JP2826011B2 - Coriolis flow meter - Google Patents

Coriolis flow meter

Info

Publication number
JP2826011B2
JP2826011B2 JP3022892A JP3022892A JP2826011B2 JP 2826011 B2 JP2826011 B2 JP 2826011B2 JP 3022892 A JP3022892 A JP 3022892A JP 3022892 A JP3022892 A JP 3022892A JP 2826011 B2 JP2826011 B2 JP 2826011B2
Authority
JP
Japan
Prior art keywords
vibrating
tubes
tube
end faces
coriolis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3022892A
Other languages
Japanese (ja)
Other versions
JPH05196488A (en
Inventor
正之 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOBARU KK
Original Assignee
OOBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOBARU KK filed Critical OOBARU KK
Priority to JP3022892A priority Critical patent/JP2826011B2/en
Publication of JPH05196488A publication Critical patent/JPH05196488A/en
Application granted granted Critical
Publication of JP2826011B2 publication Critical patent/JP2826011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コリオリ流量計に
関し、より詳細には、流体を流してコリオリの力を発生
させる振動管を僅かに湾曲させた直管方式のコリオリの
原理に基づいた質量流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Coriolis flowmeter, and more particularly, to a mass based on the principle of a straight tube type Coriolis in which a vibrating tube for generating a Coriolis force by flowing a fluid is slightly curved. It relates to a flow meter.

【0002】[0002]

【従来技術】被側流体が流れる流管(振動管)の一端又
は両端を支持し、該振動管を流れ方向と直角な方向に支
持点回りに加振したとき、該振動管に作用するコリオリ
の力が質量流量に比例することを利用したコリオリ流量
計は周知である。従って、振動管はコリオリ流量計にお
ける要部をなすもので、流量計の特性を決定づけるもの
である。振動管の形状は湾曲管と直管とに大別され、湾
曲管方式の振動管はコリオリの力を有効に取り出すため
の形状を選択できる点で高感度に質量流量の検出ができ
るが、形状が大きくなるという短所がある。これに対し
て、直管方式の振動管は管軸が流れ方向に配置されるの
で、形状は小さくなるが、反面感度が低く、SN比が低
下するので外乱に対し配慮しなければならない短所があ
る。
2. Description of the Related Art Coriolis acting on a vibrating tube when one end or both ends of a flow tube (vibrating tube) through which a fluid to be flowed is supported and the vibrating tube is vibrated around a supporting point in a direction perpendicular to the flow direction. Coriolis flow meters that utilize the fact that the force of a force is proportional to the mass flow rate are well known. Therefore, the vibrating tube is an important part of the Coriolis flow meter, and determines the characteristics of the flow meter. The shape of the vibrating tube is roughly divided into a curved tube and a straight tube.The curved tube type vibrating tube can detect the mass flow rate with high sensitivity because the shape to select the Coriolis force effectively can be selected. Has the disadvantage of becoming larger. On the other hand, a straight tube type vibrating tube has a small shape because the tube axis is arranged in the flow direction, but has a disadvantage that the sensitivity is low and the S / N ratio is low, so that consideration must be given to disturbance. is there.

【0003】本発明に関連した公知文献として、特開昭
62−238419号公報における「流れを連続的に測
定するための装置および方法」がある。これは、平行に
両端支持された直管を振動管としたコリオリ流量計に関
するものであり、これを以下に説明する。
As a known document related to the present invention, there is “Apparatus and Method for Continuously Measuring Flow” in JP-A-62-238419. This relates to a Coriolis flowmeter using a straight tube supported at both ends in parallel as a vibrating tube, which will be described below.

【0004】図6は、従来の直管式のコリオリ流量計を
説明するための図で、図中、30,35は支持部材、3
1,36はフランジ、32は流入口、37は流出口、3
3,34,38,39は分岐管、40a,40bは振動
管、41は励振器、42,43は検出器、44は変換器
である。
FIG. 6 is a view for explaining a conventional straight tube type Coriolis flowmeter. In FIG.
1, 36 are flanges, 32 is an inlet, 37 is an outlet, 3
Reference numerals 3, 34, 38 and 39 denote branch pipes, reference numerals 40a and 40b denote vibration tubes, reference numeral 41 denotes an exciter, reference numerals 42 and 43 denote detectors, and reference numeral 44 denotes a converter.

【0005】図6において、支持部材30と35とは左
右対称形で、各々流入口32、流出口37に連通した分
岐管33と34および38と39とを有し、分岐管33
と38および34と39との間には、同寸の直管である
振動管40aと40bとが互いに平行して連通し固着支
持されている。該振動管40aと40bとの中央部には
コイル41aとコアー41bとからなる励振器41が設
けられ、コイル41aは振動管40a側に、コアー41
bは振動管40b側に、コアー41bがコイル41aの
中央に挿入されるようにとり付けられ、更に、励振器4
1と支持部材30と35による支持点の間には、磁石4
3aとコイル43bとからなる検出器43と、磁石42
aとコイル42bとからなる検出器42とが設けられて
いる。これら検出器42と43および励振器41は変換
器44に接続されている。
In FIG. 6, support members 30 and 35 are bilaterally symmetric and have branch pipes 33 and 34 and 38 and 39 communicating with an inlet 32 and an outlet 37, respectively.
And 38 and 34 and 39, vibrating tubes 40a and 40b, which are straight tubes of the same size, are communicated in parallel with each other and fixedly supported. An exciter 41 composed of a coil 41a and a core 41b is provided at the center of the vibrating tubes 40a and 40b.
b is attached to the vibrating tube 40b so that the core 41b is inserted into the center of the coil 41a.
1 and a supporting point between the supporting members 30 and 35, a magnet 4
A detector 43 comprising a coil 3b and a coil 43b;
a and a detector 42 comprising a coil 42b. These detectors 42 and 43 and the exciter 41 are connected to a converter 44.

