、α1→6フコシルトランスフェラーゼ活性を有するヒト細胞培養液であればいかなるものでもよい。α1→6フコシルトランスフェラーゼ活性を有する細胞の具体例としては、例えばヒト膵臓癌細胞、ヒト胃癌細胞、ヒト骨髄腫細胞等が挙げられる。
本発明のα1→6フコシルトランスフェラーゼは膜結合型酵素として細胞膜に存在するが、タンパク質分解酵素によって酵素活性に影響のない部位で切断されることにより可溶型酵素として培養液中に放出されるので、細胞の破砕、酵素の可溶化などの煩雑な操作なしに培養液を粗酵素液として用いることができる。また、無血清培養可能な細胞を用いることで、高純度の粗酵素液を安価に得ることができる。培養液を濃縮、脱塩した後、イオン交換クロマトグラフィー、アフィニティクロマトグラフィーなどにより夾雑する他のトランスフェラーゼおよびグリコシダーゼ活性のない精製酵素標品を得ることができる。
【0010】
本発明では、例えばヒト胃癌細胞MKN45の無血清培養液を限外濾過膜で濾過濃縮、5mM 2−メルカプトエタノールおよび0.1%CHAPS〔3−((3−コラミドプロピル)ジメチルアンモニオ)−1−プロパンスルフォネート〕を含むトリス−塩酸緩衝液、pH7.5で緩衝液交換を行い、粗酵素液をすることができる。
【0011】
さらに、この酵素液をQ−セファロース、GDP−ヘキサノールアミンセファロース、(GlcNAcβ1−2Manα1−6)(GlcNAcβ1−2Manα1−3)Manβ1−4GlucNAcβ1−4GlucNAc−アスパラギンセファロース等のカラムクロマトグラフィーに供し、活性画分を集めて、本発明のフコシルトランスフェラーゼを精製することができる。
【0012】
本発明のα1→6フコシルトランスフェラーゼの酵素化学的性質は、次のとおりである。
(1)作用:
(GlcNAcβ1−2Manα1−6)(GlcNAcβ1─2Manα1−3)Manβ1─4GlcNAcβ1−4GlucNAc−R(式中、Rはペプチド鎖を示す)を受容体として、グアノシンジホスフェート−フコースから、受容体の最もペプチド鎖に近いGluNAcの6位の水酸基にフコースを転移し、(GlcNAcβ1−2Manα1−6)(GlcNAcβ1─2Manα1−3)Manβ1─4GlcNAcβ1−4(Fucα1−6)GlucNAc−Rを生成する。
【0013】
(2)酵素活性の測定
本発明のα1→6フコシルトランスフェラーゼ活性の測定は、次のようにして行った。すなわち、糖鎖末端のアスパラギンを4−(2−ピリジルアミノ)ブチルアミン〔PABA:−NH2 (CH2 4 −NH−pyridine〕で蛍光標識した下記化1で示される化合物を酵素活性の測定基質として用いた。該基質を用いることにより、フコースのα1→6結合で転移した酵素反応の生成物の高速液体クロマトグラフィーによる蛍光検出が可能となる。
【0014】
【化1】

Figure 0003726355
【0015】
具体的な測定方法を以下に述べる。上記化1で示される受容体蛍光標識基質62.5μMおよび供与体基質(GDP−フコース)625μMを含む250mMメス(MES)緩衝液、pH7.0、40μlに、酵素液10μlを加えて混合し、37℃で1時間反応させた。5分間の煮沸により反応を停止させた後、反応液を高速液体クロマトグラフィーに供し、生成物のピークを蛍光検出器で定量する。
酵素量1単位は、この条件下で、1分間に1pmoleのGlcNAcβ1−2Manα1−6(GlcNAcβ1−2Manα1−3)Manβ1→4GlcNAcβ1−4(Fucα1−6)GlcNAc−R〔RはAsn−NH−(CH2 4 −PA、PAは2−ピリジルアミノ基を意味する。〕を生じるものとした。
【0016】
(3)至適pH
本発明の酵素の至適pHは図1の曲線で表されるごとく、pH約7.0〜7.5付近に高い活性を有している。図1において、pH4.5〜7.5は500mMメス(MES)緩衝液(黒丸)を、pH7.0〜9.0は100mMトリス−塩酸緩衝液(白丸)を用いて測定を行った。
【0017】
(4)pH安定性
本発明の酵素のpH安定性は図2に示すように、pH約4〜10であり、特にpH5〜9の間において安定である。測定に用いた緩衝液はpH3.5〜5.5は50mM酢酸緩衝液(黒三角)を、pH5.5〜7.5は50mMメス(MES)緩衝液(黒丸)を、pH7.5〜9.0は50mMトリス−塩酸緩衝液(白丸)を、pH9.0〜11.5は炭酸水素ナトリウム緩衝液(白三角)を用いた。本発明の酵素を各緩衝液中で、それぞれのpHにおいて、4℃、5時間処理した後の残存活性の測定を行った。
なお、図1は本発明により得られるα−1,6−フコシルトランスフェラーゼのpH(横軸)と相対活性(%、縦軸)の関係を示すグラフ、図2はpH(横軸)と残存活性(%、縦軸)との活性を示すグラフである。
【0018】
(5)至適温度
