JPH1048500A - Optical apparatus - Google Patents

Optical apparatus

Info

Publication number
JPH1048500A
JPH1048500A JP20205696A JP20205696A JPH1048500A JP H1048500 A JPH1048500 A JP H1048500A JP 20205696 A JP20205696 A JP 20205696A JP 20205696 A JP20205696 A JP 20205696A JP H1048500 A JPH1048500 A JP H1048500A
Authority
JP
Japan
Prior art keywords
temperature
temp
value
detected
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20205696A
Other languages
Japanese (ja)
Inventor
Toru Ohara
亨 大原
Seiya Ota
盛也 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP20205696A priority Critical patent/JPH1048500A/en
Publication of JPH1048500A publication Critical patent/JPH1048500A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lens Barrels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical apparatus capable of position control of a moving lens group, which can detect temp. with high accuracy in spite of having a simple structure and is not affected by an environmental temp. change, by providing the apparatus with an arithmetic means which calculates temp. change rate by using the absolute temp. value, etc., to be reference, and supplying these values to a movement control means for a moving lens. SOLUTION: The ambient temp. at the time of apparatus assembly is written as a reference value as the absolute temp. into an EEPROM 112 and simultaneously the temp. in a temp. detecting sensor 110a is detected as a relative temp. value and is written therein. When a power source is turned on after shipping, the work is thereafter executed automatically. The 110 a output from the temp sensor of the temp. detecting means is read into a microcomputer 120 and is stored in a memory means 123d. Next, the reference value of the absolute temp. and the relative temp. value already read into the EEPROM 112 are fetched. These values, the relative temp. value stored in the memory means 123d and the information from the temp. detecting sensitivity 122a are drawn out and are subjected to computation, by which the temp. change rate is calculated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ビデオカメラ,銀
塩カメラ,電子スチルカメラ,双眼鏡等の光学機器に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to optical devices such as video cameras, silver halide cameras, electronic still cameras, and binoculars.

【0002】[0002]

【従来の技術】近年、カメラ等に於いては低価格化が進
み、撮影光学系を構成するレンズ材料としてコストメリ
ットの大きいプラスチック材料を用いる場合がある。プ
ラスチック材料は、無機ガラス材料に比べて温度変化に
対して屈折率等の光学的定数が大きく、例えば焦点距離
等は無機ガラス材料に比べて温度変化によって大きく変
化してしまう。
2. Description of the Related Art In recent years, the cost of cameras and the like has been reduced, and plastic materials having a large cost merit may be used as lens materials constituting a photographic optical system. A plastic material has a larger optical constant such as a refractive index with respect to a temperature change than an inorganic glass material, and, for example, a focal length and the like greatly change due to a temperature change as compared with an inorganic glass material.

【0003】この為、レンズ鏡筒内に温度検出センサ等
の温度検知手段を設け、レンズ制御手段が温度変化を検
知してレンズの光学的定数の温度変化分を打ち消すよう
にレンズを制御しなければならないが、これまでプラス
チックレンズは高精度な焦点距離制御を要求されない普
及価格帯の一部のカメラに採用されていた為、温度検出
に関しても高精度な温度検出は要求されず、概略温度が
検出されるだけでよかった。
For this reason, temperature detection means such as a temperature detection sensor must be provided in the lens barrel, and the lens control means must detect the temperature change and control the lens so as to cancel out the temperature change of the optical constant of the lens. However, since plastic lenses have been used in some cameras in the popular price range where high-precision focal length control is not required, high-precision temperature detection is not required for temperature detection. I just needed to be detected.

【0004】しかしながら、今後プラスチックレンズの
多用化や、さらには無機ガラス材料を用いた場合でも、
デジタルビデオカメラ等、高画質を要求される上級機器
の撮影光学系に有っては高精度な温度補正制御が求めら
れることになる。この為、温度検出精度についても高精
度な温度検出が要求されるようになった。
[0004] However, in the future, even if plastic lenses are increasingly used and inorganic glass materials are used,
High-precision temperature correction control is required for a shooting optical system of a high-end device requiring high image quality such as a digital video camera. For this reason, high-precision temperature detection has been required for the temperature detection accuracy.