【0006】図6に示したコリオリ流量計は、まず、変
換器44により励振器41のコイル41aが駆動され、
検出器42又は43の何れかの検出コイルに出力する検
出電圧を変換器44においてポジティブフィードバック
する閉路を形成して、コイル41aがコアー41bを吸
引反撥するように一定振幅で駆動制御され、振動管40
aと40bとを反対位相で加振する。加振により流体が
流れる振動管40aと40bとは、支持点に対して互い
に反対の回転方向の駆動を受けるので、検出器43と4
2とには駆動による駆動検出信号と駆動信号の角速度と
質量流量のベクトル積に比例したコリオリの力が重畳さ
れる。コリオリの力は反対位相として発生するため、検
出器42と43との間にはコリオリの力に比例した位相
差信号が検出され、変換器44により位相差信号から質
量流量が変換出力される。
In the Coriolis flowmeter shown in FIG. 6, first, a coil 44a of an exciter 41 is driven by a converter 44,
A converter 44 forms a closed circuit for positively feeding back a detection voltage output to a detection coil of either the detector 42 or 43 in the converter 44, and the coil 41a is driven and controlled at a constant amplitude so as to attract and repel the core 41b. 40
a and 40b are excited in opposite phases. The vibrating tubes 40a and 40b, through which the fluid flows due to the excitation, are driven in opposite rotational directions with respect to the support points, so that the detectors 43 and 4
2 is superimposed with a drive detection signal due to the drive, and a Coriolis force proportional to the vector product of the angular velocity of the drive signal and the mass flow rate. Since the Coriolis force is generated as the opposite phase, a phase difference signal proportional to the Coriolis force is detected between the detectors 42 and 43, and the converter 44 converts and outputs the mass flow rate from the phase difference signal.

【0007】[0007]

【発明が解決しようとする課題】上述の従来のコリオリ
流量計は振動管40aと40bが直管であり、各々は支
持部材30と35とにより平行に支持されている。更
に、支持部材30と35とはフランジ31と36とによ
り流管に接続される。従って振動管40aおよび40b
には振動により軸方向に張力又は圧縮力が作用してい
る。一方、振動管40a,40bには測定流体が等流量
に分流しており、質量流量を検知するために中央部で励
振器41により加振される。この結果、支持部材30、
35の支持位置近傍には加振周波数の2倍の周波数の引
張応力が作用する。しかし、測定流体は、目的に応じて
温度や圧力条件が異なるので、振動管40a,40bに
は軸方向、管壁面方向に応力が作用し、これらの応力
は、振動管40a,40bの固有振動数を変化させる要
因となる。質量流量は駆動周波数に比例する量であるか
ら、振動管の固有振動数の変化は誤差要因となる。ま
た、両端支持された直管の曲げ剛性が大きいので、コリ
オリの力による直管の変形も小さく、従って感度が低い
という問題があった。
In the above-mentioned conventional Coriolis flowmeter, the vibrating tubes 40a and 40b are straight tubes, each of which is supported in parallel by supporting members 30 and 35. Further, the support members 30 and 35 are connected to the flow tube by flanges 31 and 36. Therefore, the vibration tubes 40a and 40b
Is subjected to a tension or a compression force in the axial direction by vibration. On the other hand, the measurement fluid is diverted into the vibrating tubes 40a and 40b at an equal flow rate, and is excited by the exciter 41 at the center in order to detect the mass flow rate. As a result, the support member 30,
In the vicinity of the support position 35, a tensile stress having a frequency twice as high as the excitation frequency acts. However, since the temperature and pressure conditions of the measurement fluid differ depending on the purpose, stress acts on the vibrating tubes 40a and 40b in the axial direction and the tube wall direction, and these stresses are caused by the natural vibration of the vibrating tubes 40a and 40b. It is a factor that changes the number. Since the mass flow is an amount proportional to the drive frequency, a change in the natural frequency of the vibrating tube becomes an error factor. In addition, since the straight pipe supported at both ends has a large bending rigidity, there is a problem that the deformation of the straight pipe due to the Coriolis force is small, and the sensitivity is low.

【0008】本発明は、上述のごとき実情に鑑みてなさ
れたもので、測定流体の条件により、測定精度に影響を
受けることなく、高感度で質量流量を計測できるコリオ
リ流量計を提供することを目的としてなされたものであ
る。
The present invention has been made in view of the above situation, and provides a Coriolis flowmeter capable of measuring a mass flow rate with high sensitivity without being affected by measurement accuracy depending on the conditions of a measurement fluid. It was made for the purpose.

