JPH1048019A - Coriolis flow meter - Google Patents

Coriolis flow meter

Info

Publication number
JPH1048019A
JPH1048019A JP12591997A JP12591997A JPH1048019A JP H1048019 A JPH1048019 A JP H1048019A JP 12591997 A JP12591997 A JP 12591997A JP 12591997 A JP12591997 A JP 12591997A JP H1048019 A JPH1048019 A JP H1048019A
Authority
JP
Japan
Prior art keywords
light
optical cable
laser light
support
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12591997A
Other languages
Japanese (ja)
Other versions
JP2826101B2 (en
Inventor
Masayuki Saito
正之 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Corp
Original Assignee
Oval Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Corp filed Critical Oval Corp
Priority to JP12591997A priority Critical patent/JP2826101B2/en
Publication of JPH1048019A publication Critical patent/JPH1048019A/en
Application granted granted Critical
Publication of JP2826101B2 publication Critical patent/JP2826101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent a phase difference signal of a vibration tube in proportional to Coriolis force from electromagnetic noise at a driving portion and temperature influence of a measuring fluid. SOLUTION: Support bases 9a and 9b and support bases 10a and 10b of an optical cable are mounted at symmetrical positions from a driving portion 4 of vibration tubes 7 and 8 to be electromagnetic driven, and each optical cable for light projection or light reception are opposed thereto on one line in a vibration direction. A laser light from a laser light source 11 and a light reflected by a half mirror 12 are projected at optical fiber 19 and 20 on the light projection side. The laser light of the optical fibers 21 and 22 on the light reception side transmits the half mirror 14 and is collected, and an interference stripes whose number is in proportional to the Coriolis force is detected by a light detector 18. The laser light from the laser light source 11 transmitting the half mirrors 12 and 13 and the laser light on the light reception side reflected by the half mirror 13 are light interfered therewith, and the interference stripe of a period in proportional to a drive frequency is detected by the light detector 17.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はコリオリ流量計に関
し、より詳細には、流体が流れる振動管に作用するコリ
オリの力に比例した位相差信号を、レーザー光の干渉縞
の単位時間当りの数から求める光検出器を有するコリオ
リ流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Coriolis flowmeter, and more particularly, to a method for converting a phase difference signal proportional to a Coriolis force acting on a vibrating tube through which a fluid flows into a number of interference fringes of a laser beam per unit time. And a Coriolis flow meter having a photodetector determined from the following.

【0002】[0002]

【従来の技術】被測定流体が流れる流管の一端又は両端
を支持し、流管を該流管の流れ方向と垂直な方向に支持
点回りに加振したとき、該流管(振動管)に作用するコ
リオリの力が質量流量に比例することを利用した質量流
量計(コリオリ流量計)は周知である。従って、振動管
はコリオリ流量計における要部をなすもので、流量計の
特性を決定づけるものである。振動管の形状は湾曲管と
直管とに大別される。湾曲管方式のものはコリオリの力
を有効に取り出すための形状を選択できる点で高感度の
質量流量検出ができるが、形状が大きくなるという短所
がある。これに対して、直管方式の振動管は管軸が流れ
方向に配置されるので、形状は小さくなるが反面、感度
が低く、SN比が低下するので外乱に対し配慮しなけれ
ばならない短所がある。
2. Description of the Related Art One end or both ends of a flow tube through which a fluid to be measured flows is supported, and when the flow tube is vibrated around a support point in a direction perpendicular to the flow direction of the flow tube, the flow tube (vibration tube) A mass flow meter (Coriolis flow meter) utilizing the fact that the Coriolis force acting on the mass flow is proportional to the mass flow rate is well known. Therefore, the vibrating tube is an important part of the Coriolis flow meter, and determines the characteristics of the flow meter. The shape of the vibrating tube is roughly divided into a curved tube and a straight tube. The curved tube type can detect mass flow rate with high sensitivity in that a shape for effectively extracting Coriolis force can be selected, but has a disadvantage that the shape becomes large. On the other hand, a straight tube type vibrating tube has a disadvantage in that the tube axis is arranged in the flow direction, so the shape is small, but the sensitivity is low and the S / N ratio is low, so that consideration must be given to disturbance. is there.

【0003】本発明に関連した公知文献として、特開昭
62−238419号公報における「流れを連続的に測
定するための装置および方法」がある。これは、平行に
両端支持された直管を振動管としたコリオリ流量計に関
するものであり、これを以下に説明する。
As a known document related to the present invention, there is “Apparatus and Method for Continuously Measuring Flow” in JP-A-62-238419. This relates to a Coriolis flowmeter using a straight tube supported at both ends in parallel as a vibrating tube, which will be described below.

【0004】図5は、従来の直管式のコリオリ流量計を
説明するための図で、図中、40,45は支持部材、4
1,46はフランジ、42は流入口、47は流出口、4
3,44,48,49は分岐管、50a,50bは振動
管、51は励振器、52,53は検出器、54は変換器
である。
FIG. 5 is a view for explaining a conventional straight tube type Coriolis flowmeter. In FIG.
1, 46 are flanges, 42 is an inlet, 47 is an outlet, 4
3, 44, 48 and 49 are branch pipes, 50a and 50b are vibration pipes, 51 is an exciter, 52 and 53 are detectors, and 54 is a converter.

【0005】図5において、支持部材40と45とは左
右対称形で、各々流入口42、流出口47に連通した分
岐管43,44と分岐管48,49とを有し、分岐管4
3と48および分岐管44と49との間には同寸の直管
である振動管50aと50bとが互いに平行して連通し
固着支持されている。該振動管50aと50bとの中央
部にはコイル51aとコアー51bとからなる励振器5
1が設けられ、コイル51aは振動管50a側に、コア
ー51bは振動管50b側に、コアー51bがコイル5
1aの中央に挿入されるように配設され、更に、振動管
50aと50bにおける励振器51と支持部材40と4
5との支持点の間には、磁石52aとコイル52bとか
らなる検出器52と、磁石53aとコイル53bとから
なる検出器53とが配設されている。これら検出器52
と53および励振器51は変換器54に接続されてい
る。
In FIG. 5, support members 40 and 45 are bilaterally symmetric and have branch pipes 43 and 44 and branch pipes 48 and 49 communicating with an inlet 42 and an outlet 47, respectively.
Vibration tubes 50a and 50b, which are straight tubes of the same size, are communicated in parallel with each other and are fixedly supported between 3 and 48 and branch tubes 44 and 49. An exciter 5 composed of a coil 51a and a core 51b is provided at the center of the vibrating tubes 50a and 50b.
1, the coil 51a is on the vibration tube 50a side, the core 51b is on the vibration tube 50b side, and the core 51b is a coil 5a.
1a, the exciter 51 and the supporting members 40 and 4 in the vibrating tubes 50a and 50b.
5, a detector 52 composed of a magnet 52a and a coil 52b and a detector 53 composed of a magnet 53a and a coil 53b are arranged. These detectors 52
And 53 and the exciter 51 are connected to a converter 54.