【0005】従来、例えば±2℃の検出精度で温度検出
を行おうとすると、温度検出センサの感度調整や温度検
出回路のオフセット調整及びゲイン調整が必要であり、
更には、上記調整時の温度環境設定を厳密に行わなけれ
ばならなかった。
Conventionally, if temperature detection is to be performed with a detection accuracy of, for example, ± 2 ° C., sensitivity adjustment of a temperature detection sensor and offset adjustment and gain adjustment of a temperature detection circuit are required.
Further, the temperature environment at the time of the adjustment has to be strictly set.

【0006】図5に従来の温度検出手段を示し、より詳
細な説明を行う。511は安定化電圧源、501は温度
変化に応じて抵抗値が変わる感温抵抗、509は温度検
出結果を出力するオペアンプ、510は増幅器となるプ
リアンプを示す。
FIG. 5 shows a conventional temperature detecting means, which will be described in more detail. Reference numeral 511 denotes a stabilized voltage source; 501, a temperature-sensitive resistor whose resistance value changes according to a temperature change; 509, an operational amplifier that outputs a temperature detection result; and 510, a preamplifier serving as an amplifier.

【0007】ここにおけるプリアンプ510の出力が検
出温度値となる。
[0007] The output of the preamplifier 510 here becomes the detected temperature value.

【0008】[0008]

【発明が解決しようとする課題】温度検出センサとし
て、例えば温度変化率5000ppm/℃程度で1kΩの抵抗
値を持つ感温抵抗501に1mAの定電流を流すように設
定すると、温度検出センサなる感温抵抗501は5mV
/℃の温度感度を持つようになるが、感度誤差を抑制す
る為には管理された温度環境下で、抵抗ボリューム50
3による温度検出センサの感度微調が必要である。又、
後段プリアンプ510ではゲイン調整用抵抗ボリューム
507やオフセット調整用抵抗ボリューム508を用い
て微調整しながら温度検知手段の最終検出精度を上げな
ければならず、周囲温度を検出するための調整工程及び
その環境設定が大変わずらわしかった。なお、図におい
て、505,506はゲイン抵抗、512は出力端子で
ある。
As a temperature detecting sensor, for example, if a constant current of 1 mA is passed through a temperature-sensitive resistor 501 having a resistance value of 1 kΩ at a temperature change rate of about 5000 ppm / ° C., the temperature detecting sensor becomes a sensor. Temperature resistance 501 is 5mV
/ ° C, but in order to suppress the sensitivity error, the resistance volume 50
3 requires fine adjustment of the sensitivity of the temperature detection sensor. or,
In the latter stage preamplifier 510, the final detection accuracy of the temperature detecting means must be increased while finely adjusting using the gain adjustment resistor volume 507 and the offset adjustment resistor volume 508, and the adjustment process for detecting the ambient temperature and its environment Setting was very troublesome. In the figure, 505 and 506 are gain resistors and 512 is an output terminal.

【0009】[0009]

【課題を解決するための手段】請求項1の発明は、温度
を検知する温度検出手段と、前記温度検出手段の温度感
度と、基準となる絶対温度値が検出された時の前記温度
検出手段から得られる第1の検出温度値を記憶する記憶
手段と、少なくとも前記温度検出手段から検出された現
状の第2の検出温度値,前記第1の検出値,前記温度感
度及び前記基準となる絶対温度値を用いて、該第1の検
出温度から該第2の検出温度に変化した温度変化量を算
出し、温度変化に応じて前記移動レンズの移動制御を異
ならす制御手段に供給する演算手段を有する光学機器を
特徴とする。
According to a first aspect of the present invention, there is provided a temperature detecting means for detecting a temperature, a temperature sensitivity of the temperature detecting means, and the temperature detecting means when a reference absolute temperature value is detected. Storage means for storing a first detected temperature value obtained from the temperature detection means, and at least a current second detected temperature value, the first detected value, the temperature sensitivity, and the reference absolute value which are detected by the temperature detecting means. Calculation means for calculating a temperature change amount from the first detection temperature to the second detection temperature using the temperature value, and supplying the amount of change to the control means for controlling the movement of the moving lens according to the temperature change. An optical device having:

【0010】請求項2の発明は、基準となる絶対温度と
して、機器組立時の周囲温度を設定した光学機器を特徴
とする。
A second aspect of the present invention is characterized by an optical device in which the ambient temperature at the time of assembling the device is set as a reference absolute temperature.