【0009】[0009]

【課題を解決するための手段】請求項1の発明は、両端
面を有する筒状体と、該筒状体内に前記両端面で支持さ
れ測定流体を流す弾性限界内で湾曲させた直管の振動管
と、該振動管の中央部で該振動管の湾曲軸を含む面と直
角な方向に振動させる駆動手段と、該駆動手段と前記両
端面との間に設けられ、該振動管のコリオリの力による
位相差を検知するセンサとで構成したことを特徴とし、
もって、振動管の温度変化や圧力変化による変形が定め
られた方向に発生するので変形影響を小さく、しかも補
償し易くするようにし、且つ、振動管の有効スパンを長
くし、直管に比べ位相差検出感度を高めるようにするも
のである。
According to a first aspect of the present invention, there is provided a tubular body having both end faces, and a straight pipe which is supported by the both end faces in the tubular body and is curved within an elastic limit for flowing a measurement fluid. A vibrating tube, driving means for vibrating in a direction perpendicular to a plane including a curved axis of the vibrating tube at a center portion of the vibrating tube, and a Coriolis of the vibrating tube provided between the driving means and the both end surfaces. And a sensor that detects the phase difference due to the force of
As a result, the deformation of the vibrating tube due to temperature change or pressure change occurs in a specified direction, so that the effect of deformation is small, compensation is easy, and the effective span of the vibrating tube is longer. This is to increase the phase difference detection sensitivity.

【0010】請求項2の発明は、両端面を有する筒状体
と、該筒状体内に前記両端面で支持され測定流体を流す
弾性限界内で湾曲させた直管で、長さが等しく同じ曲率
半径とした2本の振動管と、該振動管の中央部で各々の
該振動管を近接離間するように駆動する駆動手段と、各
々の該振動管の該駆動手段と前記両端面との間に設けら
れ、該振動管のコリオリの力による位相差を検知するセ
ンサとで構成したことを特徴とし、もって、2本の振動
管の曲率半径を大きくすることにより曲げ精度を高める
ようにし、請求項1の発明と同様の効果を得るようにす
るものである。
According to a second aspect of the present invention, there is provided a tubular body having both end faces, and a straight pipe which is supported by the both end faces in the tubular body and is curved within an elastic limit for flowing a measurement fluid, and has the same length. Two vibrating tubes having a radius of curvature, driving means for driving each of the vibrating tubes so as to approach and separate from each other at a central portion of the vibrating tubes, and a driving means for each of the vibrating tubes and the both end faces. Characterized in that it is provided with a sensor that detects a phase difference due to the Coriolis force of the vibrating tube, thereby increasing the bending radius by increasing the radius of curvature of the two vibrating tubes, An advantage similar to that of the first aspect is obtained.

【0011】請求項3の発明は、請求項2に記載のコリ
オリ流量計において、2本の振動管を、平行に位置した
ことを特徴とし、もって、平行に位置することにより本
体形状を小形化できるようにし、請求項2の発明と同様
の効果を得るようにするものである。
According to a third aspect of the present invention, there is provided the Coriolis flowmeter according to the second aspect, wherein the two vibrating tubes are positioned in parallel, so that the shape of the main body is reduced by being positioned in parallel. Therefore, the same effect as that of the second aspect can be obtained.

【0012】請求項4の発明は、請求項2に記載のコリ
オリ流量計において、2本の振動管を、各々の曲率中心
が前記筒状体長手方向の中心軸に対して対称に位置した
ことを特徴とし、もって、円筒状の両端面支持位置での
両端面に与える振動影響をなくして安定した加振を可能
とし、請求項2の発明と同様の効果を得るようにするも
のである。
According to a fourth aspect of the present invention, in the Coriolis flowmeter according to the second aspect, the two vibrating tubes are located symmetrically with respect to the center axis in the longitudinal direction of the cylindrical body. Thus, stable vibration can be achieved by eliminating the influence of vibration on both end faces at the cylindrical end face support position, and the same effect as the invention of claim 2 can be obtained.

【0013】[0013]

【発明の実施の形態】図1は、請求項1の発明の実施形
態の基本構造を説明するための図で、図1(a)は図1
(b)の矢視A−A線断面図、図1(b)は図1(a)
の矢視B−B線断面図であり、図中、1は筒状体、2は
支持部材、3は振動管、4は励振器、5,6は検出器で
ある。
FIG. 1 is a diagram for explaining a basic structure of an embodiment of the present invention, and FIG.
FIG. 1B is a sectional view taken along the line AA of FIG. 1B, and FIG.
1 is a cross-sectional view taken along the line BB of FIG. 1, wherein 1 is a cylindrical body, 2 is a support member, 3 is a vibrating tube, 4 is an exciter, and 5 and 6 are detectors.

【0014】図1において、筒状体1は、例えば、円筒
体で、該筒状体1の両端部には支持部材2,2が固着さ
れる。支持部材2,2には弾性限界内で湾曲した振動管
3の両端部が貫通固着される。このため、支持部材2,
2には、振動管3の両端部の傾斜と等しい角度をもって
貫通する透孔2aが設けられている。振動管3は、直管
の両端部を支持部材2の透孔2a内に挿入し、支持部材
2,2間で軸と直角方向に該直管の弾性限界内の応力で
曲げた状態で筒状体1に両端固着したものである。振動
管3の長手方向の中央部には励振器4が装着され、該励
振器4と両端部の支持部材2との間には検出器5,6が
設けられている。
In FIG. 1, a cylindrical body 1 is, for example, a cylindrical body, and support members 2 and 2 are fixed to both ends of the cylindrical body 1. Both ends of the vibrating tube 3 which is curved within the elastic limit are penetrated and fixed to the supporting members 2 and 2. For this reason, the support members 2
2 is provided with a through hole 2a penetrating at an angle equal to the inclination of both ends of the vibration tube 3. The vibrating tube 3 is formed by inserting both ends of a straight tube into the through hole 2a of the support member 2 and bending the straight tube between the support members 2 and 2 in a direction perpendicular to the axis with a stress within the elastic limit of the straight tube. It is fixed to the body 1 at both ends. An exciter 4 is attached to the center of the vibrating tube 3 in the longitudinal direction, and detectors 5 and 6 are provided between the exciter 4 and the support members 2 at both ends.