【0006】図5に示したコリオリ流量計は、まず、変
換器54により励振器51のコイル51aが駆動され、
検出器52又は53の何れかの検出コイルに出力する検
出電圧を変換器54にポジティブフィードバックする閉
路を形成して、コイル51aがコアー51bを吸引反撥
するように一定振幅に制御され、振動管50aと50b
とは反射位相で加振される。加振により流体が流れる振
動管50aと50bとは、支持点に対して互いに反対の
回転方向の駆動を受けるので、検出器52と53とには
励振による振動検出信号と前記回転角速度および質量流
量のベクトル積に比例したコリオリの力が重畳され、コ
リオリの力は反対位相であるから、検出器52と53と
の間にはコリオリの力に比例する位相差信号が検出さ
れ、変換器54により位相差信号から質量流量に変換出
力される。
[0006] In the Coriolis flowmeter shown in FIG. 5, first, a coil 54 a of an exciter 51 is driven by a converter 54.
A closed circuit is formed to positively feedback the detection voltage output to either of the detection coils of the detectors 52 or 53 to the converter 54, and the coil 51a is controlled to have a constant amplitude so as to attract and repel the core 51b. And 50b
Is excited in the reflection phase. The vibrating tubes 50a and 50b, through which the fluid flows by the vibration, are driven in rotation directions opposite to each other with respect to the support point, so that the detectors 52 and 53 have a vibration detection signal by excitation and the rotational angular velocity and mass flow rate. Since the Coriolis force proportional to the vector product is superimposed and the Coriolis forces are in opposite phases, a phase difference signal proportional to the Coriolis force is detected between the detectors 52 and 53, and the converter 54 The phase difference signal is converted into a mass flow rate and output.

【0007】[0007]

【発明が解決しようとする課題】上述した従来のコリオ
リ流量計は振動管50aと50bとが直管であり、各々
は支持部材40と45とにより平行に支持されている。
更に、支持部材40と45とはフランジ41と46とに
より流管に接続される。従って振動管50aおよび50
bには振動により軸方向に張力又は圧縮力が作用してい
る。一方、振動管50a,50bには測定流体が等流量
に分流しており、質量流量を検知するために中央部で励
振器51により加振される。この結果、支持部材40と
45とには加振周波数の2倍の周波数の引張応力が作用
する。しかし、測定流体は目的に応じて温度や圧力条件
が異なるので、振動管50a,50bには軸方向、管壁
面方向に応力が作用し、これらの応力は、振動管50
a,50bの固有振動数を変化させる要因となる。振動
管の固有振動数の変化は、コリオリの力の発生原理に基
づいて求めようとする。質量流量に誤差を生じさせる。
また、両端支持された直管の曲げ剛性が大きいのでコリ
オリの力による直管の変形も小さく従って感度が低いの
で、検出器52,53の検出信号はSN比が優れている
ことが要求される。しかし、検出器52,53は電磁駆
動される励振器51の近傍にあり、検出コイルを有する
検出器52,53は励振器51等からの電磁ノイズを受
ける。また、検出器52,53は振動管を流れる流体温
度影響を受け、コイルのインピーダンス変化や磁束の変
化が生じ、一対の検出器が異なる変化である場合は温度
影響によるドリフトの発生が生じ、SN比の優れた高感
度の信号を出力することに問題があった。
In the above-described conventional Coriolis flowmeter, the vibrating tubes 50a and 50b are straight tubes, and are supported in parallel by supporting members 40 and 45, respectively.
Further, the support members 40 and 45 are connected to the flow tube by flanges 41 and 46. Therefore, the vibration tubes 50a and 50
A tension or compression force acts on b in the axial direction by vibration. On the other hand, the measurement fluid is diverted into the vibration tubes 50a and 50b at an equal flow rate, and is excited by the exciter 51 at the center in order to detect the mass flow rate. As a result, a tensile stress having a frequency twice as high as the excitation frequency acts on the support members 40 and 45. However, since the temperature and pressure conditions of the measurement fluid are different depending on the purpose, stress acts on the vibrating tubes 50a and 50b in the axial direction and the tube wall direction.
a, 50b. The change in the natural frequency of the vibrating tube is sought based on the principle of generation of Coriolis force. Causes errors in mass flow.
Further, since the straight pipe supported at both ends has a large bending rigidity, the deformation of the straight pipe due to the Coriolis force is small and the sensitivity is low, so that the detection signals of the detectors 52 and 53 are required to have an excellent SN ratio. . However, the detectors 52 and 53 are near the electromagnetically driven exciter 51, and the detectors 52 and 53 having the detection coils receive electromagnetic noise from the exciter 51 and the like. Further, the detectors 52 and 53 are affected by the temperature of the fluid flowing through the vibrating tube, causing a change in the impedance of the coil and a change in the magnetic flux. There was a problem in outputting a high-sensitivity signal with an excellent ratio.

【0008】本発明は、上述のごとき実情に鑑みてなさ
れたもので、測定流体の条件により測定精度が影響され
ることなく、高感度で、電磁ノイズの影響を受けない光
検出器を有するコリオリ流量計を提供することを目的と
するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a photodetector that is highly sensitive and free from electromagnetic noise without being affected by the measurement accuracy due to the conditions of the measurement fluid. It is intended to provide a flow meter.

