JPH1048395A - Method for collecting fine particle in cutting time of in-pile structural material - Google Patents

Method for collecting fine particle in cutting time of in-pile structural material

Info

Publication number
JPH1048395A
JPH1048395A JP20559996A JP20559996A JPH1048395A JP H1048395 A JPH1048395 A JP H1048395A JP 20559996 A JP20559996 A JP 20559996A JP 20559996 A JP20559996 A JP 20559996A JP H1048395 A JPH1048395 A JP H1048395A
Authority
JP
Japan
Prior art keywords
fine particles
water
structural material
bubbles
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20559996A
Other languages
Japanese (ja)
Inventor
Akihiko Noya
明彦 野家
Hidetoshi Karasawa
英年 唐澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20559996A priority Critical patent/JPH1048395A/en
Publication of JPH1048395A publication Critical patent/JPH1048395A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a simple ventilation system which requires no replacement work by passing bubbles made in the cutting time of an in-vessel structural material through a metal mesh to subdivide them and then letting them ascent in the water. SOLUTION: An in-vessel structural material 2 is submerged in a pool 3 and is cut by a plasma cutter 1. On this occasion, an Ar gas emitted into the water becomes bubbles containing metal fine particles generated in the cutting work. Accordingly, a metal mesh 4 is installed in a diffusion preventing cover 5, and the diameter of a bubble is shortened by lessening the size of the mesh. The smaller bubbles ascent in the water, whereby it take only a shorter time for the fine particles to move to the surface of the bubbles to increase the quantity of moving fine particles per time, and improve the efficiency in the collection of them in the water. Consequently, a required collecting efficiency can be obtained by setting the diameter of a bubble and the depth of the water. Moreover, the other metal fine particles emitted into the air are sucked through the cover 5, and then the air is fed to an exhaust stack 8 by an air pump 6. Therefore, a simple ventilation system where it is unnecessary to replace a filter can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は原子炉に係わり、特
に、炉内構造材を減容するための水中での切断作業にお
いて、気中への金属微粒子の放出量を最小にする方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear reactor, and more particularly, to a method for minimizing the amount of fine metal particles released into the air during a cutting operation in water to reduce the volume of structural material inside the reactor.

【0002】[0002]

【従来の技術】従来の技術は、「原子炉解体とエアロゾ
ル」(池沢芳夫:エアロゾル研究、5(3),212−2
16(1990))に記載の様に、放射性の金属微粒子の
飛散を低減するため水中で行い、水中から放出された微
粒子を含む雰囲気を、局所排気装置を用いて吸引し、放
射性微粒子を捕集した後、環境に放出していた。
2. Description of the Related Art The conventional technology is "Reactor dismantling and aerosol" (Yoshio Ikezawa: Aerosol Research, 5 (3), 212-2).
16 (1990)), it is performed in water to reduce scattering of radioactive metal fine particles, and the atmosphere containing the fine particles released from the water is sucked using a local exhaust device to collect the radioactive fine particles. After being released to the environment.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、発生
した高放射性の金属微粒子が水中から作業室内の気中に
放出され、その後、換気系で処理される。このとき発生
する金属微粒子は粒径がサブミクロン以下のため捕集効
率の高いHEPA或いはULPA等のフィルタを用いる
必要があり、また、圧力損失の増加により、一定期間毎
の交換作業を必要としていた。
In the above-mentioned prior art, the generated highly radioactive metal fine particles are released from water into the air in a working room, and then processed in a ventilation system. Since the metal fine particles generated at this time have a particle size of submicron or less, it is necessary to use a filter such as HEPA or ULPA which has a high collection efficiency, and also requires replacement work at regular intervals due to an increase in pressure loss. .

【0004】本発明の目的は、交換作業等を必要としな
い簡便な換気系を提供することにある。
An object of the present invention is to provide a simple ventilation system that does not require replacement work or the like.

【0005】[0005]

【課題を解決するための手段】上記目的は、切断時に形
成された気泡を、格子状の金属メッシュを通過させ気泡
を細分化させた後、プール水中を上昇させることにより
達成される。
The above object is achieved by allowing bubbles formed at the time of cutting to pass through a grid-like metal mesh to fragment the bubbles, and then rising in the pool water.

【0006】プラズマ切断作業時には、キャリアガス中
に金属微粒子が含まれた気泡の状態で上昇する。
[0006] During the plasma cutting operation, the carrier gas rises in the state of bubbles containing metal fine particles in the carrier gas.

【0007】気泡内の微粒子は拡散,慣性,重力沈降等
の作用で気泡表面に移動した後、水中に移行し除去され
る。
The fine particles in the bubbles move to the surface of the bubbles by the action of diffusion, inertia, gravitational sedimentation, etc., and then move into water and are removed.