【0011】請求項3の発明は、温度検出手段として、
正又は負のリニア感度のものを用いた光学機器を特徴と
する。
According to a third aspect of the present invention, as the temperature detecting means,
An optical device using a positive or negative linear sensitivity is characterized.

【0012】請求項4の発明は、前記第2の検出温度値
と前記第1の温度検出値の差分値を前記温度感度で割っ
た値に前記基準となる絶対温度値を加算することによっ
て、前記温度変化量を求める演算を行う光学機器を特徴
とする。
According to a fourth aspect of the present invention, by adding the reference absolute temperature value to a value obtained by dividing a difference value between the second detected temperature value and the first detected temperature value by the temperature sensitivity, An optical device for performing an operation for obtaining the temperature change amount is characterized.

【0013】[0013]

【発明の実施の形態】図1は本発明に於ける実施の形態
としての光学機器のブロック図を示す。図中1はビデオ
カメラの光学系で有り、4つのレンズ群から成るリアフ
ォーカスズームレンズ群(以下RFZと称する)より成
っている。RFZ1は固定レンズ群である第1のレンズ
101、移動レンズ群であり変倍機能を果たす第2のレ
ンズ102、固定レンズ群である第3のレンズ103、
そして移動レンズ群でありフォーカス機能と、変倍に伴
う結像面変動を補正するコンペンセータとしての機能を
有する第4のレンズ104を有する。なお、少なくとも
1つのレンズはプラスチックにより成型されたものであ
る。
FIG. 1 is a block diagram showing an optical apparatus according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an optical system of a video camera, which comprises a rear focus zoom lens group (hereinafter, referred to as RFZ) including four lens groups. RFZ1 denotes a first lens 101 which is a fixed lens group, a second lens 102 which is a moving lens group and performs a variable power function, a third lens 103 which is a fixed lens group,
Further, it has a fourth lens 104 which is a moving lens group and has a focus function and a function as a compensator for correcting an image plane variation due to zooming. At least one lens is formed of plastic.

【0014】105は上記光学系を通した被写体光が、
電気信号に変換されるCCD等の光電変換素子である。
又、温度検知手段は温度検出センサ110aとプリアン
プ110bを有する。温度検出センサ110aはリニア
に温度を検知できるものであって、例えば、マンガンと
コバルトの混合材料から成る感温抵抗体や、トランジス
タやダイオード等のシリコン半導体の温度係数から温度
を検出する半導体温度センサ等である。
Reference numeral 105 denotes subject light passing through the optical system,
It is a photoelectric conversion element such as a CCD which is converted into an electric signal.
The temperature detecting means has a temperature detecting sensor 110a and a preamplifier 110b. The temperature detection sensor 110a is capable of linearly detecting the temperature, and is, for example, a semiconductor temperature sensor that detects the temperature from the temperature coefficient of a silicon semiconductor such as a temperature-sensitive resistor or a transistor or a diode made of a mixed material of manganese and cobalt. And so on.

【0015】温度検出センサ110aは光電変換素子1
05より離れたレンズ周辺の鏡筒内部、もしくは鏡筒外
部表面上に配される。本実施例では1ヶの温度検出セン
サ110aを使用しているが、複数個用いて検出温度の
平均値を算出しても良いし、各レンズの温度を各々検出
しても良い。
The temperature detecting sensor 110a is a photoelectric conversion element 1
It is arranged inside the lens barrel around the lens, which is more than 05 away, or on the outer surface of the lens barrel. In this embodiment, one temperature detection sensor 110a is used. However, a plurality of temperature detection sensors 110a may be used to calculate the average value of the detected temperatures, or the temperature of each lens may be detected.

【0016】又、温度検出センサ110aは上述した感
温抵抗や半導体温度センサに限定されるものではなく、
他の方式の温度検出センサでもよい。
Further, the temperature detecting sensor 110a is not limited to the above-described temperature-sensitive resistor or semiconductor temperature sensor.
Other types of temperature detection sensors may be used.

