JPH1048439A - Optical filter - Google Patents

Optical filter

Info

Publication number
JPH1048439A
JPH1048439A JP20451496A JP20451496A JPH1048439A JP H1048439 A JPH1048439 A JP H1048439A JP 20451496 A JP20451496 A JP 20451496A JP 20451496 A JP20451496 A JP 20451496A JP H1048439 A JPH1048439 A JP H1048439A
Authority
JP
Japan
Prior art keywords
optical filter
filter element
optical
groove
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20451496A
Other languages
Japanese (ja)
Inventor
Masaru Akazawa
優 赤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP20451496A priority Critical patent/JPH1048439A/en
Publication of JPH1048439A publication Critical patent/JPH1048439A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make the occupying space small and to reduce the size, by forming a groove crossing the optical waveguide of an optical waveguide substrate and changing the wavelength to be taken out by inserting, fixing, etc., of an optical filter element changed in thickness into the groove. SOLUTION: The groove 25 crossing the branch waveguide parts 241 to 244 is formed on the optical wavehguide forming surface of the optical waveguide substrate 21. The optical filter element 26 is inserted and fixed into the groove 25. The optical filter element 26 is formed into a thin film shape obtd. by alternately laminating films of a high refractive index and a low refractive index. The film thickness thereof is gradually changed along the groove 25. Namely, the thickness W2 at the other end of the optical filter element 26 less larger than the thickness W1 at one end and the film thickness gradually changed therebetween (A). Another method is to make the respective adjacent intervals of the branch waveguide parts 241 to 244 gradually larger the further from the main waveguide 23 in order to change the wavelength of the light to be taken out by making the film thickness of the optical filter element 26 constant and changing the angle of the incident light on the optical filter element 26.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は光通信、光計測な
どの分野に用いられ、波長選択、波長分波、波長合波な
どを行う光学フィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical filter which is used in fields such as optical communication and optical measurement and performs wavelength selection, wavelength division, wavelength multiplexing, and the like.

【0002】[0002]

【従来の技術】図3に従来の波長分波用光学フィルタを
示す。波長λ1 〜λ4 を含む入射光10が光ファイバ1
1の一端に入射され、光ファイバ11の他端は例えば4
つの光ファイバ121 〜124 に分岐され、その分岐光
ファイバ121 〜124 の遊端部は支持具131 〜13
4 に挿通保持され、支持具131 〜134 よりの出射光
はそれぞれレンズ141 〜144 でそれぞれ平行光とさ
れて光学フィルタ素子15に入射される。光学フィルタ
素子15は高屈折率層と低屈折率層とが積層された多層
膜フィルタであり、かつその長手方向において膜厚が徐
々に変化している。レンズ141 より光学フィルタ素子
15に入射された波長λ1 〜λ4 の光中の波長λ1 の光
のみが透過してレンズ161 で集光されて支持具171
内の光ファイバ181 の一端に入射される。同様にレン
ズ142 〜144 より光学フィルタ素子15に入射され
た光中のそれぞれ波長λ2 ,λ3 ,λ4 のみが透過し
て、それぞれレンズ162 〜164 でそれぞれ集光され
て支持具172 〜174 中の光ファイバ182 〜184
の各一端にそれぞれ入射され、光ファイバ181 〜18
4 からそれぞれ波長λ1 〜λ4 の各1波長の光が取出さ
れる。
2. Description of the Related Art FIG. 3 shows a conventional optical filter for wavelength demultiplexing.
Show. Wavelength λ1~ ΛFourIncident light 10 including the optical fiber 1
1 and one end of the optical fiber 11 is, for example, 4
Optical fiber 121~ 12FourIs split into the split light
Fiber 121~ 12FourThe free end of the support 131~ 13
FourThrough the support 131~ 13FourOutgoing light
Is the lens 141~ 14FourWith parallel light
And enters the optical filter element 15. Optical filter
The element 15 is a multilayer in which a high refractive index layer and a low refractive index layer are laminated.
It is a membrane filter and its film thickness is gradually reduced in the longitudinal direction.
It is changing in various ways. Lens 141More optical filter elements
Wavelength λ incident on 151~ ΛFourWavelength λ in the light of1Light of
Only through the lens 161Is collected by the support 171
Optical fiber 18 in1At one end. Similarly Len
14Two~ 14FourIncident on the optical filter element 15
Wavelength λTwo, ΛThree, ΛFourOnly transparent
And each lens 16Two~ 16FourAre collected by
Support 17Two~ 17FourOptical fiber 18 insideTwo~ 18Four
Of the optical fiber 181~ 18
FourFrom each wavelength λ1~ ΛFourOne wavelength of light is extracted
It is.

