JPH1047077A - Gas turbine cycle - Google Patents

Gas turbine cycle

Info

Publication number
JPH1047077A
JPH1047077A JP20625396A JP20625396A JPH1047077A JP H1047077 A JPH1047077 A JP H1047077A JP 20625396 A JP20625396 A JP 20625396A JP 20625396 A JP20625396 A JP 20625396A JP H1047077 A JPH1047077 A JP H1047077A
Authority
JP
Japan
Prior art keywords
steam
turbine
pressure
compressor
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20625396A
Other languages
Japanese (ja)
Inventor
Kichinosuke Hanawa
吉之助 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP20625396A priority Critical patent/JPH1047077A/en
Publication of JPH1047077A publication Critical patent/JPH1047077A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To arbitrarily select efficiency intensified operation and output intensified operation. SOLUTION: A gas turbine cycle is formed such that air is compressed by a compressor C and fed to a combustor COB, fuel is mixed in compressed air by the combustion COB to effect combustion, combustion gas is introduced to a gas turbine T for expansion, and through rotation of the turbine T, a mechanical output is generated. In this case, a steam generating means E to generate steam by means of the exhaust heat of a turbine T is provided. A route 263A through which steam generated by the steam generating means E is injected in the compressor C so that intermediate cooling is practicable, and a route 263B through which the steam on the same condition as the aforesaid is injected in the turbine T are provided. Switching means 271A and 271B to switch a branch ratio of the steam on the same condition are arranged in the two routes 263A and 263B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンサイ
クルに関する。
[0001] The present invention relates to a gas turbine cycle.

【0002】[0002]

【従来の技術】ガスタービンサイクルにおいては、ター
ビンから大気中に放出される排気ガスの温度が500〜
600℃の高温度であるので、この熱量を回収すること
により熱効率の向上が図られている。
2. Description of the Related Art In a gas turbine cycle, the temperature of exhaust gas discharged from a turbine to the atmosphere is 500 to 500.
Since the temperature is as high as 600 ° C., thermal efficiency is improved by recovering this heat.

【0003】従来では、タービンの排気ガスを熱交換器
(再生器)に通し、圧縮機から出て燃焼器に入る空気に
排気ガスの熱を与えることで、燃焼器で噴射する燃料を
節約して熱効率の向上を図ったり、排気ガスの排熱を利
用して蒸気を発生させ、この蒸気で蒸気タービンを回し
て発電することにより熱効率の向上を図ったりすること
が行われている。また、蒸気の定圧比熱が作動流体であ
る空気の定圧比熱の約2倍であることを利用して、燃焼
器の直前やタービンに蒸気を直接噴射することにより、
出力の増加を図る方式も提案されている。
[0003] Conventionally, the exhaust gas of a turbine is passed through a heat exchanger (regenerator), and the heat of the exhaust gas is given to air exiting a compressor and entering a combustor, thereby saving fuel injected by the combustor. In order to improve the thermal efficiency, the exhaust heat of the exhaust gas is used to generate steam, and the steam is used to turn a steam turbine to generate power, thereby improving the thermal efficiency. In addition, utilizing the fact that the specific heat of the constant pressure of the steam is about twice the specific heat of the constant pressure of the air as the working fluid, the steam is directly injected immediately before the combustor and into the turbine,
A method for increasing the output has also been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、再生器
で熱回収を行う方式は、熱交換器が必要な上、熱回収効
率が低いという問題がある。また、蒸気タービンを回し
て発電する方式は、蒸気温度があまり高くないことか
ら、効率向上が困難な上、復水器や蒸気タービン等の設
備費用も嵩むという問題がある。また、燃焼器の直前や
タービンに蒸気を直接噴射する方式は、出力増加は期待
できるものの、効率向上にはあまり寄与しないという問
題があった。
However, the method of recovering heat by a regenerator has a problem that a heat exchanger is required and the heat recovery efficiency is low. In addition, the method of generating electricity by rotating a steam turbine has a problem that it is difficult to improve the efficiency because the steam temperature is not so high, and that equipment costs for a condenser, a steam turbine, and the like also increase. Further, the method of directly injecting steam into the turbine immediately before the combustor or into the turbine has a problem that, although an increase in output can be expected, it does not contribute much to an improvement in efficiency.

【0005】本発明は、上記事情を考慮し、新たな設備
コストを最小限に抑えながら、効率重視の運転と出力重
視の運転を任意に選択実行することのできるガスタービ
ンサイクルを提供することを目的とする。
The present invention has been made in view of the above circumstances and provides a gas turbine cycle capable of arbitrarily selecting and executing an efficiency-oriented operation and an output-oriented operation while minimizing new equipment costs. Aim.