【0009】[0009]

【課題を解決するための手段】請求項1の発明は、離間
した2点で支持された2本の振動管と、該振動管を支持
位置まわりに交番駆動する駆動手段を有し、該駆動手段
と前記2点で支持された位置までの前記振動管に、前記
2本の振動管間を対向するように設置された各々対をな
した光ケーブルの支持台と、該各々対をなした支持台を
結ぶ線上に、対向して配設された投光用、受光用光ケー
ブルと、前記投光用光ケーブルに投光するレーザー光源
と、該レーザー光源からのレーザー光と一方の前記受光
用光ケーブルからのレーザー光との干渉縞から、前記振
動管の駆動周波数と振幅を検知する振動検出手段と、双
方の受光用光ケーブルからのレーザー光の干渉縞の数か
らコリオリの力を検知する質量流量検出手段とから構成
したことを特徴とし、もって、高感度で外部からの電磁
ノイズや測定流体の温度影響を受けない光検出器を備え
るようにしたものである。
The invention according to claim 1 comprises two vibrating tubes supported at two spaced apart points, and driving means for alternately driving the vibrating tubes around a supporting position. A pair of optical cable support bases installed so as to oppose the two vibrating tubes to the vibrating tube up to the position supported by the means and the two points, and the respective paired supports On the line connecting the bases, for the light emitting and receiving optical cables disposed facing each other, a laser light source for emitting the light emitting optical cable, and a laser light from the laser light source and one of the light receiving optical cables. Vibration detection means for detecting the driving frequency and amplitude of the vibrating tube from interference fringes with the laser light, and mass flow detection means for detecting Coriolis force from the number of interference fringes of laser light from both light receiving optical cables It is characterized by consisting of , It has been, is obtained by such a light detector free from the temperature influence of the electromagnetic noise and the measurement fluid from the outside with high sensitivity.

【0010】請求項2の発明は、請求項1に記載のコリ
オリ流量計において、前記投光用光ケーブルの支持台に
凸面鏡を、前記受光用光ケーブルの支持台に凹面鏡を設
け、該投光用光ケーブルからの前記レーザー光を前記凸
面鏡と前記凹面鏡とで反射させ、該反射したレーザー光
を前記受光用光ケーブルに伝送することを特徴とし、も
って、送受光用の光ファイバーの位置調整を簡略化し効
率のよい光検出を可能となるようにしたものである。
According to a second aspect of the present invention, in the Coriolis flowmeter according to the first aspect, a convex mirror is provided on a support of the optical cable for light emission, and a concave mirror is provided on a support of the optical cable for light reception. The reflected laser light is reflected by the convex mirror and the concave mirror, and the reflected laser light is transmitted to the optical cable for receiving light, thereby simplifying the position adjustment of the optical fiber for transmitting and receiving light and improving efficiency. This is to enable light detection.

【0011】請求項3の発明は、請求項1に記載のコリ
オリ流量計において、前記投光用光ケーブルの支持台の
近傍で、該投光用光ケーブルと前記受光用光ケーブルと
の間の光軸上に凹レンズを設けたことを特徴とし、もっ
て、送受光用光ファイバーが多少の取り付け精度が低下
しても光検出を可能にするものである。
According to a third aspect of the present invention, in the Coriolis flowmeter according to the first aspect, an optical axis between the light emitting optical cable and the light receiving optical cable is provided near a support for the light emitting optical cable. And a concave lens is provided, so that light detection is possible even if the sending / receiving optical fiber has a slightly reduced mounting accuracy.

【0012】請求項4の発明は、請求項1に記載のコリ
オリ流量計において、各々の前記受光用光ケーブルの支
持台に光反射体を設け、該光反射体で反射された前記レ
ーザー光を前記投光用光ケーブルを介して受光すること
を特徴とし、もって、各々対をなす光ケーブルの受光用
の光ケーブルをなくし、安価で効率よく受光できるよう
にするものである。
According to a fourth aspect of the present invention, in the Coriolis flowmeter according to the first aspect, a light reflector is provided on a support of each of the light receiving optical cables, and the laser light reflected by each of the light reflectors is used as the laser light. It is characterized in that light is received via an optical cable for light emission, so that the optical cable for light reception of each pair of optical cables is eliminated, and light can be received efficiently at low cost.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(請求項1の発明)図1は、請求項1の発明の実施形態
を説明するための図で、図1(a)は、図1(b)の矢
視A−A線断面図、図1(b)は、図1(a)の矢視B
−B線断面図、図1(c)は、図1(a)の矢視C−C
線断面図であり、図中、1は筒状体、2は支持部材、4
は励振器、7,8は振動管、9(9a,9b),10
(10a,10b)は光ケーブルの支持台、11はレー
ザー光源、12,13,14は半透明鏡(以後、ハーフ
ミラーと呼ぶ)、15は遮蔽板(以後、シールド板と呼
ぶ)、16はレンズ、17,18は光検出器、19,2
0,21,22は光ケーブル、23は光コネクタであ
る。図1(a)に示すコリオリ流量計は、同じ寸法で等
しい曲率半径で湾曲した振動管7,8を筒状体1内に支
持部材2,2で両端支持され、湾曲面が平行で各々の曲
率中心が筒状体1の軸に関し同一方向にあるように配置
したもので、測定流体は矢印Q方向に均等に流入する。
励振器4は電磁コイルとコアーとからなり、該励振器4
のコイルとコアーとは振動管7と8とに固着されて矢印
F方向に互いに近接・反撥するように駆動される。光ケ
ーブルの支持台9は光ケーブルの支持台9aと9bを対
とし、光ケーブルの支持台9aは振動管7に、光ケーブ
ルの支持台9bは振動管8に振動管7,8の軸と直角に
交わる面で振動の矢印Fで示す直線上に固定される。同
様に、光ケーブルの支持台10は光ケーブルの支持台1
0aと10bを対とし、光ケーブルの支持台10aは振
動管7に、光ケーブルの支持台10bは振動管8に矢印
Fで示す振動方向の直線上に固着される。また、光ケー
ブルの支持台9aには投光用光ケーブル19が、光ケー
ブルの支持台9bには受光用光ケーブル21が共通した
直線上の光路を有するように固着される。同様に、光ケ
ーブルの支持台10aには投光用光ケーブル20が、光
ケーブルの支持台10bには受光用光ケーブル22が光
投受可能に対向して固着されている。光ケーブル19〜
22は、例えば、単一モード光ファイバであり、円筒体
1の筒壁に開口する透孔1aを貫通して円筒体1の外部
に設けた光コネクタ23に接続されている。なお、図1
の説明において、振動管7,8は湾曲管であるが、同径
2本の平行管または、異径の同軸な直管であってもよ
い。また、振動管の材質としては、互いに同材質で線膨
張率がほぼ等しいものが望ましい。
(Invention of Claim 1) FIG. 1 is a view for explaining an embodiment of the invention of claim 1, and FIG. 1 (a) is a sectional view taken along line AA of FIG. 1 (b). 1 (b) is an arrow B in FIG. 1 (a).
FIG. 1C is a sectional view taken along line CC of FIG. 1A.
FIG. 2 is a sectional view taken along a line, in which 1 is a cylindrical body, 2 is a support member,
Is an exciter, 7, 8 are vibrating tubes, 9 (9a, 9b), 10
(10a, 10b) is an optical cable support, 11 is a laser light source, 12, 13, and 14 are translucent mirrors (hereinafter, referred to as half mirrors), 15 is a shielding plate (hereinafter, referred to as a shielding plate), and 16 is a lens. , 17, 18 are photodetectors, 19, 2
Reference numerals 0, 21, 22 denote optical cables, and reference numeral 23 denotes an optical connector. In the Coriolis flowmeter shown in FIG. 1A, both ends of vibrating tubes 7 and 8 having the same dimensions and curved with the same radius of curvature are supported by supporting members 2 and 2 in a cylindrical body 1, and the curved surfaces are parallel to each other. The center of curvature is arranged so as to be in the same direction with respect to the axis of the cylindrical body 1, and the measurement fluid flows evenly in the arrow Q direction.
The exciter 4 includes an electromagnetic coil and a core.
The coil and the core are fixed to the vibrating tubes 7 and 8 and driven so as to approach and repel each other in the direction of arrow F. The optical cable support 9 is a pair of the optical cable supports 9a and 9b. The optical cable support 9a is on the vibrating tube 7, and the optical cable support 9b is on the vibrating tube 8 at a plane perpendicular to the axis of the vibrating tubes 7,8. Is fixed on the straight line indicated by the vibration arrow F. Similarly, the optical cable support 10 is the optical cable support 1.
Oa and 10b are paired, and the support 10a for the optical cable is fixed to the vibration tube 7 and the support 10b for the optical cable is fixed to the vibration tube 8 on a straight line in the vibration direction indicated by the arrow F. A light projecting optical cable 19 is fixed to the optical cable support 9a and a light receiving optical cable 21 is fixed to the optical cable support 9b so as to have a common linear optical path. Similarly, a light projecting optical cable 20 is fixed to the optical cable support 10a and a light receiving optical cable 22 is opposed to the optical cable support 10b so as to project light. Optical cable 19 ~
Reference numeral 22 denotes, for example, a single mode optical fiber, which is connected to an optical connector 23 provided outside the cylindrical body 1 through a through hole 1a opened in the cylindrical wall of the cylindrical body 1. FIG.
In the above description, the vibrating tubes 7 and 8 are curved tubes, but may be two parallel tubes of the same diameter or coaxial straight tubes of different diameters. Further, as the material of the vibrating tubes, it is desirable to use materials having the same material and substantially equal linear expansion coefficients.