【0003】固定体19に支持具131 〜134 ,17
1 〜174 、レンズ141 〜144,161 〜164
光学フィルタ素子15が相対関係を維持するように取付
けされている。
[0003] A support 13 1 to 13 4 , 17
1-17 4, the lens 14 1-14 4, 161-164,
The optical filter element 15 is mounted so as to maintain the relative relationship.

【0004】[0004]

【発明が解決しようとする課題】従来の光学フィルタ
は、支持具131 、平行光にするレンズ141 、集光レ
ンズ161 、支持具171 の位置合せが面倒であり、か
つ占有空間が大きくなる。更に図3に示したように、複
数の波長に分離する場合は、支持具131 〜134,1
1 〜174 、レンズ141 〜144 ,161 〜1
4 、光学フィルタ素子15の相互の位置合せが、互い
にばらばらであるため著しく手数がかかり、かつ周囲温
度の変動により、これら部品の相対的位置がずれるおそ
れがある。また全体の占有空間が大きいという問題もあ
った。
In the conventional optical filter, the positioning of the support 13 1 , the lens 14 1 for making parallel light, the condenser lens 16 1 , and the support 17 1 is troublesome, and the occupied space is small. growing. As further shown in FIG. 3, when separating a plurality of wavelengths, support 131-134, 1
7 1 to 17 4 , lenses 14 1 to 14 4 , 16 1 to 1
6 4, mutual alignment of the optical filter element 15, it takes considerably troublesome because it is apart from one another, and the variation of the ambient temperature, there is a possibility that the relative position of these parts is shifted. There is also a problem that the entire occupied space is large.

【0005】[0005]

【課題を解決するための手段】この発明によれば光導波
路基板の表面に光導波路が形成され、その光導波路と交
差して、基板表面に溝が形成され、その溝に光学フィル
タ素子が挿入固定される。光導波路は1本の主導波路
と、その一端側に分岐接続され、ほぼ同一方向に延長さ
れた複数の分岐導波路とからなり、前記溝はこれら複数
の分岐導波路と交差し、かつ光学フィルタ素子は全ての
分岐導波路の端面と対向している。
According to the present invention, an optical waveguide is formed on the surface of an optical waveguide substrate, a groove is formed on the substrate surface so as to intersect with the optical waveguide, and an optical filter element is inserted into the groove. Fixed. The optical waveguide is composed of one main waveguide and a plurality of branch waveguides branch-connected to one end thereof and extended in substantially the same direction. The groove intersects the plurality of branch waveguides, and an optical filter. The element faces the end faces of all the branch waveguides.

【0006】光学フィルタ素子は溝の延長方向におい
て、厚さが変化している。光学フィルタ素子と分岐導波
路との交差角度は、各分岐導波路ごとに互いに異なって
いる。更に溝はマイクロ加工技術により形成されてい
る。
[0006] The thickness of the optical filter element changes in the direction in which the groove extends. The intersection angle between the optical filter element and the branch waveguide is different for each branch waveguide. Further, the grooves are formed by a micromachining technique.

【0007】[0007]

【発明の実施の形態】図1Aにこの発明の実施例を示
す。光導波路基板21の1表面上に光導波路22が形成
される。この例では光導波路22は主導波路部23とそ
の一端側に接続された複数の分岐導波路241 〜244
とよりなり、主導波路部23の一端面は基板21の一端
面と一致され、基板21の他端面に分岐導波路部241
〜244の端面が一致され、かつ分岐導波路部241
244 は互いにほぼ平行とされている。
FIG. 1A shows an embodiment of the present invention. The optical waveguide 22 is formed on one surface of the optical waveguide substrate 21. In this example, the optical waveguide 22 includes a main waveguide portion 23 and a plurality of branch waveguides 24 1 to 24 4 connected to one end thereof.
The one end surface of the main waveguide portion 23 coincides with the one end surface of the substrate 21, and the branch waveguide portion 24 1
The end face of 24 4 are matched, and the branch waveguide portions 24 1 ~
24 4 are substantially parallel to each other.