【0015】励振器4は、例えば、コイル4aとコアー
4bとからなり、コアー4bをコイル4a内に挿入し、
コイル4aを発振器(図示せず)に接続して定振幅の正
弦波信号で駆動する。該正弦波信号は両端固定した振動
管3内に流体が流入した状態での固有振動数と等しい周
波数を選ぶことにより効率よく励振できる。検出器5と
6とは同一原理構造のもので、例えば、コイル5aと磁
石5bとを対向して配設し、振動管3に固定された磁石
5bの振動に伴ってコイル5aに生ずる正弦波信号を検
出する。
The exciter 4 includes, for example, a coil 4a and a core 4b, and the core 4b is inserted into the coil 4a.
The coil 4a is connected to an oscillator (not shown) and driven by a constant amplitude sine wave signal. The sine wave signal can be efficiently excited by selecting a frequency equal to the natural frequency when the fluid flows into the vibrating tube 3 fixed at both ends. The detectors 5 and 6 have the same principle structure. For example, a coil 5a and a magnet 5b are disposed to face each other, and a sine wave generated in the coil 5a with the vibration of the magnet 5b fixed to the vibrating tube 3. Detect signal.

【0016】コリオリ流量計は振動管3を励振器4で正
弦波駆動することにより、振動管3の検出器5,6の位
置に測定流体の質量流量と励振周波数とのベクトル積に
比例した反対向きの等しいコリオリの力が発生する。該
コリオリの力は検出器5と6との位相差信号として検出
される。このとき、振動管3は予め弾性限界内で湾曲さ
れているので、振動管3が温度、圧力変化により軸方向
の内部応力を受けたとしても湾曲方向に変形するだけで
あるから、固有振動数の変化は少く温度、圧力の影響を
小さくすることができる。
In the Coriolis flow meter, the vibrating tube 3 is driven by a sine wave by the exciter 4 so that the position of the vibrating tube 3 at the detectors 5 and 6 is opposite to the vector product of the mass flow rate of the measuring fluid and the exciting frequency. Coriolis forces in the same direction are generated. The Coriolis force is detected as a phase difference signal between the detectors 5 and 6. At this time, since the vibrating tube 3 is previously bent within the elastic limit, even if the vibrating tube 3 receives an internal stress in the axial direction due to a change in temperature and pressure, it only deforms in the bending direction. The effect of temperature and pressure can be reduced.

【0017】図2は、請求項2,3の発明の実施形態例
を説明するための図で、図2(a)は図2(b)の矢視
A−A線断面図、図2(b)は図2(a)の矢視B−B
線断面図、図2(c)は図2(a)の矢視C−C線図で
あり、図中、7,8は振動管、9,10は光ケーブル支
持台、11はレーザー光源、12,13,14は半透明
鏡(以後、ハーフミラーと呼ぶ)、15は遮蔽板(以
後、シールド板と呼ぶ)、16はレンズ、17,18は
光検出器、19,20 21,22は光ケーブル、23
は光コネクタであり、図1と同じ作用をする部分には図
1の場合と同一の参照番号を付してある。
FIG. 2 is a view for explaining an embodiment of the second and third aspects of the present invention. FIG. 2 (a) is a sectional view taken along line AA of FIG. 2 (b), and FIG. b) is a view taken along the line BB in FIG.
FIG. 2C is a sectional view taken along the line CC of FIG. 2A, wherein 7 and 8 are vibrating tubes, 9 and 10 are optical cable supports, 11 is a laser light source, 12 , 13 and 14 are translucent mirrors (hereinafter referred to as half mirrors), 15 is a shield plate (hereinafter referred to as a shield plate), 16 is a lens, 17 and 18 are photodetectors, and 19, 20, 21 and 22 are optical cables. , 23
Numeral denotes an optical connector, and portions having the same functions as those in FIG. 1 are denoted by the same reference numerals as those in FIG.

【0018】図2(a)に示すコリオリ流量計は、弾性
限界内で湾曲させた同じ寸法で等しい曲率半径の2本の
振動管7 8を、筒状体1内に支持部材2,2で両端支
持され、湾曲面が平行となるように配置したもので、測
定流体は矢印Q方向に均等に流入する。励振器4のコイ
ルとコアーとは振動管7と8とに固着されて図2(b)
の矢印F方向に互いに近接・反撥するように駆動され
る。振動管7,8のセンサ取付け位置には光ケーブル支
持台9,10が取り付けられ、光ケーブル支持台9は光
ケーブル支持台9aと9bを対とし、各々振動管7と8
に対向して固着され、同様に光ケーブル支持台10も各
々振動管7と8に対向して固着される。更に、光ケーブ
ル支持台9a,9b,9c,9dには各々光ケーブル1
9,21,20,22が光の送受可能に対向して固着さ
れている。光ケーブル19〜22は円筒体1筒壁の透孔
1aを通して円筒体1外の光コネクタ23に接続されて
いる。
In the Coriolis flowmeter shown in FIG. 2A, two vibrating tubes 78 having the same dimensions and the same radius of curvature, which are curved within the elastic limit, are provided in the cylindrical body 1 by the support members 2, 2. Both ends are supported and arranged so that the curved surfaces are parallel to each other, and the measurement fluid flows evenly in the arrow Q direction. The coil and the core of the exciter 4 are fixed to the vibrating tubes 7 and 8 and FIG.
Are driven so as to approach and repel each other in the direction of arrow F. Optical cable supports 9 and 10 are attached to the sensor mounting positions of the vibrating tubes 7 and 8, respectively. The optical cable supports 9 are paired with the optical cable supports 9a and 9b.
Similarly, the optical cable support 10 is fixed to face the vibrating tubes 7 and 8, respectively. Further, each of the optical cable supports 9a, 9b, 9c, 9d has an optical cable 1
Reference numerals 9, 21, 20, and 22 are fixed to face each other so that light can be transmitted and received. The optical cables 19 to 22 are connected to the optical connector 23 outside the cylindrical body 1 through the through holes 1a in the cylindrical body 1 cylindrical wall.