【0014】レーザー光源11は、He−Ne(ヘリウ
ム・ネオン)レーザー等の単一周波数のコヒーレント光
を放射する光源で、レーザー光源11から放射したレー
ザー光はハーフミラー12で反射され、同時に光ケーブ
ル19,20に分離されて投光される。投光用光ケーブ
ル19側のレーザー光は、光ケーブルの支持台9aと9
bとの間を空間伝播して受光用光ケーブル21を通りハ
ーフミラー14に達する。ハーフミラー14を透過した
レーザー光はレンズ16に入射する。このときハーフミ
ラー14で反射されたレーザー光はシールド板15で遮
光される。
The laser light source 11 is a light source that emits coherent light of a single frequency, such as a He—Ne (helium / neon) laser. The laser light emitted from the laser light source 11 is reflected by the half mirror 12 and at the same time, an optical cable 19. , 20 and projected. The laser beam on the side of the light emitting optical cable 19 is transmitted to the support bases 9a and 9a of the optical cable.
and the light propagates through the light receiving optical cable 21 to reach the half mirror 14. The laser light transmitted through the half mirror 14 enters the lens 16. At this time, the laser light reflected by the half mirror 14 is shielded by the shield plate 15.

【0015】また、他の投光用光ファイバー20側のレ
ーザー光は光ケーブルの支持台10aと10bとの間を
空間伝播して受光用光ファイバー22に伝送されハーフ
ミラー14を透過したレーザー光はレンズ16に入射し
する。そして前記光ケーブル21からのレーザー光と光
干渉して検出位置における位相変位差に比例した単位時
間当りの干渉縞の数の明暗を光検出器18で検知し電気
変換して振動管7と8とのコリオリの力に応じた電気信
号が得られる。また、受光用光ケーブル22からのレー
ザー光がハーフミラー14で反射し、再びハーフミラー
13で反射され、該反射レーザー光は、ハーフミラー1
2,13を透過したレーザー光源11からのレーザー光
と光干渉して干渉縞を形成し、振動管7,8の振幅と固
有振動数とが光検出器17により検知される。
The laser light on the other side of the light emitting optical fiber 20 propagates in space between the support bases 10a and 10b of the optical cable, is transmitted to the light receiving optical fiber 22, and is transmitted through the half mirror 14 to the lens 16. Incident on. The light detector 18 detects light and darkness of the number of interference fringes per unit time, which is proportional to the phase displacement difference at the detection position, by light interference with the laser light from the optical cable 21, and performs electrical conversion to convert the light into vibration tubes 7 and 8. An electric signal corresponding to the Coriolis force of the above is obtained. The laser light from the light receiving optical cable 22 is reflected by the half mirror 14 and again reflected by the half mirror 13, and the reflected laser light is reflected by the half mirror 1.
The interference between the laser light from the laser light source 11 and the laser light from the laser light source 11 forms interference fringes, and the amplitude and the natural frequency of the vibration tubes 7 and 8 are detected by the photodetector 17.