【0017】温度検出手段の温度感度Kは次式で算出す
ると、安価に構成できる。
If the temperature sensitivity K of the temperature detecting means is calculated by the following equation, it can be constructed inexpensively.

【0018】 K=(Vsh−Voff−VSoff)/ Tsh (1) ここで、Vshはプリアンプ110bの能動電圧範囲、
Voffはプリアンプ110bのオフセット量、VSo
ffは温度センサのオフセット量、Tshは検出温度範
囲を表す。
K = (Vsh−Voff−VSoff) / Tsh (1) where Vsh is an active voltage range of the preamplifier 110b,
Voff is the offset amount of the preamplifier 110b, VSo
ff represents an offset amount of the temperature sensor, and Tsh represents a detected temperature range.

【0019】温度検出回路及び制御系の電源は5V系で
かつ、使用されるプリアンプは低価格の汎用オペアンプ
である条件が一般的であるから、汎用オペアンプの保証
能動電圧範囲である0.6V〜3.5Vをプリアンプ110b
の出力範囲とし、温度センサ及びプリアンプ110bの
オフセット量0.8V程度,ビデオカメラの使用環境温度-
10℃〜+60℃を考慮すると温度検知手段の温度感度は上
式から、略30mV/℃であることが望ましい。
Since the power supply of the temperature detection circuit and the control system is a 5 V system and the preamplifier used is generally a low-cost general-purpose operational amplifier, the active voltage range of the general-purpose operational amplifier is 0.6 V to 3.5 V. V is the preamplifier 110b
, The offset amount of the temperature sensor and the preamplifier 110b is about 0.8 V, and the operating temperature of the video camera
Considering 10 ° C. to + 60 ° C., the temperature sensitivity of the temperature detecting means is desirably approximately 30 mV / ° C. from the above equation.

【0020】又、3V系電源である場合もプリアンプ1
10bに能動電圧範囲の広く、かつ低電圧動作ができる
C−MOSオペアンプを使用した場合も、温度検知手段
の温度感度は略30mV/℃であることが望ましく、要
求される温度検出手段の温度感度Kは一致する。この
時、プリアンプ110bのゲインGは、次式で算出され
る。
In the case of a 3V power supply, the preamplifier 1
Even when a C-MOS operational amplifier having a wide active voltage range and capable of operating at a low voltage is used for 10b, it is desirable that the temperature sensitivity of the temperature detecting means be approximately 30 mV / ° C. K matches. At this time, the gain G of the preamplifier 110b is calculated by the following equation.

【0021】 G=K/K‘ (2) ここで、温度検出手段の温度感度K=30mV/℃であ
り、温度センサ感度K‘は温度検出センサ110aの種
類及び設計の仕方によって異なるが、およそ5mV/℃
〜10mV/℃である。
G = K / K ′ (2) Here, the temperature sensitivity K of the temperature detecting means is 30 mV / ° C., and the temperature sensor sensitivity K ′ differs depending on the type and the design method of the temperature detection sensor 110a. 5mV / ℃
〜1010 mV / ° C.

【0022】温度検出手段110からの出力値にはオフ
セット成分が含まれており、本実施の形態に於いてはオ
フセット調整は必要がない為、ここで得られる温度値は
相対温度値である。
The output value from the temperature detecting means 110 includes an offset component, and the offset adjustment is not necessary in the present embodiment, so that the temperature value obtained here is a relative temperature value.

【0023】112は正確な温度検出装置で検出した出
荷調整時の周囲の絶対温度である基準値Trefと、そ
の時の温度検知手段110から得られた温度を表すプリ
アンプ110bの出力電圧値である相対温度値dtoを
絶対温度で記憶させるEEPROM等の第2の記憶手段
である。
Reference numeral 112 denotes a reference value Tref, which is the absolute temperature of the surroundings at the time of shipment adjustment detected by the accurate temperature detecting device, and a relative value, which is the output voltage value of the preamplifier 110b representing the temperature obtained from the temperature detecting means 110 at that time. This is a second storage unit such as an EEPROM that stores the temperature value dto as an absolute temperature.