本発明の酵素の至適温度は図3に示すように、約37℃付近であり、また、20〜40℃の範囲で使用可能である。凍結品は−20℃で少なくとも数カ月安定である。
【0019】
(6)2価金属イオン要求性
多くの糖転移酵素はその活性にマグネシウム、マンガンなどの2価金属を必要とするが、本発明の酵素は2価金属非存在下あるいはキレート剤であるEDTA存在下で十分な活性を示し、2価金属イオン要求性を示さない。
【0020】
(7)分子量
本発明の酵素の精製標品は、SDS−ポリアクリルアミドゲル電気泳動において、分子量約60,000のところに単一バンドを示す。
【0021】
(8)形態
本発明の酵素は、本来、膜結合型酵素として細胞膜に存在するが、これまでに報告がなされているブタα1→6フコシルトランスフェラーゼおよびヒト嚢胞生繊維症細胞のα1→6フコシルトランスフェラーゼとは異なり、培養細胞中のタンパク質分解酵素によって酵素活性に影響のない部位で切断されることにより培養液中に放出されるため、取扱いの容易な可溶型酵素として存在する。
上記性質から見て、本発明のα1→6フコシルトランスフェラーゼは、至適pH、金属要求性、分子量の点で、従来のヒト嚢胞性繊維症細胞由来のα1→6フコシルトランスフェラーゼ(至適pH6.5、分子量34,000および39,000)とは明らかに相違する新規な酵素である。
【0022】
本発明のα1→6フコシルトランスフェラーゼを利用して、下記事項を解明することができる。
(1)アスパラギン結合型糖鎖に新たにフコースを導入し、糖鎖構造を人工的に改変することができる。そのことによって、細胞装置や複合糖質の糖鎖のプロセッシング制御機構の解明及び糖鎖の役割を解明することができる。
(2)本発明の酵素活性を測定することにより、種々の疾病の診断を行うことができる。
(3)本発明の酵素により誘導される抗体を用いることにより、種々の疾病の診断を行うことができる。
【0023】
【実施例】
次に、実施例を挙げて本発明を具体的に説明する。
実施例1
(1)ヒト胃癌細胞MKN45無血清培養液からの粗酵素液の調製
ヒト胃癌細胞MKN45を亜セレン酸ナトリウム及びカナマイシンを含むRPMI1640培地:Ham’s F−12培地=1:1の無血清培地にて、37℃、二酸化炭素濃度5%の条件で培養を行った。得られた無血清培養液100リットルを限外濾過により2リットルに濃縮し、5mM 2−メルカプトエタノールおよび0.1%CHAPS〔3−((3−コラミドプロピル)ジメチルアンモニオ)−1−プロパンスルフォネート〕を含むトリス−塩酸緩衝液、pH7.5で緩衝液交換を行い、粗酵素液とした。さらに、この粗酵素液をQ−セファロース、GDPヘキサノールアミンセファロース、(GlcNAcβ1−2Manα1−6)(GlcNAcβ1−2Manα1−3)Manβ1−4GlcNAcβ1−4GlcNAc−アスパラギンセファロース等のカラムクロマトグラフィーに供し、活性画分を集めて本発明のフコシルトランスフェラーゼを精製することができた。
【0024】
(2)酵素の調製
上記(1)によって得た粗酵素抽出液を以下の精製に用いた。5mM 2−メルカプトエタノール及び0.1%CHAPSを含むトリス−塩酸緩衝液、pH7.5で平衡化したQ−セファロースのカラムに供した。カラムをその5倍容量の同一の緩衝液で洗浄した後、0.1M NaClを含む同緩衝液で溶出してきた活性画分を集めた。活性画分を限外濾過膜にて濃縮し、5mM2−メルカプトエタノール及び0.7%CHAPSを含むトリス−塩酸緩衝液、pH7.5で緩衝液交換をを行った後、同緩衝液で平衡化したGDPヘキサノールアミンセファロースのカラムに供した。溶出は0〜0.5MまでのNaCl直線濃度勾配によって行った。
0.15〜0.3Mの活性画分を集めて限外濾過膜で濃縮し、脱塩を行った後、5mM 2−メルカプトエタノールおよび0.7%CHAPSを含むトリス−塩酸緩衝液、pH7.5で平衡化した(GlcNAcβ1−2Manα1−6)(GlcNAcβ1−2Manα1−3)Manβ1−4GlcNAcβ1−4GlcNAc−アスパラギンセファロースのカラムに供した。溶出は0〜0.5MまでのNaCl直線濃度勾配によって行った。
0.2〜0.5Mの活性画分を集めて限外濾過膜で濃縮し、脱塩を行うことにより、α1→6フコシルトランスフェラーゼを得ることができた。
得られたα1→6フコシルトランスフェラーゼ画分は、SDSポリアクリルアミドゲル電気泳動で分子量60,000の位置に単一バンドを示し、他のトランスフェラーゼおよびグリコシダーゼなどの活性はなく、精製酵素標品は糖鎖研究用試薬として十分使用可能であった。
【0025】
本発明の酵素の至適pHを緩衝液のpHを変化させたて求めた結果を図1に示す。該酵素はpH7.0〜7.5付近に高い活性を示した。図中、黒丸はメス緩衝液を使用した場合、白丸はトリス−塩酸緩衝液を使用した場合を示す。