【0016】上述の振動管7,8の振幅と固有振動数の
光検出方式を図に基づいて説明する。図2は、振動管の
振幅と固有振動数を検出する原理説明図で、図2(a)
は光ファイバー支持台10間のレーザー光の伝播を示す
図、図2(b)は干渉縞と振動振幅および振動周波数と
の関係を示す図である。図2(a)に示すごとく光ファ
イバー支持台10aと10bとの位置における振動管7
と8の振動は、斜線(A),(B)と点線(A′),
(B′)で示すように各々振幅a,bをもって吸引、反
撥が繰返される。この振動に従って、光ケーブル支持台
10aと10bとの間のレーザー光の空間伝播距離が変
化する。空間距離の変化速度は、励振に従って図2
(b)のSに示すように正弦波状に変化する。この変化
速度は、単位時間当りの変位量であるから、レーザー光
源11からのレーザー光と干渉して速度に比例した密度
をもった干渉縞が光検出器17に入射される。即ち、中
間点Pでは最高速度で干渉縞の密度も最大となり、A,
Bの折返し点では最低速度で干渉縞の密度は最小とな
る。これを電気変換したパルスCのパルス幅変換信号か
ら折返し点A,Bを検知して1振幅当りの時間、すなわ
ち振動周波数が検知される。
A method of detecting the amplitude and the natural frequency of the vibration tubes 7 and 8 will be described with reference to the drawings. FIG. 2 is a diagram for explaining the principle of detecting the amplitude and the natural frequency of the vibrating tube.
FIG. 2B is a diagram showing the propagation of laser light between the optical fiber supports 10, and FIG. 2B is a diagram showing the relationship between interference fringes and vibration amplitude and frequency. As shown in FIG. 2A, the vibrating tube 7 at the positions of the optical fiber supports 10a and 10b.
And (8) are represented by oblique lines (A) and (B) and dotted lines (A '),
As shown by (B '), suction and repulsion are repeated with amplitudes a and b, respectively. According to this vibration, the spatial propagation distance of the laser light between the optical cable supports 10a and 10b changes. The rate of change of the spatial distance depends on the excitation.
It changes in a sine wave shape as indicated by S in (b). Since this change speed is a displacement amount per unit time, interference fringes having a density proportional to the speed are made incident on the photodetector 17 by interfering with the laser light from the laser light source 11. That is, at the intermediate point P, the density of the interference fringes becomes maximum at the maximum speed, and A,
At the turning point of B, the density of the interference fringes becomes minimum at the lowest speed. The turning points A and B are detected from the pulse width conversion signal of the pulse C obtained by electrically converting the signal, and the time per amplitude, that is, the vibration frequency is detected.

【0017】また、パルスCに基づいて算出された周期
で1秒間に発生した干渉縞の数(パルスCの数)を除算
することにより、振動管7,8の振動振幅の大きさが算
出される。この振幅信号は振幅制御信号として利用され
る。
The magnitude of the vibration amplitude of the vibrating tubes 7 and 8 is calculated by dividing the number of interference fringes (the number of pulses C) generated per second by the cycle calculated based on the pulse C. You. This amplitude signal is used as an amplitude control signal.

【0018】一方、受光用光ケーブル21,22からハ
ーフミラー14を透過したレーザー光は、振動管7,8
の光ケーブル支持台9,10における空間伝播距離差に
よる干渉縞となり、レンズ16を介して光検出器18に
入射して、干渉縞の数に比例した電気信号パルスとして
検出される。このパルス信号は振動管7,8を流れる流
体に作用するコリオリの力に基づく位相差信号であるか
ら、例えば、1周期当りのパルスの数として質量流量を
求めることができる。
On the other hand, the laser light transmitted through the half mirror 14 from the light receiving optical cables 21 and 22 is transmitted to the vibrating tubes 7 and 8.
Are formed as interference fringes due to a difference in spatial propagation distance between the optical cable supports 9 and 10 and enter the photodetector 18 via the lens 16 and are detected as electric signal pulses proportional to the number of interference fringes. Since this pulse signal is a phase difference signal based on the Coriolis force acting on the fluid flowing through the vibrating tubes 7 and 8, the mass flow rate can be obtained, for example, as the number of pulses per cycle.

【0019】(請求項2の発明)請求項2の発明は、各
々の光ケーブルの支持台9と10において、投光、受光
する一対の光ケーブル19と21および光ケーブル20
と22をそれぞれ同一線上に配置するのではなく、反射
角度調整可能な、例えば、凸面鏡と凹面鏡の光反射体を
介して送受光するようにしたものである。
(Invention of claim 2) The invention according to claim 2 is directed to a pair of optical cables 19 and 21 and an optical cable 20 for projecting and receiving light on the support bases 9 and 10 of each optical cable.
And 22 are not arranged on the same line, but are transmitted and received via light reflectors of, for example, convex and concave mirrors whose reflection angles are adjustable.

【0020】図3(a)は、請求項2の発明の実施形態
を説明するための部分断面図であり、図中、9c,9d
は支持板、30aは凸面鏡,30bは凹面鏡であり、図
1と同様の作用をする部分には、図1の場合と同じ参照
番号を付してある。
FIG. 3A is a partial sectional view for explaining an embodiment of the second aspect of the present invention, in which 9c and 9d are shown.
Is a support plate, 30a is a convex mirror, and 30b is a concave mirror. Parts that perform the same operations as in FIG. 1 are denoted by the same reference numerals as in FIG.

【0021】図3(a)においては、光ケーブルの支持
台9aには凸面鏡30aが、光ケーブル支持台9bには
凹面鏡30bが、各々45°の互いに逆傾斜をもって対
向するように設けられている。また光ケーブルの支持台
9aと9bとには各々支持板9cと9dとが一体に固着
され、各々光ケーブル19と21とを互いに平行に凸面
鏡30aと凹面鏡30bとに支持し、光ケーブル19か
ら出射したレーザー光が凸面鏡30aで反射して凹面鏡
30bに伝播し、反射光が光ケーブル21に入射するよ
うにしている。この光路によると凸面鏡30aの散乱角
により散乱されたレーザ光は凹面鏡30bで集光され、
集光角を選ぶことにより組立精度範囲の集光が可能とな
る。
In FIG. 3A, a convex mirror 30a is provided on the optical cable support 9a, and a concave mirror 30b is provided on the optical cable support 9b so as to face each other at an angle of 45 °. Further, support plates 9c and 9d are integrally fixed to the support bases 9a and 9b of the optical cable, respectively, and the optical cables 19 and 21 are supported in parallel with the convex mirror 30a and the concave mirror 30b, respectively. The light is reflected by the convex mirror 30a and propagates to the concave mirror 30b, so that the reflected light enters the optical cable 21. According to this optical path, the laser light scattered by the scattering angle of the convex mirror 30a is collected by the concave mirror 30b,
By selecting the light collection angle, light collection within the assembly accuracy range becomes possible.