【0024】120はマイクロコンピュータ(以下マイ
コンと称す)等の制御手段であり、相対温度値となるプ
リアンプ110bの出力電圧をマイコン120内に取り
込むA/D変換器121、温度検出手段の温度感度デー
タ122a、制御するレンズの温度補正値122b及び
図3に示すような被写体距離及び焦点距離毎の合焦を維
持するための第2レンズ102と第4レンズ104の光
軸上停止位置(以下カム軌跡dczと称す)データ12
2cを記憶するROM等の第1の記憶手段122、第2
の記憶手段112からデータを引き出し一時的に格納さ
せておくRAM等の一時記憶手段124、そしてROM
内に書き込まれたプログラム手順に従い第2レンズ群1
02や第4レンズ群104等を駆動回路131、132
とステッピングパルスモーター等のアクチュエータを介
して駆動制御するための演算を実行するMPU123c
から成る。
Reference numeral 120 denotes a control means such as a microcomputer (hereinafter referred to as a microcomputer). The A / D converter 121 takes in the output voltage of the preamplifier 110b, which is a relative temperature value, into the microcomputer 120, and temperature sensitivity data of the temperature detection means. 122a, a temperature correction value 122b of the lens to be controlled, and a stop position on the optical axis of the second lens 102 and the fourth lens 104 (hereinafter referred to as a cam locus) for maintaining focusing at each subject distance and each focal length as shown in FIG. dcz) Data 12
2c, a first storage unit 122 such as a ROM,
A temporary storage means 124 such as a RAM for temporarily extracting data from the storage means 112 and temporarily storing the data;
2nd lens group 1 according to the program procedure written in
02 and the fourth lens group 104 etc.
And MPU 123c for executing an operation for drive control via an actuator such as a stepping pulse motor
Consists of

【0025】MPU123cは第1の記憶手段112に
格納されている温度検知手段110の温度感度データ1
22a、レンズの温度補正値122b及び第2の記憶手
段124に格納されていると絶対温度の基準値Tref
とや基準値読み込み時の相対温度値dtoと、一定時間
間隔で測定される観測相対温度を表す電圧dt1の数値
からフォーカス123aやズーム123b等のレンズ位
置制御をするための演算を行う。
The MPU 123c stores the temperature sensitivity data 1 of the temperature detection means 110 stored in the first storage means 112.
22a, the lens temperature correction value 122b, and the absolute temperature reference value Tref stored in the second storage means 124.
From the relative temperature value dto at the time of reading the reference value and the numerical value of the voltage dt1 representing the observed relative temperature measured at regular time intervals, an operation for controlling the lens position such as the focus 123a or the zoom 123b is performed.

【0026】図3において、例えば被写体距離が無限遠
の時、第2レンズ102がWIDE方向からTELE方
向へ光軸上移動すると、第4レンズ104は光軸上物体
側へ凸状の軌跡である曲線Y∽に沿って移動する。この
ようにズーミングするときには、被写体距離に応じてカ
ム軌跡をトレースするように、第2レンズ102及び第
4レンズ104を駆動制御し、ピントズレの無いように
する。
In FIG. 3, for example, when the subject distance is infinity and the second lens 102 moves on the optical axis from the WIDE direction to the TELE direction, the fourth lens 104 has a locus convex toward the object side on the optical axis. Move along curve Y #. When performing zooming in this manner, the second lens 102 and the fourth lens 104 are driven and controlled so as to trace the cam trajectory according to the subject distance, so that there is no out-of-focus.

【0027】次に、図2にフローチャートを示し、本実
施の形態の動作を説明する。工場での機器組立時、各種
調整を行う際の調整作業時に電源を投入し、作業者は記
憶手段112であるEEPROMにその時の周囲温度を
絶対温度(温度検出センサー110aとは別の温度検出
装置により正確な絶対温度を検出する)を基準値Tre
fとして書き込み、同様にこの時に温度検出センサー1
10aで温度を検出し、プリアンプ110bで増幅され
た出力電圧△dt0として、一旦、マイコン120を介
し、相対温度dt0として記憶手段(EEPROM)1
12に書き込み、電源を停止する(S201→S202
→S203→S204)。
Next, FIG. 2 is a flowchart showing the operation of the present embodiment. At the time of assembling the equipment at the factory, the power is turned on at the time of adjustment work for performing various adjustments, and the operator stores the ambient temperature at that time in the EEPROM as the storage means 112 as an absolute temperature (a temperature detection device different from the temperature detection sensor 110a). To detect the more accurate absolute temperature) with the reference value Tre
f, and at this time, the temperature detection sensor 1
10a, the temperature is detected, and the output voltage △ dt0 amplified by the preamplifier 110b is temporarily stored in the storage means (EEPROM) 1 as the relative temperature dt0 via the microcomputer 120.
12 and the power supply is stopped (S201 → S202).
→ S203 → S204).