【0019】レーザー光源11は、He−Ne(ヘリウ
ム・ネオン)レーザー等の単一周波数のコヒーレント光
を放射し、ハーフミラー12で反射されたコヒーレント
光は同時に光ケーブル19,20に分離されて送光され
る。光ケーブル19側のレーザー光は光ケーブル支持台
9aと9bとの間を空間伝播して光ケーブル21に伝送
されハーフミラー14を透過したレーザー光はレンズ1
6に入射する。このときハーフミラー14で反射された
レーザー光はシールド板15で遮光される。
The laser light source 11 emits coherent light of a single frequency such as a He-Ne (helium / neon) laser, and the coherent light reflected by the half mirror 12 is simultaneously separated by the optical cables 19 and 20 and transmitted. Is done. The laser light on the optical cable 19 side propagates in space between the optical cable supports 9a and 9b and is transmitted to the optical cable 21 and transmitted through the half mirror 14 to the lens 1
6 is incident. At this time, the laser light reflected by the half mirror 14 is shielded by the shield plate 15.

【0020】また、光ファイバー20側のレーザー光は
光ケーブル支持台10aと10bとの間を空間伝播して
光ファイバー22に伝送されハーフミラー14を透光し
たレーザー光はレンズ16に入射する。そして光ケーブ
ル21からのレーザー光と光干渉して検出位置における
位相変位差に比例した単位時間当りの数の干渉縞の明暗
を光検出器18で電気変換して振動管7と8とのコリオ
リの力に応じた電気信号が得られる。光ケーブル22か
らのレーザー光がハーフミラー14で反射された反射レ
ーザー光は、再びハーフミラー13で反射され、該反射
レーザー光は、ハーフミラー12,13を透過したレー
ザー光と光干渉して干渉縞を形成し、振動管7,8の振
幅と固有振動数とが光検出器17により検知される。以
上のことより、質量流量計を求めることができる。
The laser light on the side of the optical fiber 20 propagates in space between the optical cable supports 10a and 10b, is transmitted to the optical fiber 22, and the laser light transmitted through the half mirror 14 enters the lens 16. The light and darkness of the number of interference fringes per unit time in proportion to the phase displacement difference at the detection position by light interference with the laser light from the optical cable 21 are electrically converted by the photodetector 18 and the Coriolis between the vibrating tubes 7 and 8 is detected. An electric signal corresponding to the force is obtained. The reflected laser light from which the laser light from the optical cable 22 is reflected by the half mirror 14 is reflected again by the half mirror 13, and the reflected laser light interferes with the laser light transmitted through the half mirrors 12 and 13 to cause interference fringes. The amplitude and the natural frequency of the vibrating tubes 7 and 8 are detected by the photodetector 17. From the above, a mass flow meter can be obtained.

【0021】以上の説明において、振動管7,8は曲率
半径が等しく平行の場合について述べたが、他の組合せ
の配置があり、以下に述べる。
In the above description, the case where the vibrating tubes 7 and 8 have the same radius of curvature and are parallel has been described. However, there are other combinations of arrangements, which will be described below.

【0022】図3は、請求項4の発明の実施形態例を説
明するための図で、図3(a)は請求項4の発明の実施
形態例、図3(b)は図3(a)のB−B断面における
振動管の動作を示す図である。図1,図2と同様の作用
をする部分には、図1,図2と同じ参照番号を付してあ
る。
FIGS. 3A and 3B are views for explaining an embodiment of the invention according to claim 4, wherein FIG. 3A is an embodiment of the invention according to claim 4, and FIG. FIG. 7B is a diagram showing the operation of the vibrating tube in the BB section of FIG. 1 and FIG. 2 are denoted by the same reference numerals as those in FIG. 1 and FIG.

【0023】図3に示すコリオリ流量計は、弾性限界内
で湾曲させた等しい曲率半径の2本の振動管7と8が、
該振動管7,8の湾曲軸を含む面が平行で振動管7,8
の中心位置が共に前記湾曲軸を含む面に直角な線上で重
なり、振動管7と8の曲率中心が円筒体長手方向の中心
軸に対して対称に位置する。振動管7,8は、図3
(b)に示すように、振動管7と8の中心を結ぶ直線上
で矢印方向に励振器4により駆動される。
The Coriolis flowmeter shown in FIG. 3 has two vibrating tubes 7 and 8 having the same radius of curvature curved within the elastic limit.
The planes including the bending axes of the vibrating tubes 7 and 8 are parallel and the vibrating tubes 7 and 8
Are overlapped on a line perpendicular to the plane including the bending axis, and the centers of curvature of the vibrating tubes 7 and 8 are located symmetrically with respect to the central axis in the longitudinal direction of the cylindrical body. The vibrating tubes 7 and 8 are shown in FIG.
As shown in (b), the vibrating tubes 7 and 8 are driven by the exciter 4 in a direction indicated by an arrow on a straight line connecting the centers of the vibrating tubes 7 and 8.