【0022】(請求項3の発明)請求項3の発明は、投
光用光ケーブルの支持台と受光用光ケーブルの支持台と
の間で、投光用光ケーブルの支持台近傍に凹レンズを設
けて、投光したレーザ光を散乱させ多少光損失があって
も受光用の光ケーブルに受光可能にしたものである。
According to a third aspect of the present invention, a concave lens is provided between the support for the light emitting optical cable and the support for the light receiving optical cable in the vicinity of the support for the light emitting optical cable. The laser beam emitted is scattered so that light can be received by the optical cable for light reception even if there is some light loss.

【0023】図3(b)は、請求項3の実施形態例を説
明するための部分図であり、図中、30cは凹レンズで
あり、同様な作用する部分には図1の場合と同一の参照
番号を付してある。図3(b)においては、光ケーブル
19と21は対向して各々光ケーブルの支持台9a,9
bに固着されているが、投光用光ケーブル19の支持台
9aと受光用光ケーブル21の支持台9bに、支持台9
bの近くの光路上に凹レンズ30cを設けることにより
投光されたレーザー光は散乱され、散乱光は受光用光ケ
ーブル21に所定面積に拡大されて入射されるので、多
少の取付位置精度が低下しても正しく受光できる。ま
た、図3(a),(b)において光ケーブル19,21
は各々支持台9a,9bに固着することにより湾曲管7
と8とに固定されたが、円筒体1に固着しておくと光ケ
ーブルは振動されずに保持にも都合がよい。
FIG. 3B is a partial view for explaining the third embodiment of the present invention. In FIG. 3B, reference numeral 30c denotes a concave lens, and the same working portions as those in FIG. Reference numbers are attached. In FIG. 3 (b), the optical cables 19 and 21 face each other and the optical cable supports 9a and 9 are opposed to each other.
b, the support 9a of the optical cable 19 for light emission and the support 9b of the optical cable 21 for light reception
By providing the concave lens 30c on the optical path near b, the emitted laser light is scattered and the scattered light is enlarged and incident on the light receiving optical cable 21 with a predetermined area, so that the mounting position accuracy is slightly reduced. Can receive light correctly. Also, in FIGS. 3A and 3B, the optical cables 19 and 21 are used.
Are fixed to the supports 9a and 9b, respectively, so that
However, when the optical cable is fixed to the cylindrical body 1, the optical cable is not vibrated and is convenient for holding.

【0024】(請求項4の発明)請求項4の発明は、受
光用光ケーブルの支持台に光反射体を設け、投光用光ケ
ーブルから光反射体に向けて投光したレーザー光が、該
光反射体で反射され投光用光ケーブルで受光するように
したものである。
(Invention of Claim 4) According to the invention of Claim 4, a light reflector is provided on a support base of a light receiving optical cable, and a laser beam projected from the light projecting optical cable toward the light reflector is generated by the light reflector. The light is reflected by the reflector and received by the light projecting optical cable.

【0025】図4は、請求項4の発明の実施形態例を説
明するための部分図であり、図中、24,25,26は
ハーフミラー、27は反射鏡ミラー、28,29は光ケ
ーブル、30,31は反射体で、図1と同様な作用する
部分には図1の場合と同一の参照番号を付してある。
FIG. 4 is a partial view for explaining an embodiment of the invention according to claim 4, in which 24, 25 and 26 are half mirrors, 27 is a reflecting mirror, 28 and 29 are optical cables, Reference numerals 30 and 31 denote reflectors, and the same reference numerals as in FIG.

【0026】図4に示した光検出方式は、投受光の光ケ
ーブルを一本で行う方式のものである。レーザー光源1
1から発射されたレーザー光は、ハーフミラー24,2
5を透過して光ケーブル28と29とに分岐されて、各
々光ケーブルの支持台9a,10aの位置から空間伝播
されて鏡、プリズム等の反射体30,31により反射さ
れ各々の光ケーブル28と29を伝送されハーフミラー
25に達する。ハーフミラー25で反射された流出側の
光ケーブル28のレーザー光はシールド板15により遮
断されるが、流入側の光ケーブル29からのレーザー反
射光は、ミラー27とハーフミラー26とを通過してレ
ーザー光源11からのレーザー光とで干渉縞を形成し、
該干渉縞を光検知器17により検知して電気信号に変換
し、該電気信号から振動管7,8の振動数及び振幅を求
める。また、ハーフミラー25と24を透過した光ケー
ブル28,29からのレーザー光はレンズ16を介して
質量流量に応じた干渉縞の明暗光を作り、該明暗光を光
検出器18により検知して電気信号に変換し、該電気信
号から振動管7,8間の位相差に応じた質量流量を求め
る。
The light detection system shown in FIG. 4 is a system in which a single optical cable for transmitting and receiving light is used. Laser light source 1
The laser light emitted from 1 is transmitted to the half mirrors 24 and 2
5, the light is branched into optical cables 28 and 29, respectively, is spatially propagated from the positions of the support bases 9a and 10a of the optical cables, and is reflected by reflectors 30 and 31 such as mirrors and prisms. The transmitted light reaches the half mirror 25. The laser light of the outgoing side optical cable 28 reflected by the half mirror 25 is cut off by the shield plate 15, but the laser reflected light from the inflow side optical cable 29 passes through the mirror 27 and the half mirror 26 and becomes a laser light source. Form interference fringes with laser light from 11,
The interference fringes are detected by the light detector 17 and converted into electric signals, and the frequencies and amplitudes of the vibrating tubes 7 and 8 are obtained from the electric signals. The laser light from the optical cables 28 and 29 transmitted through the half mirrors 25 and 24 forms bright and dark light of interference fringes according to the mass flow rate through the lens 16, and the bright and dark light is detected by the photodetector 18 to generate electric light. The mass flow rate is determined from the electric signal according to the phase difference between the vibrating tubes 7 and 8.