【0028】出荷後、再び電源が投入されるとマイコン
120内のプログラムが動き出し、以降自動的に作業を
行う。温度検知手段からの相対温度検出値、即ち温度セ
ンサ110aからの出力をプリアンプ110bを介して
増幅した出力電圧△dt1は、一定時間続けてA/D変
換器121を通してマイコン120内に読み込まれ、入
力値の確度を高める為に、相対温度値としての出力電圧
△dt1は平均化され、記憶手段123dに記憶される
(S206)。
After the shipment, when the power is turned on again, the program in the microcomputer 120 starts to operate, and thereafter the work is automatically performed. A relative temperature detection value from the temperature detection means, that is, an output voltage △ dt1 obtained by amplifying the output from the temperature sensor 110a via the preamplifier 110b is read into the microcomputer 120 through the A / D converter 121 continuously for a predetermined time, and In order to increase the accuracy of the value, the output voltage △ dt1 as a relative temperature value is averaged and stored in the storage unit 123d (S206).

【0029】次に、記憶手段112であるEEPROM
にすでに書き込まれている絶対温度の基準値Tref
と、相対温度値dt0を取り出し、一旦RAM124領
域に格納させる。これらの値と、予め記憶手段であるR
OM内に記憶されている温度検知感度122aから情報
を引き出して次式の演算を行い、温度変化量△Tを算出
する。
Next, an EEPROM serving as the storage unit 112
The reference value Tref of the absolute temperature already written in
Then, the relative temperature value dt0 is extracted and temporarily stored in the RAM 124 area. These values, and R
Information is extracted from the temperature detection sensitivity 122a stored in the OM, and the following equation is calculated to calculate a temperature change amount ΔT.

【0030】 △T=(dt1−dt0)K+Tref (3) ここで、温度変化量△Tは相対温度値から絶対温度値に
変換される(S207→S208)。
ΔT = (dt1−dt0) K + Tref (3) Here, the temperature change ΔT is converted from a relative temperature value to an absolute temperature value (S207 → S208).

【0031】次に、第2レンズ102及び第4レンズ1
04の位置を検出し、各位置データZD,FDをマイコ
ン120内のRAM領域124に格納する。尚、第2レ
ンズ102及び第4レンズ104の可動手段にアクチュ
エータとしてステッピングモーター133、134を用
いると駆動パルス数をカウントするだけで容易に位置検
出が可能であるが、例えばDCモーターとエンコーダー
を用いる等、他のレンズ駆動方式及びレンズ位置検出方
法でも良い。(S209→S210)
Next, the second lens 102 and the fourth lens 1
The position of the position 04 is detected, and the position data ZD and FD are stored in the RAM area 124 in the microcomputer 120. If stepping motors 133 and 134 are used as actuators for the movable means of the second lens 102 and the fourth lens 104, the position can be easily detected only by counting the number of driving pulses. For example, a DC motor and an encoder are used. Other lens driving methods and lens position detection methods may be used. (S209 → S210)

【0032】次に、第2レンズ102及び第4レンズ1
04の位置データZD,FDに対応する温度補正係数値
αを、第1の記憶手段であるROM領域122bから引
き出してレンズ駆動補正量βを次式で算出し、RAM1
24に格納する(S211)。
Next, the second lens 102 and the fourth lens 1
The temperature correction coefficient value α corresponding to the position data ZD, FD of No. 04 is extracted from the ROM area 122b as the first storage means, and the lens drive correction amount β is calculated by the following equation.
24 (S211).

【0033】 β=α*△T (4)Β = α * △ T (4)

【0034】尚、温度補正係数値αは図4に図示するよ
うに、第2レンズ102と第4レンズ104の相互の位
置関係によって異なるため、ROM領域122bには複
数の温度補正係数値αが格納されている。
Since the temperature correction coefficient value α differs depending on the mutual positional relationship between the second lens 102 and the fourth lens 104 as shown in FIG. 4, a plurality of temperature correction coefficient values α are stored in the ROM area 122b. Is stored.