本発明の酵素のpH安定性についても、同様に検討した。図2は該酵素を各緩衝液中でそれぞれのpHにおいて、4℃、5時間処理した後の残存活性を示しているが、該酵素はpH4〜10で比較的安定であり、特にpH5〜9の間においてより良好な安定性を示した。図中、黒三角は酢酸緩衝液、黒丸はメス緩衝液、白丸はトリス−塩酸緩衝液および白三角は炭酸水素ナトリウム緩衝液を使用した場合を示す。
本発明の酵素の至適温度は、図3に示すように37℃付近に認められた。また、20〜40℃の範囲で十分な作用を保持すると考えられた。また、凍結品は−20℃で少なくとも数ケ月間は安定にその活性を保持した。
また、本発明の酵素は2価金属イオン非存在下でも十分な活性を示した。さらに、キレート剤であるEDTA5mMの存在下でも十分な活性を示したことから、2価金属イオンの要求性は示さないと結論した。
【0026】
【発明の効果】
本発明のヒト由来α1→6フコシルトランスフェラーゼは、公知のヒトα1→6フコシルトランスフェラーゼとは、理化学的性質が種々の点で大きく異なり、より生理学的条件に近い反応至適条件で作用を示す。したがって、本発明により、糖鎖の修飾や合成などの糖鎖工学および/または癌などの疾病の診断に、有用な新規なα1→6フコシルトランスフェラーゼを提供することができる。
【図面の簡単な説明】
【図1】本発明のα1→6フコシルトランスフェラーゼの至適pHを示す。
【図2】本発明のα1→6フコシルトランスフェラーゼのpH安定性を示す。
【図3】本発明のα1→6フコシルトランスフェラーゼの至適温度を示す。[0001]
[Technical field to which the invention belongs]
The present invention relates to a human-derived α1 → 6 fucosyltransferase, and in particular, N-acetylglucosamine (GlcNAc) bound to Asn at the root of an asparagine-type sugar chain (Asn-type sugar chain) with an α1 → 6 bond, Phosphate (GDP)-an enzyme that transfers fucose from fucose, and relates to a novel α1 → 6 fucosyltransferase derived from humans that is useful for sugar chain engineering such as sugar chain modification and synthesis and / or diagnosis of diseases such as cancer .
[0002]
[Prior art]
In recent years, there has been an increasing interest in the structure and function of sugar chains in glycoconjugates such as glycoproteins and glycolipids derived from higher organisms. The sugar chain is formed by the action of sugar hydrolase and glycosyltransferase, and among them, glycosyltransferase contributes greatly.
A glycosyltransferase is an enzyme that uses a sugar nucleotide as a sugar donor, transfers sugar to a sugar chain as an acceptor, and performs sugar chain elongation. Its specificity for the receptor sugar chain structure is strict, and usually one glycosidic bond is formed by one corresponding transferase. Therefore, glycosyltransferases are used for structural studies of sugar chain portions of complex carbohydrates, simple synthesis of specific sugar chain structures, and modification of natural sugar chain structures.