【0027】[0027]

【発明の効果】請求項1に対応する効果:離間した2点
で支持された2本の振動管と、該振動管を支持位置まわ
りに交番駆動する駆動手段を有し、該駆動手段と前記2
点で支持された位置までの前記振動管に、前記2本の振
動管間を対向するように設置された各々対をなした光ケ
ーブルの支持台と、該各々対をなした支持台を結ぶ線上
に、対向して配設された投光用、受光用光ケーブルと、
該投光用光ケーブルに投光するレーザー光源と、該レー
ザー光源からのレーザー光と一方の前記受光用光ケーブ
ルからのレーザー光との干渉縞から、振動管の駆動周波
数と振幅を検知する振動検出手段と、双方の受光用光ケ
ーブルからのレーザー光の干渉縞の数からコリオリの力
を検知する質量流量検出手段とから構成したので、電磁
駆動される励振器等からの電磁ノイズを受けることな
く、高感度、高精度に駆動周波数およびコリオリ力に比
例した位相差信号を検出することができる。
According to the first aspect of the present invention, there are provided two vibrating tubes supported at two spaced apart points, and driving means for alternately driving the vibrating tubes around a supporting position. 2
A pair of optical cable supporting bases installed so as to oppose the two vibrating tubes to the vibrating tube up to a position supported by a point, and a line connecting the paired supporting stands. , An optical cable for light emission and light reception arranged opposite to
A laser light source for projecting light onto the light emitting optical cable, and vibration detecting means for detecting a driving frequency and amplitude of the vibrating tube from interference fringes between the laser light from the laser light source and the laser light from one of the light receiving optical cables. And the mass flow rate detecting means for detecting the Coriolis force from the number of interference fringes of the laser light from both light receiving optical cables, so that it does not receive electromagnetic noise from an electromagnetically driven exciter, etc. A phase difference signal proportional to the drive frequency and the Coriolis force can be detected with high sensitivity and high accuracy.

【0028】請求項2に対応する効果:請求項1に記載
のコリオリ流量計において、前記投光用光ケーブルの支
持台に凸面鏡を、前記受光用光ケーブルの支持台に凹面
鏡を設け、該投光用光ケーブルからの前記レーザー光を
前記凸面鏡と前記凹面鏡とで反射させ、該反射したレー
ザー光を前記受光用光ケーブルに伝送するようにしたの
で、投受光の光ファイバーの位置合せの調整が省ける。
According to a second aspect of the present invention, in the Coriolis flowmeter according to the first aspect, a convex mirror is provided on a support of the light emitting optical cable, and a concave mirror is provided on a support of the light receiving optical cable. Since the laser light from the optical cable is reflected by the convex mirror and the concave mirror and the reflected laser light is transmitted to the light receiving optical cable, the adjustment of the alignment of the optical fibers for projecting and receiving light can be omitted.

【0029】請求項3に対応する効果:請求項1に記載
のコリオリ流量計において、前記投光用光ケーブルの支
持台の近傍で、該投光用光ケーブルと前記受光用光ケー
ブルとの間の光軸上に凹レンズを設けたので、多少の取
付位置精度が低下しても正しく受光することができる。
According to a third aspect of the present invention, in the Coriolis flowmeter according to the first aspect, an optical axis between the light emitting optical cable and the light receiving optical cable near the support of the light emitting optical cable. Since the concave lens is provided on the upper part, it is possible to correctly receive light even if the mounting position accuracy is slightly reduced.

【0030】請求項4に対応する効果:請求項1に記載
のコリオリ流量計において、各々の前記受光用光ケーブ
ルの支持台に光反射体を設け、該光反射体で反射された
前記レーザー光を前記投光用光ケーブルを介して受光す
るようにしたので、受光用の光ケーブルが不要となり、
更に、反射体の取付け位置の姿勢を調整することにより
効率よく、投受光が可能となる。
According to a fourth aspect of the present invention, in the Coriolis flow meter according to the first aspect, a light reflector is provided on a support of each of the light receiving optical cables, and the laser light reflected by the light reflector is provided. Since the light is received via the optical cable for light emission, an optical cable for light reception becomes unnecessary,
Further, by adjusting the posture of the mounting position of the reflector, it is possible to transmit and receive light efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 請求項1の発明の実施形態を説明するための
図である。
FIG. 1 is a diagram for explaining an embodiment of the invention of claim 1;

【図2】 振動管の振幅と固有振動数を検出する原理説
明図である。
FIG. 2 is a diagram illustrating the principle of detecting the amplitude and the natural frequency of a vibrating tube.

【図3】 (a)は請求項2の発明の実施形態例を説明
するための部分図であり、(b)は請求項3の発明の実
施形態を説明するための部分断面図である。
FIG. 3A is a partial view for explaining an embodiment of the second aspect of the present invention, and FIG. 3B is a partial cross-sectional view for explaining an embodiment of the third aspect of the present invention.

【図4】 請求項4の発明の実施形態例を説明するため
の部分図である。
FIG. 4 is a partial view for explaining an embodiment of the invention according to claim 4;

【図5】 従来の直管式のコリオリ流量計を説明するた
めの図である。
FIG. 5 is a view for explaining a conventional straight tube type Coriolis flow meter.

【符号の説明】[Explanation of symbols]