【0035】次に、ROM領域122Cに格納されてい
るカム軌跡データdczを取り出し、温度補正係数値α
を加算することでカム軌跡データdczは修正され、第
2レンズ102及び第4レンズ104の適正位置MZ,
MFが求められる。得られた、第2レンズ102及び第
4レンズ104の適正位置MZ,MFは演算手段123
a,123bを介して各駆動回路131、132に出力
され、駆動手段であるステッピングモーター133、1
34によって、第2レンズ群102及び第4レンズ群1
04は合焦を維持する位置に移動する(S212→S2
13)。
Next, the cam locus data dcz stored in the ROM area 122C is extracted, and the temperature correction coefficient value α
Is added, the cam locus data dcz is corrected, and the appropriate positions MZ,
MF is required. The obtained appropriate positions MZ and MF of the second lens 102 and the fourth lens 104 are calculated by the calculating means 123.
a, 123b, and is output to each of the drive circuits 131, 132, and is used as a stepping motor 133, 1
34, the second lens group 102 and the fourth lens group 1
04 moves to a position where focus is maintained (S212 → S2)
13).

【0036】上記動作は電源が切られるまで繰り返さ
れ、常に環境温度変化に対し各移動レンズ群の位置は補
正制御される(S214)。
The above operation is repeated until the power is turned off, and the position of each moving lens group is constantly corrected and controlled with respect to the environmental temperature change (S214).

【0037】[0037]

【発明の効果】請求項1の発明では、温度検知手段に生
じるオフセットがキャンセルされ、簡単な構成であって
も高精度な温度検知が可能であり、かつ環境温度変化に
影響されない移動レンズ群の位置制御を可能とする光学
機器を提供できる。
According to the first aspect of the present invention, the offset occurring in the temperature detecting means is canceled, the temperature can be detected with high accuracy even with a simple structure, and the moving lens group which is not affected by the environmental temperature change. An optical device capable of position control can be provided.

【0038】請求項2の発明では、上記効果に加えて、
組み立て時のレンズ位置調整時からの温度変化に正確に
対応できる光学機器を提供できる。
According to the second aspect of the present invention, in addition to the above effects,
An optical device capable of accurately responding to a temperature change from the time of lens position adjustment during assembly can be provided.

【0039】請求項3の発明では、上記効果に加えて、
微少な温度変化にも対応できる光学機器を提供できる。
According to the third aspect of the present invention, in addition to the above effects,
It is possible to provide an optical device that can cope with a minute temperature change.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に於ける実施の形態としての光学機器の
ブロック図。
FIG. 1 is a block diagram of an optical apparatus according to an embodiment of the present invention.

【図2】図1の光学機器の動作を表すフローチャート。FIG. 2 is a flowchart showing the operation of the optical apparatus shown in FIG.

【図3】図1の移動レンズのカム軌跡を示す図。FIG. 3 is a diagram showing a cam locus of the moving lens of FIG. 1;

【図4】各レンズ位置と温度補正係数αの相関関係を示
す図。
FIG. 4 is a diagram showing a correlation between each lens position and a temperature correction coefficient α.

【図5】従来の温度検出手段を示す図。FIG. 5 is a diagram showing a conventional temperature detecting means.

【符号の説明】[Explanation of symbols]