【0008】気泡径を小さくすることにより、粒子が気
泡表面に移行するまでの時間が短縮され、時間当りの粒
子の移行量を増加させ、捕集効率を増加させる。
[0008] By reducing the bubble diameter, the time required for the particles to move to the bubble surface is shortened, the amount of particles transferred per hour is increased, and the trapping efficiency is increased.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例を示す。図
1は構造材切断時の換気系でありプラズマ切断器1,炉
内構造材2,金属メッシュ3,拡散防止用カバー4,エ
アーポンプ5,作業室6,建屋7,排気筒8より構成さ
れる。原子炉から運び出されたSUS304製の厚さ20mm,
幅1mの炉内構造材2を作業室7内の水深4mのプール
中に水没させる。水中の炉内構造材をプラズマ切断器1
の遠隔操作により水平方向に切断する。直径1cmのノズ
ルよりArガスを100l/min で流した後、プラズマ
を供給電圧30kwで供給し、プラズマアークを発生さ
せる。構造材1の表面から5cmの距離に切断器のノズル
を設置し、切断器を500mm/min で移動させ切断す
る。この時、水中に放出されたArガスは切断時に発生
した金属微粒子を含む気泡となり拡散防止用カバー4に
取り付けられたサイズ2mm角の金属メッシュ3を通過
し、メッシュサイズの2倍程度の直径0.4cm の気泡に
分裂し水中を上昇していく。水中から気中に放出された
金属微粒子の作業室6への拡散を抑制するため、拡散防
止用カバー4を通して吸引した後、エアーポンプ5で吸
引し排気筒8に送気し、環境に放出する。切断で生じた
粒径20nmの微粒子の質量濃度は19.5g/cm3から
プール水中を3m上昇する間に、3×10~4g/cm3
減少した。この時のプール水中での粒子の除去率DF
(=1/捕集効率)の計算値は64600であり、気泡
を細分化させない場合にくらべて約67倍に増加する。
炉内構造材の切断作業における放射性微粒子の捕集効率
は99.99% 以上が目標とされており、必要とされる
捕集効率を得られることがわかった。
Embodiments of the present invention will be described below. FIG. 1 shows a ventilation system for cutting a structural material, which comprises a plasma cutter 1, a structural material in a furnace 2, a metal mesh 3, a cover for preventing diffusion 4, an air pump 5, a working room 6, a building 7, and an exhaust pipe 8. You. 20mm thick SUS304 carried out of the reactor,
The in-furnace structural material 2 having a width of 1 m is submerged in a pool having a depth of 4 m in the work room 7. Plasma cutting machine 1 for underwater furnace structural materials
Cut horizontally by remote control of. After flowing Ar gas at a flow rate of 100 l / min from a nozzle having a diameter of 1 cm, plasma is supplied at a supply voltage of 30 kW to generate a plasma arc. The nozzle of the cutter is set at a distance of 5 cm from the surface of the structural material 1, and the cutter is moved at 500 mm / min to cut. At this time, the Ar gas released into the water becomes bubbles containing metal fine particles generated at the time of cutting, passes through the metal mesh 3 of 2 mm square attached to the diffusion prevention cover 4 and has a diameter of about 2 times the mesh size. It breaks into bubbles of .4cm and rises in the water. In order to suppress the diffusion of the metal fine particles released from the water into the air into the work chamber 6, the metal fine particles are sucked through the diffusion prevention cover 4, then sucked by the air pump 5, sent to the exhaust pipe 8, and discharged to the environment. . The mass concentration of the fine particles having a particle diameter of 20 nm generated by the cutting decreased from 19.5 g / cm 3 to 3 × 10 to 4 g / cm 3 while rising 3 m in the pool water. Particle removal rate DF in pool water at this time
The calculated value of (= 1 / collection efficiency) is 64600, which is about 67 times larger than the case where bubbles are not subdivided.
The target collection efficiency of radioactive fine particles in the work of cutting the structural material inside the furnace is set at 99.99% or more, and it has been found that the required collection efficiency can be obtained.

【0010】また、メッシュサイズを1.5mm角とし、
気泡径を0.3cmとするとDFの計算値は2.1×107
となり、21649倍に増加する。気泡径を25%小さ
くすることによりDFは323倍大きくなり、気泡径を
小さくするとDFが大きく増加することがわかった。小
さくすることにより切断位置を水深2mと浅くして作業
した場合にもDFの計算値は62100で、目標とする
捕集効率を得られることがわかった。
The mesh size is 1.5 mm square,
Assuming that the bubble diameter is 0.3 cm, the calculated value of DF is 2.1 × 10 7
And increases by 21649 times. It was found that the DF was increased by 323 times by reducing the bubble diameter by 25%, and the DF was greatly increased by reducing the bubble diameter. Even when the cutting position was reduced to 2 m and the depth was reduced to 2 m, the calculated value of DF was 62100, indicating that the target collection efficiency could be obtained.