【0024】図4は、請求項4の発明の他の実施形態例
を説明するための図で、図4(a)は請求項4の発明の
他の実施形態例、図4(b)は図4(a)のB−B線上
の振動管の振動方向を示す図であり、図1,図2と同様
の動作をする部分には、図1,図2と同じ参照番号を付
してある。
FIG. 4 is a view for explaining another embodiment of the present invention of claim 4. FIG. 4 (a) is another embodiment of the present invention of claim 4, and FIG. FIG. 4B is a diagram showing the direction of vibration of the vibrating tube on the line BB in FIG. 4A, and portions performing the same operations as those in FIGS. 1 and 2 are denoted by the same reference numerals as in FIGS. 1 and 2. is there.

【0025】図4に示すコリオリ流量計は、弾性限界内
で湾曲させた等しい曲率半径の2本の振動管7,8は、
円筒体1の中心軸を含む同一面上に互いに離間して円筒
体1内に配置され、振動管7,8の曲率中心は、円筒体
1長手方向の中心軸に対して対称に位置し、振動管7と
8の中央位置が最も近接しており、両端は最も離間して
いる。振動管7,8は、図4(b)に示すように矢印
(+Y1,−Y)と(−Y,+Y)(|Y|=
|Y|)の方向に近接・離間するように励振器4によ
り駆動される。
In the Coriolis flowmeter shown in FIG. 4, two vibrating tubes 7 and 8 having the same radius of curvature curved within the elastic limit are
The vibration tubes 7 and 8 are arranged symmetrically with respect to the central axis in the longitudinal direction of the cylindrical body 1 so as to be arranged on the same plane including the central axis of the cylindrical body 1 and spaced apart from each other in the cylindrical body 1. The center positions of the vibrating tubes 7 and 8 are closest, and both ends are farthest apart. As shown in FIG. 4B, the vibrating tubes 7 and 8 have arrows (+ Y 1, −Y 1 ) and (−Y 2 , + Y 2 ) (| Y 1 | =
| Y 2 |) is driven by the exciter 4 so as to approach / separate from each other.

【0026】図5は、請求項4の発明の更に他の実施形
態例を説明するための図であり、図5(a)は、請求項
4の発明の更に他の実施形態例、図5(b),図5
(c)は、図5(a)のB−B線上の振動管の振動方向
を示す図であり、図1,図2と同様の動作をする部分に
は、図1,図2と同じ参照番号を付してある。
FIG. 5 is a diagram for explaining still another embodiment of the invention of claim 4, and FIG. 5 (a) is a diagram showing still another embodiment of the invention of claim 4, FIG. (B), FIG.
(C) is a diagram showing the vibration direction of the vibrating tube on the line BB in FIG. 5 (a), and the same operation as in FIG. 1 and FIG. Numbered.

【0027】図5に示すコリオリ流量計は、弾性限界内
で湾曲させた等しい曲率半径の2本の振動管7,8は、
円筒体1の中心軸を含む同一面上に互いに離間して円筒
体1内に配置され、振動管7,8の曲率中心は、円筒体
1長手方向の中心軸に対して対称に位置し、振動管7と
8の中央位置が最も離間しており、両端は、最も近接し
ている。振動管7と8は、図5(b)に示すようにB−
B線を含む面上で矢印(+Y,−Y),(−Y
+Y)方向又は、図6(c)に示すように(+X
−X),(−X,+X)方向に紙面を斜めに交叉
する方向に励振器4により駆動される。
In the Coriolis flowmeter shown in FIG. 5, two vibrating tubes 7 and 8 having the same radius of curvature curved within the elastic limit are
The vibration tubes 7 and 8 are arranged symmetrically with respect to the central axis in the longitudinal direction of the cylindrical body 1 so as to be arranged on the same plane including the central axis of the cylindrical body 1 and spaced apart from each other in the cylindrical body 1. The center positions of the vibrating tubes 7 and 8 are farthest apart, and both ends are closest. As shown in FIG. 5B, the vibrating tubes 7 and 8
Arrows (+ Y 1 , −Y 1 ), (−Y 2 ,
+ Y 2 ) direction, or (+ X 1 ,
−X 1 ) and (−X 2 , + X 2 ) are driven by the exciter 4 in a direction obliquely crossing the paper surface.

【0028】以上、図3〜図5に示したコリオリ流量計
は、振動管7と8の曲率中心が、円筒体1長手方向の中
心軸に対して対称に位置しているので、振動管7と8の
振動による筒状体1の支持位置への応力が平衡し安定し
た振動が得られる。
As described above, in the Coriolis flowmeter shown in FIGS. 3 to 5, the centers of curvature of the vibrating tubes 7 and 8 are symmetrically located with respect to the central axis in the longitudinal direction of the cylindrical body 1. The stress on the support position of the cylindrical body 1 due to the vibrations of (8) and (8) is balanced, and stable vibration is obtained.