1…筒状体、2…支持部材、4…励振器、7,8…振動
管、9(9a,9b),10(10a,10b)…光ケ
ーブルの支持台、11…レーザー光源、12,13,1
4…半透明鏡(ハーフミラー)、15…遮蔽板(シール
ド板)、16…レンズ、17,18…光検出器、19,
20,21,22…光ケーブル、23…光コネクタ、2
4,25,26…ハーフミラー、27…反射鏡ミラー、
28,29…光ケーブル、30,31…反射体、30c
…凹レンズ。
DESCRIPTION OF SYMBOLS 1 ... Cylindrical body, 2 ... Support member, 4 ... Exciter, 7 and 8 ... Vibration tube, 9 (9a, 9b), 10 (10a and 10b) ... Optical cable support base, 11 ... Laser light source, 12 and 13 , 1
4 translucent mirror (half mirror), 15 shielding plate (shield plate), 16 lens, 17, 18 photodetector, 19,
20, 21, 22 ... optical cable, 23 ... optical connector, 2
4, 25, 26: half mirror, 27: reflecting mirror,
28, 29: Optical cable, 30, 31, Reflector, 30c
…concave lens.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 離間した2点で支持された2本の振動管
と、該振動管を支持位置まわりに交番駆動する駆動手段
を有し、該駆動手段と前記2点で支持された位置までの
前記振動管に、前記2本の振動管間を対向するように設
置された各々対をなした光ケーブルの支持台と、該各々
対をなした支持台を結ぶ線上に、対向して配設された投
光用、受光用光ケーブルと、前記投光用光ケーブルに投
光するレーザー光源と、該レーザー光源からのレーザー
光と一方の前記受光用光ケーブルからのレーザー光との
干渉縞から、前記振動管の駆動周波数と振幅を検知する
振動検出手段と、双方の受光用光ケーブルからのレーザ
ー光の干渉縞の数からコリオリの力を検知する質量流量
検出手段とから構成したことを特徴とするコリオリ流量
計。
1. A vibration device comprising: two vibrating tubes supported at two spaced apart points; and driving means for alternately driving the vibrating tubes around a supporting position, to a position supported by the driving means and the two points. And a pair of optical cable supporting bases installed so as to oppose the two vibrating pipes, and a pair of optical cable supporting bases facing each other on a line connecting the paired supporting bases. The optical cable for light emission and light reception, the laser light source for projecting light onto the optical cable for light emission, and the interference fringe between the laser light from the laser light source and the laser light from one of the light reception optical cables, A Coriolis flow rate characterized by comprising vibration detecting means for detecting the driving frequency and amplitude of the tube, and mass flow rate detecting means for detecting the Coriolis force from the number of interference fringes of the laser light from both light receiving optical cables. Total.
【請求項2】 前記投光用光ケーブルの支持台に凸面鏡
を、前記受光用光ケーブルの支持台に凹面鏡を設け、該
投光用光ケーブルからの前記レーザー光を前記凸面鏡と
前記凹面鏡とで反射させ、該反射したレーザー光を前記
受光用光ケーブルに伝送することを特徴とする請求項1
に記載のコリオリ流量計。
2. A convex mirror is provided on a support of the light projecting optical cable, a concave mirror is provided on a support of the light receiving optical cable, and the laser light from the light projecting optical cable is reflected by the convex mirror and the concave mirror. 2. The reflected laser light is transmitted to the light receiving optical cable.
The Coriolis flowmeter described in 1.
【請求項3】 前記投光用光ケーブルの支持台の近傍
で、該投光用光ケーブルと前記受光用光ケーブルとの間
の光軸上に凹レンズを設けたことを特徴とする請求項1
に記載のコリオリ流量計。
3. A concave lens is provided on an optical axis between the light emitting optical cable and the light receiving optical cable in the vicinity of a support for the light emitting optical cable.
The Coriolis flowmeter described in 1.
【請求項4】 各々の前記受光用光ケーブルの支持台に
光反射体を設け、該光反射体で反射された前記レーザー
光を前記投光用光ケーブルを介して受光することを特徴
とした請求項1に記載のコリオリ流量計。
4. A light reflecting body is provided on a support of each of said light receiving optical cables, and said laser light reflected by said light reflecting bodies is received via said light projecting optical cable. 2. The Coriolis flowmeter according to 1.
JP12591997A 1997-05-15 1997-05-15 Coriolis flow meter Expired - Fee Related JP2826101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12591997A JP2826101B2 (en) 1997-05-15 1997-05-15 Coriolis flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12591997A JP2826101B2 (en) 1997-05-15 1997-05-15 Coriolis flow meter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3022892A Division JP2826011B2 (en) 1992-01-20 1992-01-20 Coriolis flow meter

Publications (2)

Publication Number Publication Date
JPH1048019A true JPH1048019A (en) 1998-02-20
JP2826101B2 JP2826101B2 (en) 1998-11-18

Family

ID=14922195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12591997A Expired - Fee Related JP2826101B2 (en) 1997-05-15 1997-05-15 Coriolis flow meter

Country Status (1)

Country Link
JP (1) JP2826101B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6807868B1 (en) 1999-10-05 2004-10-26 Oval Corporation Coriolis mass flow meter
DE102008023056A1 (en) * 2008-05-09 2009-11-12 Endress + Hauser Flowtec Ag Coriolis-mass flow rate measuring sensor for use in pipeline for measuring mass flow rate of e.g. gas, has sample exhibiting areas with optical characteristics assigned so that gradient of intensity of light reproduces oscillation of tube
JP5996764B1 (en) * 2015-12-01 2016-09-21 株式会社オーバル Coriolis flow meter and phase difference detection method of Coriolis flow meter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6807868B1 (en) 1999-10-05 2004-10-26 Oval Corporation Coriolis mass flow meter
DE102008023056A1 (en) * 2008-05-09 2009-11-12 Endress + Hauser Flowtec Ag Coriolis-mass flow rate measuring sensor for use in pipeline for measuring mass flow rate of e.g. gas, has sample exhibiting areas with optical characteristics assigned so that gradient of intensity of light reproduces oscillation of tube
JP5996764B1 (en) * 2015-12-01 2016-09-21 株式会社オーバル Coriolis flow meter and phase difference detection method of Coriolis flow meter

Also Published As

Publication number Publication date
JP2826101B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
US4895031A (en) Sensor mounting for coriolis mass flow rate meter
JPH054005B2 (en)
EP0489474A1 (en) Laser apparatus for measuring the velocity of a fluid
TWI628418B (en) Coriolis mass flow meter
US5038620A (en) Coriolis mass flow meter
JP2826101B2 (en) Coriolis flow meter
JP2557098B2 (en) Convection inertial force flow meter
CN108692778B (en) Coriolis mass flowmeter
JPH05196488A (en) Colioris flowmeter
JP3512333B2 (en) Coriolis flow meter
JPH08265262A (en) Optical microphone
JP3535625B2 (en) Ultrasonic current meter
JPS5921486B2 (en) Flowmeter
JP2002365103A (en) Karman vortex flowmeter of interferometer type with optical fiber loop
US5264971A (en) Transmissive doppler frequency shifter
JP3058094B2 (en) Mass flow meter
JP2001074759A (en) Non-contact flow velocity/flow rate measurement method using electromagnetic ultrasonic wave
JPS5880525A (en) Karman vortex flowmeter
JP2846139B2 (en) Ultrasonic current meter
EP3280980B1 (en) Measuring a spatiotemporal relationship between two positions of a vibratory flow tube in a vibratory flow meter
JPH0587588A (en) Displacement measuring device
JPH081455Y2 (en) Vortex flowmeter
RU2316734C2 (en) Method and device for balancing coriolis flow meter
JP2002071399A (en) Flow rate using optical loop interferometer or flow rate measurement method and device thereof
JP2576458Y2 (en) Mass flow meter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20070911

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080911

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080911

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090911

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090911

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100911

LAPS Cancellation because of no payment of annual fees