【0008】光導波路基板21の光導波路形成面上に分
岐導波路部241 〜244 と交差した溝25が形成さ
れ、その溝25に光学フィルタ素子26が挿入固定され
る。この例では溝25は直線状に形成され、光学フィル
タ素子26は高屈折率と低屈折率の膜を交互に積層して
なる薄板状であり、その膜厚は溝25に沿って徐々に変
化されている。つまり光学フィルタ素子26の一端の厚
さW1 に対し、他端の厚さW2 の方が大でありこれら間
で膜厚が徐々に変化している。溝25はマイクロ加工技
術により幅狭に形成されている。
[0008] groove 25 which intersects with the branch optical waveguide forming surface on the waveguide portion 24 1-24 4 of the optical waveguide substrate 21 is formed, the optical filter element 26 is inserted and fixed in the groove 25. In this example, the groove 25 is formed in a linear shape, and the optical filter element 26 is a thin plate formed by alternately stacking high-refractive-index and low-refractive-index films, and the film thickness gradually changes along the groove 25. Have been. That relative thickness W 1 of one end of the optical filter element 26, the thickness between who thickness W 2 of the other end is large it is gradually changed. The groove 25 is formed narrow by a micromachining technique.

【0009】マイクロ加工技術とは、セラミックまたは
ダイヤモンドの薄いブレードを高速で回転し、そのブレ
ードで基板を研削すると同時に、ブレードに注がれる研
削液に含まれるコロイダルシリカの様なポリッシング材
で、研削された溝の壁面をポリッシングし鏡面を得る加
工法である。したがって、光導波路基板21に幅の狭い
溝25を形成でき、かつ光導波路基板21に形成された
光導波路241 〜24 4 の溝25への出射面が鏡面に加
工されているため、そこでの損失が少ないという特徴が
ある。
[0009] The micro-machining technology refers to ceramic or
A thin diamond blade is rotated at high speed,
At the same time as grinding the substrate with the blade,
Polishing material such as colloidal silica contained in cutting fluid
Polishing the wall surface of the ground groove to obtain a mirror surface.
It is a construction method. Therefore, the optical waveguide substrate 21 has a narrow width.
The groove 25 can be formed and formed on the optical waveguide substrate 21.
Optical waveguide 241~ 24 FourThe exit surface of the
Is characterized by the fact that there is little loss there.
is there.

【0010】光学フィルタ素子26の例として光学バン
ドパスフィルタ素子について説明する。光学バンドパス
フィルタ素子は、高屈折率nH と低屈折率nL の膜を厚
さd=λ/4n(λ:光の波長、n:屈折率)となるよ
うに交互に積み重ね、途中にスペーサ層と厚さd=λ/
2nのアブセンティー層を挿入したものである。例え
ば、光学バンドパスフィルタ素子で1560nmの光を
取り出す場合、高屈折率層の膜の材料として二酸化チタ
ン(nH =2.15)、低屈折率層の膜の材料として二
酸化珪素(nL =1.46)を使うと、それぞれの膜厚
を181.4nm、267.1nmとすればよい。この
実施例では1つの光学バンドパスフィルタ素子26で複
数の波長の光を分離して取り出すことができる。そのた
めの手法を以下に示す。
An optical bandpass filter element will be described as an example of the optical filter element 26. The optical bandpass filter element is formed by alternately stacking films having a high refractive index n H and a low refractive index n L so as to have a thickness d = λ / 4n (λ: wavelength of light, n: refractive index). Spacer layer and thickness d = λ /
This is one in which a 2n absentee layer is inserted. For example, when light of 1560 nm is extracted by an optical band-pass filter element, titanium dioxide (n H = 2.15) is used as a material for the high refractive index layer, and silicon dioxide (n L = n) is used as a material for the low refractive index layer. When 1.46) is used, the respective film thicknesses may be set to 181.4 nm and 267.1 nm. In this embodiment, light of a plurality of wavelengths can be separated and extracted by one optical bandpass filter element 26. The method for that is shown below.