In addition, it is expected to be used for modification of complex carbohydrates or cell properties by artificial modification of sugar chains. From these facts, development of various glycosyltransferases with clear substrate characteristics is desired.
[0003]
α1 → 6 fucosyltransferase is an enzyme that exists in the Golgi apparatus of intracellular organelles, and is an important enzyme that is considered to be one of the enzymes that control the processing of asparagine-linked sugar chains. By causing the enzyme to act on an asparagine-linked sugar chain, it is thought to be useful for elucidation of the control mechanism, control of sugar chain structure formation, and the like.
[0004]
In addition, it is known that α1 → 6 fucosyltransferase activity is increased in some diseases such as liver cancer and cystic fibrosis, and the ratio of the enzyme reaction product is increased. Is desired.
[0005]
Although α1 → 6 fucosyltransferase has been detected in body fluids and organs of various animals and cultured cells of various animals, a purified enzyme preparation is α1 → 6 fucosyl purified from pig brain. The transferase has already been announced at the 68th Annual Meeting of the Japanese Biochemical Society.
However, human-derived enzymes are still present in human cystic fibrosis cell debris [Journal of Biological Chemistry, Vol. 266, 21572-21577 (1991)]. As is known, this enzyme is obtained as a membrane-bound enzyme and further requires bovine serum for cell culture. Therefore, it is difficult to purify the enzyme, and it is enormous for culturing cells as a starting material. Therefore, it is practically difficult to stably supply the enzyme preparation.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a human-derived α1 → 6 fucosyltransferase that can be stably supplied as a sugar chain structural analysis, a reagent for sugar chain engineering, or a diagnostic agent.
[0007]
[Means for Solving the Problems]
As a result of various investigations to achieve the above object, the present inventors have purified a protein having α1 → 6 fucosyltransferase activity from human cell culture medium, elucidated enzymological properties, and reached the present invention. .
[0008]
That is, the present invention is a human-derived α1 → 6 fucosyltransferase having the following physicochemical properties.
(1) Action:
(GlcNAcβ1-2Manα1-6) (GlcNAcβ1-2Manα1-3) Manβ1-4GlcNAcβ1-4GlucNAc-R (wherein R represents a peptide chain) as a receptor, from guanosine diphosphate-fucose, the most peptide chain of the receptor The fucose is transferred to the 6-position hydroxyl group of GluNAc close to GlcNAc to produce (GlcNAcβ1-2Manα1-6) (GlcNAcβ1-2Manα1-3) Manβ1-4GlcNAcβ1-4 (Fucα1-6) GlucNAc-R.
(2) Optimum pH: about 7.5
(3) pH stability: stable at pH 4.0 to 10.0 after treatment at 4 ° C. for 5 hours.
(4) Optimal temperature: about 30-37 ° C
(5) Inhibition or activation: Divalent metals are not required for the expression of activity, and the activity is not inhibited even in the presence of 5 mM EDTA.
(6) Molecular weight: about 60,000 (SDS-polyacrylamide gel electrophoresis)
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The starting material for the purification of the enzyme of the present invention may be any human cell culture medium having α1 → 6 fucosyltransferase activity. Specific examples of cells having α1 → 6 fucosyltransferase activity include human pancreatic cancer cells, human gastric cancer cells, and human myeloma cells.
The α1 → 6 fucosyltransferase of the present invention is present in the cell membrane as a membrane-bound enzyme, but is cleaved by a proteolytic enzyme at a site that does not affect the enzyme activity and thus released as a soluble enzyme into the culture solution. The culture solution can be used as a crude enzyme solution without complicated operations such as cell disruption and enzyme solubilization. Further, by using cells capable of serum-free culture, a high purity crude enzyme solution can be obtained at low cost. After the culture solution is concentrated and desalted, a purified enzyme preparation having no other transferase and glycosidase activity can be obtained by ion exchange chromatography, affinity chromatography, and the like.
[0010]
In the present invention, for example, a serum-free culture solution of human gastric cancer cells MKN45 is concentrated by filtration with an ultrafiltration membrane, 5 mM 2-mercaptoethanol and 0.1% CHAPS [3-((3-colamidopropyl) dimethylammonio)- The crude enzyme solution can be obtained by exchanging the buffer solution with Tris-HCl buffer solution containing 1-propanesulfonate], pH 7.5.
[0011]
Further, this enzyme solution was subjected to column chromatography such as Q-sepharose, GDP-hexanolamine sepharose, (GlcNAcβ1-2Manα1-6) (GlcNAcβ1-2Manα1-3) Manβ1-4GlucNAcβ1-4GlucNAc-asparagine sepharose, and the active fraction was obtained. Collectively, the fucosyltransferase of the present invention can be purified.