【0029】[0029]

【発明の効果】請求項1に対応する効果:両端面を有す
る筒状体と、該筒状体内に前記両端面で支持され測定流
体を流す弾性限界内で湾曲させた直管の振動管と、該振
動管の中央部で該振動管の湾曲軸を含む面と直角な方向
に振動させる駆動手段と、該駆動手段と前記両端面との
間に設けられ、該振動管のコリオリの力による位相差を
検知するセンサとで構成したので、振動管の温度変化や
圧力変化による変形方向が定まり、振動管の変形影響を
小さくすることができ、また、変形影響があっても補償
が容易となる。更に、振動管を弾性限界内で湾曲するこ
とにより有効スパンが長くなるので、直管の振動管より
も位相差検出感度が高まる。
According to the first aspect of the present invention, there is provided a tubular body having both end faces, and a straight vibrating pipe which is supported by the both end faces in the tubular body and is curved within an elastic limit for flowing a measurement fluid. A driving means for vibrating in a direction perpendicular to a plane including a bending axis of the vibrating tube at a central portion of the vibrating tube; and a driving means provided between the driving means and the both end faces, and provided by Coriolis force of the vibrating tube. Since it is composed of a sensor that detects the phase difference, the direction of deformation due to temperature change and pressure change of the vibrating tube can be determined, and the effect of deformation of the vibrating tube can be reduced. Become. Furthermore, since the effective span is lengthened by bending the vibrating tube within the elastic limit, the phase difference detection sensitivity is higher than that of the straight vibrating tube.

【0030】請求項2に対応する効果:両端面を有する
筒状体と、該筒状体内の前記両端面で支持され測定流体
を流す弾性限界内で湾曲させた直管で、長さが等しく同
じ曲率半径とした2本の振動管と、該振動管の中央部で
各々の該振動管を近接離間するように駆動する駆動手段
と、各々の該振動管の該駆動手段と前記両端面との間に
設けられ、該振動管のコリオリの力による位相差を検知
するセンサとで構成したので、請求項1の効果に加え、
2本の振動管の曲げ精度を向上させることができる。
According to the second aspect of the present invention, the tubular body having both end faces and the straight pipe supported by the both end faces in the tubular body and curved within the elastic limit for flowing the measurement fluid have the same length. Two vibrating tubes having the same radius of curvature, driving means for driving each of the vibrating tubes so as to approach and separate from each other at the center of the vibrating tubes, and the driving means and the both end faces of each of the vibrating tubes. And a sensor for detecting a phase difference due to the Coriolis force of the vibrating tube.
The bending accuracy of the two vibrating tubes can be improved.

【0031】請求項3に対応する効果:請求項2に記載
のコリオリ流量計において、2本の振動管を、平行に位
置したので、請求項2の効果に加え、本体形状を小形化
することができる。
According to the third aspect, in the Coriolis flowmeter according to the second aspect, since the two vibrating tubes are positioned in parallel, the size of the main body can be reduced in addition to the effect of the second aspect. Can be.

【0032】請求項4に対応する効果:請求項2に記載
のコリオリ流量計において、2本の振動管を、各々の曲
率中心が前記筒状体長手方向の中心軸に対して対称に位
置にしたので、請求項2の効果に加え、振動管7と8が
振動して発生する筒状体の支持位置近傍の応力が平衡
し、振動管7と8の振動が安定する。
According to a fourth aspect of the present invention, in the Coriolis flowmeter according to the second aspect, the two vibrating tubes are positioned so that their respective centers of curvature are symmetrical with respect to the central axis in the longitudinal direction of the cylindrical body. Therefore, in addition to the effect of the second aspect, in addition to the effect of the vibration tubes 7 and 8, the stress generated near the supporting position of the cylindrical body generated by vibration is balanced, and the vibration of the vibration tubes 7 and 8 is stabilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 請求項1の発明の実施形態の基本構造を説明
するための図である。
FIG. 1 is a diagram for explaining a basic structure according to an embodiment of the present invention;

【図2】 請求項2,3の発明の実施形態例を説明する
ための図である。
FIG. 2 is a diagram for explaining an embodiment of the invention according to claims 2 and 3;

【図3】 請求項4の発明の実施形態例を説明するため
の図である。
FIG. 3 is a view for explaining an embodiment of the invention according to claim 4;

【図4】 請求項4の発明の他の実施形態例を説明する
ための図である。
FIG. 4 is a diagram for explaining another embodiment of the invention of claim 4;

【図5】 請求項4の発明の更に他の実施形態例を説明
するための図である。
FIG. 5 is a view for explaining still another embodiment of the invention of claim 4;

【図6】 従来の直管式のコリオリ流量計を説明するた
めの図である。
FIG. 6 is a view for explaining a conventional straight tube type Coriolis flow meter.

【符号の説明】[Explanation of symbols]