【0011】その1つは、取り出す光の波長に合わせて
膜厚を変える方法である。上記の材料で作ると波長が1
550nmの場合、高屈折率層と低屈折率層の膜厚はそ
れぞれ180.2nm,265.4nmとなる。図1A
に示すように分岐導波路部241 〜244 の隣接間隔を
250μmとすると(図1Aには4本の光導波路を示
す)、この間隔に対応する位置の光学フィルタ素子26
の各膜厚をそれぞれ光の波長1560nmと1550n
mの膜厚となるように光学バンドパスフィルタ素子26
を製作し、挿入・固定すればよい。隣接間隔250nm
で10nmの波長分解能とするには膜厚は1.7nmず
つ変化させればよい。
One method is to change the film thickness in accordance with the wavelength of the light to be extracted. The wavelength is 1 when made with the above materials
In the case of 550 nm, the thicknesses of the high refractive index layer and the low refractive index layer are 180.2 nm and 265.4 nm, respectively. FIG. 1A
When 250μm adjacent spacing of the branching waveguides 24 1-24 4 as shown in (in FIG. 1A shows the four optical waveguides), optical filter elements 26 at a position corresponding to the spacing
Of the light wavelengths of 1560 nm and 1550 n, respectively.
m so that the optical bandpass filter element 26
And then insert and fix it. Adjacent distance 250nm
In order to obtain a wavelength resolution of 10 nm, the film thickness may be changed by 1.7 nm.

【0012】もう1つの方法は光学フィルタ素子26の
膜厚は一定であるが、光学フィルタ素子26に対する入
射光の角度を変えて取り出す光の波長を変える方法があ
る。例えば図1Bに示すように分岐導波路部241 〜2
4 の各隣接間隔が、主導波路部23から遠ざかるに従
って徐々に大となるようにされる。光学フィルタ素子2
6の厚さはその各部が同一のW3 とされている。例えば
2つの波長を分離する場合、光学フィルタ素子26の膜
厚W3 を波長1560nmに合わせて、181.4n
m、267.1nm、光導波路部241 〜244 の屈折
率を1.46(石英と同じ)とすると、光学フィルタ素
子26への入射角6.5度で波長1550nmの光を取
出すことができる。
Another method is to change the wavelength of light to be extracted by changing the angle of incident light with respect to the optical filter element 26, while the film thickness of the optical filter element 26 is constant. For example branch as shown in FIG. 1B waveguide portion 24 21 to
4 each adjacent interval of 4, gradually so as to be larger as the distance from the main waveguide 23. Optical filter element 2
The thickness of 6 that each part is the same W 3. For example, when two wavelengths are separated, the thickness W 3 of the optical filter element 26 is adjusted to the wavelength of 1560 nm, and the thickness is set to 181.4 n
m, 267.1Nm, and the refractive index of the optical waveguide section 24 1-24 4 and 1.46 (the same as quartz), be taken out the light of wavelength 1550nm at an incident angle 6.5 degrees to the optical filter element 26 it can.

【0013】光導波路241 〜244 と光学フィルタ素
子26との交差角を異ならせる方法としては図1Bに示
した場合に限らない。例えば図2Aに示すように隣接分
岐導波路部241 ,242 間、242 ,243 間、24
3 ,244 間がそれぞれ、損失が無視できる程度の角
度、光導波路の製作条件により異なるが、例えば、順次
0.5°程度づつ角度をずらして設ければ、隣接間隔2
50nmで波長分解能を10nmとすることができる。
[0013] As a method for varying the crossing angle between the optical waveguide 24 1-24 4 and the optical filter element 26 is not limited to that shown in FIG. 1B. For example, as shown in FIG. 2A, between adjacent branch waveguide portions 24 1 and 24 2, between 24 2 and 24 3 ,
3, 24 4 between the respective angle of the degree that the loss can be ignored, varies by manufacturing conditions of the optical waveguide, for example, it is provided by sequentially shifting the 0.5 ° about increments angle, adjacent intervals 2
The wavelength resolution can be 10 nm at 50 nm.