【0011】以上により、本実施例から金属微粒子を簡
便に捕集できることが確認できた。
From the above, it was confirmed from the present example that metal fine particles could be easily collected.

【0012】[0012]

【発明の効果】本発明によれば、切断時に発生した放射
性の金属微粒子を、気泡を細分化することにより捕集で
きるので、作業室の換気系を簡略化できる。
According to the present invention, radioactive metal fine particles generated at the time of cutting can be collected by dividing air bubbles, so that the ventilation system in the work room can be simplified.

【0013】また、浅い水深での切断作業が可能とな
り、作業の自由度が増す。
Further, the cutting operation at a shallow water depth becomes possible, and the degree of freedom of the operation is increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の説明図。FIG. 1 is an explanatory diagram of one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…プラズマ切断器、2…炉内構造材、3…金属メッシ
ュ、4…拡散防止用カバー、5…エアーポンプ、6…作
業室、7…建屋、8…排気筒。
DESCRIPTION OF SYMBOLS 1 ... Plasma cutting device, 2 ... Furnace structural material, 3 ... Metal mesh, 4 ... Diffusion prevention cover, 5 ... Air pump, 6 ... Work room, 7 ... Building, 8 ... Exhaust cylinder.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炉内構造材の水中での切断作業中、水中で
の気泡を細分化することを特徴とする炉内構造材切断時
の微粒子の捕集方法。
1. A method for collecting fine particles at the time of cutting a structural material in a furnace, characterized in that bubbles in the water are cut during the cutting operation of the structural material in the furnace.
【請求項2】請求項1において、前記気泡を細分化させ
るために格子状の金属メッシュを用いる炉内構造材切断
時の微粒子の捕集方法。
2. The method according to claim 1, wherein fine particles are cut at the time of cutting the in-furnace structural material using a grid-like metal mesh for subdividing the air bubbles.
JP20559996A 1996-08-05 1996-08-05 Method for collecting fine particle in cutting time of in-pile structural material Pending JPH1048395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20559996A JPH1048395A (en) 1996-08-05 1996-08-05 Method for collecting fine particle in cutting time of in-pile structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20559996A JPH1048395A (en) 1996-08-05 1996-08-05 Method for collecting fine particle in cutting time of in-pile structural material

Publications (1)

Publication Number Publication Date
JPH1048395A true JPH1048395A (en) 1998-02-20

Family

ID=16509549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20559996A Pending JPH1048395A (en) 1996-08-05 1996-08-05 Method for collecting fine particle in cutting time of in-pile structural material

Country Status (1)

Country Link
JP (1) JPH1048395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136537A (en) * 2019-02-21 2020-08-31 キオクシア株式会社 Substrate processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136537A (en) * 2019-02-21 2020-08-31 キオクシア株式会社 Substrate processing apparatus

Similar Documents

Publication Publication Date Title
JP2011131132A (en) Welding fume collector
US3997415A (en) Process for removing sulfur dioxide and nitrogen oxides from effluent gases
JP3111125B2 (en) Weld fume wet collection method and apparatus
JPH1048395A (en) Method for collecting fine particle in cutting time of in-pile structural material
CN103463913A (en) Dust removing method of filtering barrel type dust remover
JPH11170054A (en) Fume, gas treatment method in shielded gas arc welding
CN213591912U (en) Cutting off machine convenient to clear away metal debris
JP3383747B2 (en) Dust collection hood device for dust collector
CN107126794B (en) A kind of absorption cleaning method of two fans dust absorbing clarifier
Matsumoto et al. Underwater cutting of reactor core internals by CO laser using local-dry-zone creating nozzle
JP3795290B2 (en) EDM cutting device
CN217253683U (en) Efficient laser cutting machine
JP2008523978A (en) Self-cleaning and voltage-controlled electrostatic filtration method and electrostatic filtration device
CN213853893U (en) Integral type gradient dust removal, denitrification facility
CN212820957U (en) Grit screening plant
JP5187499B2 (en) Blasting device and operation method thereof
CN210906871U (en) Slag removal screening plant for cement processing
JP2009142917A (en) Blasting device and operation method of the same
JP2004298744A (en) Equipment and method for treating exhaust gas
JPH08209322A (en) Anticorrosive coating of underwater structure
CN210252678U (en) Emission reduction device for metallurgical equipment
JP2007131487A (en) Method for manufacturing glass preform for optical fiber
JPH07111477B2 (en) Cutting and demolition equipment for cylindrical structures
RU2681301C1 (en) Method of decontamination of surfaces of solid objects
CN217431242U (en) Tail dust removal pneumatic ash conveying system for sintering