102 移動レンズ 104 移動レンズ 110a 温度検出センサ 120 マイクロコンピュータ 102 moving lens 104 moving lens 110a temperature detection sensor 120 microcomputer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の移動レンズを含む光学系と、該複
数の移動レンズを駆動する駆動手段を有し、温度変化に
応じて前記移動レンズの移動制御を異ならす制御手段を
有する光学機器に於いて、 温度を検知する温度検出手段と、 前記温度検出手段の温度感度と、基準となる絶対温度値
が検出された時の前記温度検出手段から得られる第1の
検出温度値を記憶する記憶手段と、 少なくとも前記温度検出手段から検出された現状の第2
の検出温度値,前記第1の検出値,前記温度感度及び前
記基準となる絶対温度値を用いて、該第1の検出温度か
ら該第2の検出温度に変化した温度変化量を算出し前記
制御手段に供給する演算手段を有することを特徴とする
光学機器。
1. An optical apparatus comprising: an optical system including a plurality of moving lenses; and driving means for driving the plurality of moving lenses; and control means for performing different control of movement of the moving lenses according to a temperature change. A temperature detecting means for detecting a temperature, a temperature sensitivity of the temperature detecting means, and a memory for storing a first detected temperature value obtained from the temperature detecting means when a reference absolute temperature value is detected. Means, at least a second current state detected by the temperature detecting means.
And calculating the temperature change amount from the first detected temperature to the second detected temperature using the detected temperature value, the first detected value, the temperature sensitivity, and the reference absolute temperature value. An optical device, comprising: an arithmetic unit for supplying to a control unit.
【請求項2】 前記基準となる絶対温度は、機器組立時
の周囲温度で有ることを特徴とする請求項1記載の光学
機器。
2. The optical device according to claim 1, wherein the reference absolute temperature is an ambient temperature when the device is assembled.
【請求項3】 前記温度検出手段は、正又は負のリニア
感度をもつことを特徴とする請求項1または2記載の光
学機器。
3. The optical apparatus according to claim 1, wherein said temperature detecting means has a positive or negative linear sensitivity.
【請求項4】 前記演算手段は前記第2の検出温度値と
前記第1の温度検出値の差分値を前記温度感度で割った
値に前記基準となる絶対温度値を加算することによっ
て、前記温度変化量を求めることを特徴とする請求項
1,2または3記載の光学機器。
4. The arithmetic means adds the reference absolute temperature value to a value obtained by dividing a difference value between the second detected temperature value and the first detected temperature value by the temperature sensitivity, thereby obtaining the reference absolute temperature value. 4. The optical apparatus according to claim 1, wherein the temperature change amount is obtained.
JP20205696A 1996-07-31 1996-07-31 Optical apparatus Pending JPH1048500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20205696A JPH1048500A (en) 1996-07-31 1996-07-31 Optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20205696A JPH1048500A (en) 1996-07-31 1996-07-31 Optical apparatus

Publications (1)

Publication Number Publication Date
JPH1048500A true JPH1048500A (en) 1998-02-20

Family

ID=16451217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20205696A Pending JPH1048500A (en) 1996-07-31 1996-07-31 Optical apparatus

Country Status (1)

Country Link
JP (1) JPH1048500A (en)

Similar Documents

Publication Publication Date Title
KR102017416B1 (en) Actuator driver, imaging device and calibration method
KR101920130B1 (en) Camera module adjustment method, lens position control device, control device and control method for linear motion device
US6268885B1 (en) Optical apparatus for correcting focus based on temperature and humidity
KR102620533B1 (en) Camera module
KR101093404B1 (en) Focus control circuit
CN109212711B (en) Autofocus device and method for operating an autofocus device with a temperature-sensitive component
US20050036775A1 (en) Position detection apparatus, optical apparatus, image-taking system, position detection method and program
US5696999A (en) Image vibration reduction device
EP2372430B1 (en) Image pickup lens, image pickup apparatus, and lens controlling method
JP2003029316A (en) Position controller and control method used for image pickup device
JP3893203B2 (en) Optical equipment
JP2021177245A (en) Imaging apparatus and actuator driver
JPH1048500A (en) Optical apparatus
JP2006227274A (en) Imaging apparatus
JP5368237B2 (en) Temperature correction amount correction system and operation control method thereof
JP6823496B2 (en) Actuator driver and imaging device
JP3224556B2 (en) Lens position control device
GB2475388A (en) Optical image stabilisation system for camera
JP2003185908A (en) Optical instrument
WO2005098499A1 (en) Imaging device
JP2022188628A (en) Lens control unit, lens device, and imaging apparatus
JP2006243489A (en) Diaphragm value detecting circuit
JPH11166825A (en) Distance measuring device
JPH09311267A (en) Optical equipment
KR20180102013A (en) Actuator driver, image pickup apparatus, and electronic device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Effective date: 20040413

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611

A02 Decision of refusal

Effective date: 20040907

Free format text: JAPANESE INTERMEDIATE CODE: A02