1…筒状体、2…支持部材、3,7,8…振動管、4…
励振器、5,6…検出器、9,10…光ケーブル支持
台、11…レーザー光源、12,13,14…半透明鏡
(ハーフミラー)、15…遮蔽板(シールド板)、16
…レンズ、17,18…光検出器、19,20,21,
22…光ケーブル、23…光コネクタ。
DESCRIPTION OF SYMBOLS 1 ... Cylindrical body, 2 ... Support member, 3, 7, 8 ... Vibration tube, 4 ...
Exciter, 5, 6 detector, 9, 10 optical cable support, 11 laser light source, 12, 13, 14 translucent mirror (half mirror), 15 shielding plate (shield plate), 16
... Lens, 17, 18 ... Photodetector, 19, 20, 21,
22 ... optical cable, 23 ... optical connector.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 両端面を有する筒状体と、該筒状体内に
前記両端面で支持され測定流体を流す弾性限界内で湾曲
させた直管の振動管と、該振動管の中央部で該振動管の
湾曲軸を含む面と直角な方向に振動させる駆動手段と、
該駆動手段と前記両端面との間に設けられ、該振動管の
コリオリの力による位相差を検知するセンサとで構成し
たことを特徴とするコリオリ流量計。
1. A tubular body having both end surfaces, and
Curved within the elastic limit supported by the both end faces and flowing the measurement fluid
The vibrating tube at the center of the vibrating tube
Driving means for vibrating in a direction perpendicular to a plane including the bending axis;
The vibration tube is provided between the driving means and the both end faces.
And a sensor that detects the phase difference due to Coriolis force.
Coriolis flowmeter, characterized in that the.
【請求項2】 両端面を有する筒状体と、該筒状体内に
前記両端面で支持され測定流体を流す弾性限界内で湾曲
させた直管で、長さが等しく同じ曲率半径とした2本の
振動管と、該振動管の中央部で各々の該振動管を近接離
間するように駆動する駆動手段と、各々の該振動管の該
駆動手段と前記両端面との間に設けられ、該振動管のコ
リオリの力による位相差を検知するセンサとで構成した
ことを特徴とするコリオリ流量計。
2. A tubular body having both end faces, and
Curved within the elastic limit supported by the both end faces and flowing the measurement fluid
Two straight tubes of equal length and the same radius of curvature
A vibrating tube and each of the vibrating tubes are separated from each other at a central portion of the vibrating tube.
Driving means for driving the vibrating tubes,
The vibrating tube is provided between the driving means and the both end faces.
It consists of a sensor that detects the phase difference due to the Rioli force
Coriolis flowmeter, characterized in that.
【請求項3】 2本の振動管を、平行に位置したこと
特徴とする請求項2記載のコリオリ流量計。
3. The Coriolis flowmeter according to claim 2, wherein the two vibrating tubes are positioned in parallel .
【請求項4】 2本の振動管を、各々の曲率中心が前記
筒状体長手方向の中心軸に対して対称に位置したこと
特徴とする請求項2記載のコリオリ流量計。
4. The method according to claim 1, wherein the two vibrating tubes have respective centers of curvature.
3. The Coriolis flowmeter according to claim 2, wherein the Coriolis flowmeter is located symmetrically with respect to a center axis in a longitudinal direction of the tubular body .
JP3022892A 1992-01-20 1992-01-20 Coriolis flow meter Expired - Fee Related JP2826011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3022892A JP2826011B2 (en) 1992-01-20 1992-01-20 Coriolis flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3022892A JP2826011B2 (en) 1992-01-20 1992-01-20 Coriolis flow meter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12591997A Division JP2826101B2 (en) 1997-05-15 1997-05-15 Coriolis flow meter

Publications (2)

Publication Number Publication Date
JPH05196488A JPH05196488A (en) 1993-08-06
JP2826011B2 true JP2826011B2 (en) 1998-11-18

Family

ID=12297860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3022892A Expired - Fee Related JP2826011B2 (en) 1992-01-20 1992-01-20 Coriolis flow meter

Country Status (1)

Country Link
JP (1) JP2826011B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3656947B2 (en) 1999-10-05 2005-06-08 株式会社オーバル Coriolis mass flow meter
JP5996764B1 (en) * 2015-12-01 2016-09-21 株式会社オーバル Coriolis flow meter and phase difference detection method of Coriolis flow meter

Also Published As

Publication number Publication date
JPH05196488A (en) 1993-08-06

Similar Documents

Publication Publication Date Title
US5945609A (en) Mass flowmeter for measuring flow rate of a fluid
US4895031A (en) Sensor mounting for coriolis mass flow rate meter
US5069075A (en) Mass flow meter working on the coriolis principle
US4949583A (en) Method of mass flow measurement by the coriolis principle and mass flow meter operating by the coriolis principle
US4660421A (en) Apparatus for mass flow rate and density measurement
US4733569A (en) Mass flow meter
US4711132A (en) Apparatus for mass flow rate and density measurement
AU584903B2 (en) Apparatus for mass flow rate and density measurement
US4729243A (en) Mass-flow measuring instrument
RU96121234A (en) SENSITIVITY FLOW METER ON THE CORIOLIS EFFECT USING SENSORS LOCATED NEAR THE NODES
EP0421812B1 (en) Improved coriolis-type flowmeter
JPH05248900A (en) Double wing type eddy flux measuring device and its measuring method
US5038620A (en) Coriolis mass flow meter
KR100340673B1 (en) Coriolis mass flowmeter and manufacturing method thereof
JP2850556B2 (en) Coriolis mass flowmeter
JP2826011B2 (en) Coriolis flow meter
JP2826101B2 (en) Coriolis flow meter
JP3512333B2 (en) Coriolis flow meter
JP3058094B2 (en) Mass flow meter
JPH0712612A (en) Coliolis type massflowmeter
JPH08193864A (en) Coriolis mass flowmeter
JP2951456B2 (en) Coriolis mass flowmeter
JP2023515054A (en) A mode-splitting resonator for the balance bar of a Coriolis flowmeter
JP2951460B2 (en) Coriolis mass flowmeter
CA1257784A (en) Apparatus for mass flow rate and density measurement

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070911

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080911

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080911

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090911

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090911

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100911

LAPS Cancellation because of no payment of annual fees