【0014】あるいは図2Bに示すように、主導波路部
23を延長して分岐導波路部241とすると共に、主導
波路部23を損失が無視できる程度の曲率、光導波路の
製作条件によっても異なるが、半径R=25mmで、
6.5°の円弧状に延長し、その延長点からその接線方
向に分岐導波路部242 が形成されると共に更に上記円
弧を6.5°延長してその点から接線方向に分岐導波路
部243 が形成され、以下同様にして分岐導波路部を順
次形成してもよい。このようにして波長分解能が10n
mの波長分離が可能となる。
[0014] Alternatively, as shown in Figure 2B, with the main waveguide 23 branch waveguide portion 24 1 by extending the curvature of the extent that the loss of main waveguide 23 can be ignored, varies depending fabrication conditions of the optical waveguide Has a radius R = 25 mm,
Extended to 6.5 ° of arc-shaped, branching waveguide from the point of extension and further 6.5 ° the arc extension with its tangentially branch waveguide portion 24 2 is formed from that point tangentially part 24 3 is formed, may be sequentially formed branching waveguide portion in the same manner. Thus, the wavelength resolution is 10n
m wavelength separation becomes possible.

【0015】光通信では光の波長の間隔を1nm程度と
して多数の光を多重化することが考えられ、その場合は
光導波路を徐々に分岐し、光学フィルタ素子26に対す
る入射角が順次変化するようにするが、1559nmに
対し、1nm異なる光を分離するには図2Bでの角度
6.5°の代りに2.1°とすればよい。図2A、Bの
何れの分岐手法でも、光導波路基板を十分小さく保持し
た状態で多くの分岐導波路を作ることができる。
In optical communication, it is conceivable to multiplex a large number of lights by setting the wavelength interval of light to about 1 nm. In this case, the optical waveguide is gradually branched so that the incident angle with respect to the optical filter element 26 changes sequentially. However, to separate light different by 1 nm from 1559 nm, the angle may be set to 2.1 ° instead of 6.5 ° in FIG. 2B. 2A and 2B, a large number of branch waveguides can be produced with the optical waveguide substrate kept sufficiently small.

【0016】上述において、分岐導波路部241 〜24
4 の光学フィルタ素子26への入射角度を互いに変更す
ると共に、その各光学フィルタ素子26の透過する個所
の透過通路長(厚さ)を互いに変化させることにより波
長分解能を一層高くすることもできる。光学フィルタ素
子26の溝25への挿入固定は光導波路基板11と同一
の屈折率の接着剤で固定することによりずれを防止する
ことができる。分岐導波路部241 〜244 は4本に限
らず、1本でも、他の複数本でもよい。光学フィルタ素
子26としてはバンドパスフィルタのみならず、高域通
過フィルタ又は領域通過フィルタとして構成してもよ
い。
In the above description, the branch waveguide portions 24 1 to 24
The wavelength resolution can be further increased by changing the angles of incidence on the optical filter elements 26 and changing the transmission path lengths (thicknesses) of the portions where the respective optical filter elements 26 pass through. The insertion and fixing of the optical filter element 26 into the groove 25 can be prevented by fixing with an adhesive having the same refractive index as that of the optical waveguide substrate 11. Branch waveguide portion 24 1-24 4 is not limited to four, in one, or other plural. The optical filter element 26 may be configured not only as a bandpass filter but also as a high-pass filter or a region-pass filter.

【0017】[0017]

【発明の効果】以上述べたようにこの発明によれば光導
波路基板の溝に光学フィルタ素子が挿入固定され、光導
波路と交差される構成であるため、一度、光導波路と光
学フィルタ素子との位置合せを行えば、その後、その位
置合せがずれるおそれがない。しかも部品を空間的に配
置するものでなく、光学フィルタ素子を光導波路基板に
固定するものであって占有空間が小さく、小形に作るこ
とができる。
As described above, according to the present invention, the optical filter element is inserted and fixed in the groove of the optical waveguide substrate and intersects with the optical waveguide. If the alignment is performed, there is no possibility that the alignment is shifted thereafter. Moreover, the components are not spatially arranged, but the optical filter element is fixed to the optical waveguide substrate, and the occupied space is small and the device can be made small.