[0012]
The enzymatic chemistry of the α1 → 6 fucosyltransferase of the present invention is as follows.
(1) Action:
(GlcNAcβ1-2Manα1-6) (GlcNAcβ1-2Manα1-3) Manβ1-4GlcNAcβ1-4GlucNAc-R (wherein R represents a peptide chain) as a receptor, from guanosine diphosphate-fucose, the most peptide chain of the receptor The fucose is transferred to the 6-position hydroxyl group of GluNAc close to GlcNAc to produce (GlcNAcβ1-2Manα1-6) (GlcNAcβ1-2Manα1-3) Manβ1-4GlcNAcβ1-4 (Fucα1-6) GlucNAc-R.
[0013]
(2) Measurement of enzyme activity The α1 → 6 fucosyltransferase activity of the present invention was measured as follows. That is, asparagine at the sugar chain end is fluorescently labeled with 4- (2-pyridylamino) butylamine [PABA: -NH 2 (CH 2 ) 4 -NH-pyridine] as a substrate for measuring enzyme activity. Using. By using the substrate, fluorescence detection of the product of the enzyme reaction transferred by the α1 → 6 bond of fucose can be performed by high performance liquid chromatography.
[0014]
[Chemical 1]
Figure 0003726355
[0015]
A specific measurement method is described below. 10 μl of enzyme solution is added to and mixed with 250 μm female (MES) buffer solution, pH 7.0, 40 μl containing 62.5 μM of the acceptor fluorescently labeled substrate represented by Chemical Formula 1 and 625 μM of the donor substrate (GDP-fucose), The reaction was carried out at 37 ° C. for 1 hour. After stopping the reaction by boiling for 5 minutes, the reaction solution is subjected to high performance liquid chromatography, and the peak of the product is quantified with a fluorescence detector.
One unit of enzyme is 1 pmole of GlcNAcβ1-2Manα1-6 (GlcNAcβ1-2Manα1-3) Manβ1 → 4GlcNAcβ1-4 (Fucα1-6) GlcNAc-R [R is Asn-NH- (CH 2 ) 4- PA and PA mean a 2-pyridylamino group. ] Was produced.
[0016]
(3) Optimum pH
The optimum pH of the enzyme of the present invention has a high activity around pH 7.0 to 7.5 as represented by the curve in FIG. In FIG. 1, pH 4.5 to 7.5 was measured using a 500 mM female (MES) buffer (black circle), and pH 7.0 to 9.0 was measured using a 100 mM Tris-HCl buffer (white circle).
[0017]
(4) pH stability As shown in FIG. 2, the pH stability of the enzyme of the present invention is about pH 4 to 10, and is particularly stable between pH 5 and 9. The buffer used for the measurement was pH 3.5 to 5.5 with 50 mM acetate buffer (black triangle), pH 5.5 to 7.5 with 50 mM female (MES) buffer (black circle), pH 7.5 to 9. 0.0 was a 50 mM Tris-HCl buffer solution (white circle), and pH 9.0 to 11.5 was a sodium hydrogen carbonate buffer solution (white triangle). The residual activity was measured after the enzyme of the present invention was treated at 4 ° C. for 5 hours at each pH in each buffer solution.
1 is a graph showing the relationship between pH (horizontal axis) and relative activity (%, vertical axis) of α-1,6-fucosyltransferase obtained by the present invention, and FIG. 2 is a graph showing pH (horizontal axis) and residual activity. It is a graph which shows activity with (%, vertical axis | shaft).
[0018]
(5) Optimum temperature As shown in FIG. 3, the optimum temperature of the enzyme of the present invention is about 37 ° C., and can be used in the range of 20 to 40 ° C. The frozen product is stable at -20 ° C for at least several months.
[0019]
(6) Divalent metal ion requirement Many glycosyltransferases require divalent metals such as magnesium and manganese for their activity, but the enzyme of the present invention is present in the absence of a divalent metal or in the presence of EDTA which is a chelating agent. It shows sufficient activity below and does not show divalent metal ion requirement.
[0020]
(7) Molecular Weight The purified preparation of the enzyme of the present invention shows a single band at a molecular weight of about 60,000 in SDS-polyacrylamide gel electrophoresis.
[0021]
(8) Form Although the enzyme of the present invention originally exists in the cell membrane as a membrane-bound enzyme, porcine α1 → 6 fucosyltransferase and α1 → 6 fucosyltransferase of human cystic fibrosis cells that have been reported so far. In contrast, since it is released into the culture solution by being cleaved at a site that does not affect the enzyme activity by the proteolytic enzyme in the cultured cells, it exists as a soluble enzyme that is easy to handle.
In view of the above properties, the α1 → 6 fucosyltransferase of the present invention is an α1 → 6 fucosyltransferase derived from a conventional human cystic fibrosis cell (optimum pH 6.5) in terms of optimum pH, metal requirement and molecular weight. , Molecular weights 34,000 and 39,000) are novel enzymes that are clearly different.
[0022]
The following matters can be clarified by using the α1 → 6 fucosyltransferase of the present invention.
(1) A fucose can be newly introduced into an asparagine-linked sugar chain to artificially modify the sugar chain structure. As a result, it is possible to elucidate the mechanism of cell processing and processing control of sugar chains of complex carbohydrates and the role of sugar chains.
(2) Various diseases can be diagnosed by measuring the enzyme activity of the present invention.
(3) By using an antibody induced by the enzyme of the present invention, various diseases can be diagnosed.
[0023]
【Example】
Next, the present invention will be specifically described with reference to examples.
Example 1
(1) Preparation of Crude Enzyme Solution from Human Gastric Cancer Cell MKN45 Serum-free Culture Solution Human gastric cancer cell MKN45 was added to RPMI1640 medium containing sodium selenite and kanamycin: Ham's F-12 medium = 1: 1 serum-free medium. The culture was performed under the conditions of 37 ° C. and carbon dioxide concentration of 5%. 100 liters of the obtained serum-free culture solution was concentrated to 2 liters by ultrafiltration, and 5 mM 2-mercaptoethanol and 0.1% CHAPS [3-((3-colamidopropyl) dimethylammonio) -1-propane. The buffer solution was exchanged with a Tris-HCl buffer solution containing sulfonate], pH 7.5, to obtain a crude enzyme solution. Furthermore, this crude enzyme solution was subjected to column chromatography such as Q-sepharose, GDP hexanolamine sepharose, (GlcNAcβ1-2Manα1-6) (GlcNAcβ1-2Manα1-3) Manβ1-4GlcNAcβ1-4GlcNAc-asparagine sepharose, and the active fraction was obtained. Collected, the fucosyltransferase of the present invention could be purified.
[0024]
(2) Preparation of enzyme The crude enzyme extract obtained in (1) above was used for the following purification. The column was applied to a column of Q-Sepharose equilibrated with Tris-HCl buffer containing 5 mM 2-mercaptoethanol and 0.1% CHAPS, pH 7.5. After the column was washed with 5 times its volume of the same buffer, the active fraction eluted with the same buffer containing 0.1 M NaCl was collected. The active fraction was concentrated with an ultrafiltration membrane, buffer exchange was performed with Tris-HCl buffer containing 5 mM 2-mercaptoethanol and 0.7% CHAPS, pH 7.5, and equilibrated with the same buffer. The column was subjected to a GDP hexanolamine sepharose column. Elution was performed with a NaCl linear gradient from 0 to 0.5M.
A 0.15-0.3M active fraction was collected, concentrated with an ultrafiltration membrane, desalted, and then tris-hydrochloric acid buffer containing 5 mM 2-mercaptoethanol and 0.7% CHAPS, pH 7. (GlcNAcβ1-2Manα1-6) (GlcNAcβ1-2Manα1-3) Manβ1-4GlcNAcβ1-4GlcNAc-asparagine sepharose column equilibrated with 5. Elution was performed with a NaCl linear gradient from 0 to 0.5M.
Α1- → 6 fucosyltransferase could be obtained by collecting active fractions of 0.2 to 0.5 M, concentrating them with an ultrafiltration membrane, and desalting.
The obtained α1 → 6 fucosyltransferase fraction shows a single band at a molecular weight of 60,000 by SDS polyacrylamide gel electrophoresis, has no activity of other transferases and glycosidases, and the purified enzyme preparation is a sugar chain. It was sufficiently usable as a research reagent.
[0025]
FIG. 1 shows the results obtained by changing the pH of the buffer solution to obtain the optimum pH of the enzyme of the present invention. The enzyme showed high activity around pH 7.0-7.5. In the figure, black circles indicate a case where a female buffer solution is used, and white circles indicate a case where a tris-hydrochloric acid buffer solution is used.