【0018】特に、複数の光導波路と光学フィルタ素子
を交差させる場合は、光導波路基板上の光導波路の形状
寸法は高い精度で容易に作ることができるから、その1
つの光導波路と光学フィルタ素子との位置合せを行え
ば、他の光導波路と光学フィルタ素子との位置合せも自
動的に得られ、調整が頗る簡単であり、また相互に固定
され、周囲温度変化に影響されず、かつ小形に構成でき
る。光学フィルタ素子の膜厚の変化と、光学フィルタ素
子と光導波路とのなす角度の変化との両者を併用するこ
とにより、厚さ変化を小さく、かつ角度変化も小さくし
て、所望の分解能を得ることができる。
In particular, when a plurality of optical waveguides intersect an optical filter element, the shape and dimensions of the optical waveguide on the optical waveguide substrate can be easily made with high precision.
If one optical waveguide and the optical filter element are aligned, the alignment between the other optical waveguide and the optical filter element can be obtained automatically, and the adjustment is extremely simple. And can be made compact. By using both the change in the film thickness of the optical filter element and the change in the angle formed between the optical filter element and the optical waveguide, the thickness change is reduced and the angle change is also reduced to obtain a desired resolution. be able to.

【0019】またマイクロ加工技術により溝が作られて
いるため、光導波路と光学フィルタ素子との間の光結合
が、極めて少ない損失で行われる。
Further, since the grooves are formed by the micro-machining technique, optical coupling between the optical waveguide and the optical filter element is performed with extremely small loss.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示す斜視図。FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】損失が少なく光導波路を分岐させるための例を
示す図。
FIG. 2 is a diagram showing an example for splitting an optical waveguide with a small loss.

【図3】従来の光学フィルタを示す図。FIG. 3 is a diagram showing a conventional optical filter.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 表面に光導波路が形成され、その光導波
路と交差して上記表面に溝が形成された光導波路基板
と、 上記溝に挿入固定された高屈折率層と低屈折率層とを積
層してなる光学フィルタ素子とよりなる光学フィルタ。
An optical waveguide substrate having an optical waveguide formed on a surface thereof and a groove formed on the surface so as to intersect with the optical waveguide, a high refractive index layer and a low refractive index layer inserted and fixed in the groove. An optical filter comprising an optical filter element obtained by laminating the above.
【請求項2】 上記光導波路は1本の主導波路と、その
一端側に分岐接続され、ほぼ同一方向に延長した複数の
分岐導波路とよりなり、上記溝は上記分岐導波路の全て
と交差した1本の溝であり、かつ上記光学フィルタ素子
は上記分岐導波路の全てと対向されていることを特徴と
する請求項1記載の光学フィルタ。
2. The optical waveguide according to claim 1, wherein the optical waveguide comprises one main waveguide and a plurality of branch waveguides branch-connected to one end thereof and extending in substantially the same direction, and the groove intersects all of the branch waveguides. 2. The optical filter according to claim 1, wherein the groove is a single groove, and the optical filter element faces all of the branch waveguides.
【請求項3】 上記光学フィルタ素子は上記溝の長手方
向に沿って上記高屈折率層と低屈折率層の膜厚が変化し
ていることを特徴とする請求項2記載の光学フィルタ。
3. The optical filter according to claim 2, wherein the thickness of the high refractive index layer and the low refractive index layer of the optical filter element change along the longitudinal direction of the groove.
【請求項4】 上記光学フィルタ素子は上記溝の長手方
向に沿って上記高屈折率層と低屈折率層の膜厚が一定で
あり、上記光学フィルタ素子と上記各分岐導波路との各
交差角度が互いに異なっていることを特徴とする請求項
2又は3記載の光学フィルタ。
4. The optical filter element according to claim 1, wherein the high-refractive-index layer and the low-refractive-index layer have a constant thickness along the longitudinal direction of the groove, and each intersection between the optical filter element and each of the branch waveguides is provided. The optical filter according to claim 2, wherein the angles are different from each other.
【請求項5】 上記溝はマイクロ加工技術によって形成
されていることを特徴とする請求項1乃至4の何れかに
記載の光学フィルタ。
5. The optical filter according to claim 1, wherein said groove is formed by a micro-machining technique.
JP20451496A 1996-08-02 1996-08-02 Optical filter Pending JPH1048439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20451496A JPH1048439A (en) 1996-08-02 1996-08-02 Optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20451496A JPH1048439A (en) 1996-08-02 1996-08-02 Optical filter