The pH stability of the enzyme of the present invention was similarly examined. FIG. 2 shows the residual activity after treating the enzyme in each buffer at each pH at 4 ° C. for 5 hours, but the enzyme is relatively stable at pH 4-10, especially pH 5-9. Better stability was exhibited during In the figure, the black triangle indicates the case where the acetate buffer is used, the black circle indicates the female buffer, the white circle indicates the tris-hydrochloric acid buffer, and the white triangle indicates the case where the sodium bicarbonate buffer is used.
The optimum temperature of the enzyme of the present invention was found around 37 ° C. as shown in FIG. Moreover, it was thought that sufficient effect | action was hold | maintained in the range of 20-40 degreeC. The frozen product kept its activity stably at -20 ° C for at least several months.
The enzyme of the present invention showed sufficient activity even in the absence of divalent metal ions. Furthermore, since sufficient activity was exhibited even in the presence of 5 mM of EDTA, which is a chelating agent, it was concluded that the requirement for divalent metal ions was not exhibited.
[0026]
【The invention's effect】
The human α1 → 6 fucosyltransferase of the present invention is significantly different from the known human α1 → 6 fucosyltransferase in various points in physicochemical properties, and exhibits an action under optimal reaction conditions closer to physiological conditions. Therefore, according to the present invention, a novel α1 → 6 fucosyltransferase useful for sugar chain engineering such as sugar chain modification and synthesis and / or diagnosis of diseases such as cancer can be provided.
[Brief description of the drawings]
FIG. 1 shows the optimum pH of the α1 → 6 fucosyltransferase of the present invention.
FIG. 2 shows the pH stability of the α1 → 6 fucosyltransferase of the present invention.
FIG. 3 shows the optimum temperature of the α1 → 6 fucosyltransferase of the present invention.

Claims (3)

下記理化学的性質を有するヒト由来α1→6フコシルトランスフェラーゼ。
(1)作用:
(GlcNAcβ1−2Manα1−6)(GlcNAcβ1─2Manα1−3)Manβ1─4GlcNAcβ1−4GlucNAc−R(式中、Rはペプチド鎖を示す)を受容体として、グアノシンジホスフェート−フコースから、受容体の最もペプチド鎖に近いGluNAcの6位の水酸基にフコースを転移し、(GlcNAcβ1−2Manα1−6)(GlcNAcβ1─2Manα1−3)Manβ1─4GlcNAcβ1−4(Fucα1−6)GlucNAc−Rを生成する。
(2)至適pH:約7.5
(3)pH安定性:4℃、5時間の処理で、pH4.0〜10.0の範囲で安定である。
(4)至適温度:約30〜37℃
(5)阻害または活性化:活性の発現に、2価金属を要求せず、また、5mMEDTA存在下においても活性は阻害されない。
(6)分子量:約60,000(SDS−ポリアクリルアミドゲル電気泳動)
Human-derived α1 → 6 fucosyltransferase having the following physicochemical properties:
(1) Action:
(GlcNAcβ1-2Manα1-6) (GlcNAcβ1-2Manα1-3) Manβ1-4GlcNAcβ1-4GlucNAc-R (wherein R represents a peptide chain) as a receptor, from guanosine diphosphate-fucose, the most peptide chain of the receptor The fucose is transferred to the 6-position hydroxyl group of GluNAc close to GlcNAc to produce (GlcNAcβ1-2Manα1-6) (GlcNAcβ1-2Manα1-3) Manβ1-4GlcNAcβ1-4 (Fucα1-6) GlucNAc-R.
(2) Optimum pH: about 7.5
(3) pH stability: stable at pH 4.0 to 10.0 after treatment at 4 ° C. for 5 hours.
(4) Optimal temperature: about 30-37 ° C
(5) Inhibition or activation: Divalent metals are not required for the expression of activity, and the activity is not inhibited even in the presence of 5 mM EDTA.
(6) Molecular weight: about 60,000 (SDS-polyacrylamide gel electrophoresis)
ヒト細胞培養液から精製された請求項1記載のヒト由来α1→6フコシルトランスフェラーゼ。The human-derived α1 → 6 fucosyltransferase according to claim 1, which is purified from a human cell culture medium. ヒト細胞培養液がヒト胃癌細胞無血清培養液である請求項2記載のヒト由来α1→6フコシルトランスフェラーゼ。The human-derived α1 → 6 fucosyltransferase according to claim 2, wherein the human cell culture is a serum-free culture of human gastric cancer cells.
JP16164896A 1996-01-24 1996-06-21 Human-derived α1 → 6 fucosyltransferase Expired - Lifetime JP3726355B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP16164896A JP3726355B2 (en) 1996-06-21 1996-06-21 Human-derived α1 → 6 fucosyltransferase
PCT/JP1997/000171 WO1997027303A1 (en) 1996-01-24 1997-01-23 Alpha-1-6 fucosyltransferases
EP97900780A EP0816503B1 (en) 1996-01-24 1997-01-23 Alpha-1-6 fucosyltransferases
DE69736261T DE69736261T2 (en) 1996-01-24 1997-01-23 ALPHA-1-6-fucosyltransferases
US08/913,805 US6054304A (en) 1996-01-24 1997-01-23 α1-6 fucosyltransferase
US09/442,629 US6291219B1 (en) 1996-01-24 1999-11-18 α1-6 fucosyltransferase
US09/839,136 US20020081694A1 (en) 1996-01-24 2001-04-23 Alpha 1-6 fucosyltransferase
US10/844,432 US7264955B2 (en) 1996-01-24 2004-05-13 α1-6 fucosyltransferase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16164896A JP3726355B2 (en) 1996-06-21 1996-06-21 Human-derived α1 → 6 fucosyltransferase

Publications (2)

Publication Number Publication Date
JPH104959A JPH104959A (en) 1998-01-13
JP3726355B2 true JP3726355B2 (en) 2005-12-14

Family

ID=15739187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16164896A Expired - Lifetime JP3726355B2 (en) 1996-01-24 1996-06-21 Human-derived α1 → 6 fucosyltransferase

Country Status (1)

Country Link
JP (1) JP3726355B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2078455A1 (en) 2001-03-06 2009-07-15 The Dow Chemical Company Plant cell having animal-type sugar chain adding function
AU2007254777B2 (en) * 2006-06-02 2014-02-20 Robert Sackstein Compositions and methods for modifying cell surface glycans

Also Published As

Publication number Publication date
JPH104959A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
US7264955B2 (en) α1-6 fucosyltransferase
Amaral et al. [19] Galactose oxidase of Polyporus circinatus1–4
Sadler et al. [41] Purification of mammalian glycosyltransferases
Radominska et al. [20] Synthesis and uses of azido-substituted nucleoside diphosphate sugar photoaffinity analogs
Mendicino et al. Purification and properties of UDP-gal: N-acetylgalactosaminide mucin: beta 1, 3-galactosyltransferase from swine trachea mucosa.
Fan et al. Purification and Characterization of Endo-α-N-acetyl-galactosaminidase from Alcaligenes sp.
WO1997020061A1 (en) Synthesis of hyaluronic acid
Fan et al. Nucleoside diphosphate-sugar 4-epimerases I. Uridine diphosphate glucose 4-epimerase of wheat germ
Chung et al. Purification and characterization of UDP-glucose: tetrahydrobiopterin glucosyltransferase from Synechococcus sp. PCC 7942
JP3726355B2 (en) Human-derived α1 → 6 fucosyltransferase
SCHMINCKE‐OTT et al. Dihydrolipoamide dehydrogenase component of the pyruvate dehydrogenase complex from Escherichia coli K12: comparative characterization of the free and the complex‐bound component
Sugiura et al. Studies on dextranase. II. New exo-dextranase from Brevibacterium fuscum var. dextranlyticum
JP2002345458A (en) Method for preparing sucrose phosphorylase
JP3944866B2 (en) N-acetylneuraminic acid synthase and method for producing N-acetylneuraminic acid using the same
JPH0284178A (en) N-acetyl hexosamine dehydrogenase, its production and quantification of n-acethyl glucosamine or n-acethyl galactosamine using same and kit therefor
JP3642361B2 (en) Α1- → 6 fucosyltransferase from pig
US5908766A (en) Method of the production of saccharides containing sialic acid
KR20010025078A (en) METHOD FOR PRODUCING WATER-INSOLUBLE α-1,4-GLUCAN
Domagk et al. [46] Glucose-6-phosphate dehydrogenase from Candida utilis
JP3062409B2 (en) Novel β-galactoside-α2,6-sialyltransferase and method for producing the same
JPH10262697A (en) Measurement of adp
Leer et al. Multiple forms of phosphodeoxyribomutase from Escherichia coli. Physical and chemical characterization
US5827714A (en) β-galactoside-α-2, 6-sialyltransferase, and a process for producing from Photobacterium
US5100795A (en) Bile acid sulfate sulfatase, process for its preparation and method for assaying bile acid
Cantore et al. Kinetic properties, solubilization, and molecular characterization of Mucor rouxii adenylate cyclase

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7