Publications (1)

Publication Number Publication Date
JPH1048439A true JPH1048439A (en) 1998-02-20

Family

ID=16491799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20451496A Pending JPH1048439A (en) 1996-08-02 1996-08-02 Optical filter

Country Status (1)

Country Link
JP (1) JPH1048439A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6775439B2 (en) * 2001-11-20 2004-08-10 Hitachi, Ltd. Optical circuit device and optical transceiver
US7039279B2 (en) 2001-10-04 2006-05-02 Matsushita Electric Industrial Co., Ltd. Optical filter module and manufacturing method thereof
US7044649B2 (en) 2001-10-04 2006-05-16 Matsushita Electric Industrial Co., Ltd. Optical filter module, and manufacturing method thereof
US7172344B2 (en) 2001-10-04 2007-02-06 Matsushita Electric Industrial Co., Ltd. Optical filter module and manufacturing method thereof
CN113885154A (en) * 2021-09-26 2022-01-04 武汉光迅科技股份有限公司 Optical filter assembly and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7039279B2 (en) 2001-10-04 2006-05-02 Matsushita Electric Industrial Co., Ltd. Optical filter module and manufacturing method thereof
US7044649B2 (en) 2001-10-04 2006-05-16 Matsushita Electric Industrial Co., Ltd. Optical filter module, and manufacturing method thereof
US7172344B2 (en) 2001-10-04 2007-02-06 Matsushita Electric Industrial Co., Ltd. Optical filter module and manufacturing method thereof
US6775439B2 (en) * 2001-11-20 2004-08-10 Hitachi, Ltd. Optical circuit device and optical transceiver
CN113885154A (en) * 2021-09-26 2022-01-04 武汉光迅科技股份有限公司 Optical filter assembly and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6008920A (en) Multiple channel multiplexer/demultiplexer devices
US5786915A (en) Optical multiplexing device
JPH10339825A (en) Multiplexing device with high-precision optical block
JPH04212111A (en) Multi-port optical device
WO2001086329A2 (en) Cost-effective wavelength division multiplexer and demultiplexer
JPH1078528A (en) Optical multiplexer/demultiplexer and wavelength division multiplexing module
JP4311579B2 (en) Optical module and optical wavelength multiplexer / demultiplexer
JP2008209520A (en) Optical filter module
JPH1048439A (en) Optical filter
JP2001281493A (en) Wavelength demultiplexing and multiplexing module
JP3517406B2 (en) Wavelength variable multiplexer / demultiplexer and wavelength routing device
JPS6046682B2 (en) Optical multiplexing/demultiplexing circuit for optical beams
CN115542466A (en) Wavelength multiplexer/demultiplexer
US20020003922A1 (en) Optical demultiplexer/multiplexer
JP4076917B2 (en) Optical wavelength switch having planar optical circuit structure
US20040086221A1 (en) Low cost, hybrid integrated dense wavelength division multiplexer/demultiplexer for fiber optical networks
JP4632227B2 (en) Optical module
WO2000041015A1 (en) Dense wavelength division multiplexer using multiple reflection optical delay lines
JPH11190809A (en) Multiplexer demultiplexer
JPS62160405A (en) Demultiplexing element
JPS63106606A (en) Optical multiplexer and demultiplexer
JPH01231006A (en) Optical multiplexer/demultiplexer
JPH03291603A (en) Optical multiplexer/demultiplexer
JP3396477B2 (en) Integrated optical waveguide circuit
JPS59198420A (en) Production of multilayered filter for optical multiplexer/demultiplexer

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010116