【0006】[0006]

【課題を解決するための手段】請求項1の発明のガスタ
ービンサイクルは、圧縮機により空気を圧縮して燃焼器
に送り込み、燃焼器にて圧縮空気に燃料を混合して燃焼
を行わせ、この燃焼ガスをタービンに導入して膨脹さ
せ、タービンの回転より機械的出力を得るガスタービン
サイクルにおいて、前記タービンの排熱により蒸気を発
生させる蒸気発生手段を設け、該蒸気発生手段の発生し
た同条件の蒸気を、前記圧縮機内に中間冷却が可能なよ
うに噴射させる経路と、タービンに噴射させる経路とを
設け、前記両経路または両経路への分岐点に、両経路へ
の前記同条件の蒸気の分岐割合を切替調節する切替手段
を設けたことを特徴とする。
According to a first aspect of the present invention, there is provided a gas turbine cycle, wherein air is compressed by a compressor and sent to a combustor, and the combustor mixes fuel with the compressed air to perform combustion. In a gas turbine cycle in which the combustion gas is introduced into a turbine and expanded to obtain a mechanical output from the rotation of the turbine, steam generation means for generating steam by exhaust heat of the turbine is provided, and the steam generated by the steam generation means is provided. A path for injecting steam under the condition into the compressor so that intermediate cooling is possible, and a path for injecting the steam into the turbine are provided, and both paths or a branch point to both paths, A switching means for switching and adjusting the branching ratio of steam is provided.

【0007】請求項2の発明は、請求項1において、蒸
気発生手段の発生する低圧の蒸気を前記経路を介して圧
縮機およびタービンの低圧部に噴射可能とすると共に、
それより高圧の蒸気をタービンの高圧部に噴射可能と
し、さらにそれより高圧の蒸気を燃焼器の直前に噴射可
能としたことを特徴とする。
According to a second aspect of the present invention, in the first aspect, the low-pressure steam generated by the steam generating means can be injected into the low-pressure portion of the compressor and the turbine through the path.
Higher-pressure steam can be injected into the high-pressure section of the turbine, and higher-pressure steam can be injected immediately before the combustor.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1は本発明の実施形態のガスター
ビンサイクルの系統図である。このガスタービンサイク
ルは、ガスタービンGTと、ガスタービンGTの排熱を
利用して蒸気を発生させる多段式の排熱ボイラ(蒸気発
生手段)Eと、発生させた蒸気をガスタービンGTの各
所に分配供給する配管系PSとを備えている。ガスター
ビンGTは、入口クーラEVAを通して大気中より吸入
した空気を圧縮する圧縮機Cと、圧縮空気に燃料を混合
して燃焼を行わせる燃焼器COBと、燃焼ガスを導入し
て膨脹させることで回転出力を発生するタービンTとか
らなる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of a gas turbine cycle according to an embodiment of the present invention. This gas turbine cycle includes a gas turbine GT, a multi-stage exhaust heat boiler (steam generating means) E that generates steam using exhaust heat of the gas turbine GT, and the generated steam to various parts of the gas turbine GT. And a piping system PS for distribution. The gas turbine GT includes a compressor C for compressing air sucked from the atmosphere through an inlet cooler EVA, a combustor COB for mixing fuel with compressed air to perform combustion, and introducing and expanding combustion gas. And a turbine T that generates a rotational output.

【0009】圧縮機C及びタービンTはそれぞれ多段構
成とされ、圧縮機Cは、低圧圧縮機LPC、中圧圧縮機
MPC、高圧圧縮機HPCからなり、タービンTは、低
圧タービンLPT、中圧タービンMPT、高圧タービン
HPT及び出力タービンPWTからなる。各圧の圧縮機
LPC、MPC、HPCは各圧のタービンLPT、MP
T、HPTと、独立した軸によりそれぞれに直結されて
いる。出力タービンPWTは、各圧のタービンLPT、
MPT、HPTから独立しており、発電機GENに直結
されている。圧縮空気は、低圧圧縮機LPC、中圧圧縮
機MPC、高圧HPCを順に経て、燃焼器COBに送り
込まれ、燃焼ガスは、高圧タービンHPT、中圧タービ
ンMPT、低圧タービンLPT、出力タービンPWTに
順次導入される。出力タービンPWTより出た排気ガス
は、排熱ボイラE内の排気ガス通路200を通った後、
煙突201より大気中へ放出される。
Each of the compressor C and the turbine T has a multi-stage configuration. The compressor C includes a low-pressure compressor LPC, a medium-pressure compressor MPC, and a high-pressure compressor HPC. The turbine T includes a low-pressure turbine LPT and a medium-pressure turbine. It comprises an MPT, a high-pressure turbine HPT, and a power turbine PWT. Compressors LPC, MPC, HPC of each pressure are turbine LPT, MP of each pressure.
T and HPT are directly connected to each other by independent shafts. The output turbine PWT is a turbine LPT of each pressure,
It is independent of MPT and HPT and is directly connected to generator GEN. The compressed air passes through the low-pressure compressor LPC, the medium-pressure compressor MPC, and the high-pressure HPC in this order, and is sent to the combustor COB. be introduced. The exhaust gas emitted from the power turbine PWT passes through an exhaust gas passage 200 in the exhaust heat boiler E.
Released from the chimney 201 into the atmosphere.

【0010】排熱ボイラEには、排気ガス通路200の
上流側から下流側に向かって順に、高圧ボイラHPE、
中圧ボイラMPE、低中圧ボイラIPE、低圧ボイラL
PEが4段(3段以上)に設けられ、最下流部には節炭
器ECOが設けられている。節炭器ECOの入口には、
原水貯槽250からの給水管251が接続され、節炭器
ECOの出口配管252は、それぞれ各圧のボイラHP
E、MPE、IPE、LPEの入口に接続されている。
そして、配管系PSを構成している各圧のボイラHP
E、MPE、IPE、LPEの蒸気配管(出口配管)2
61、262、263、264が、ガスタービンGTの
各所に接続されている。
In the exhaust heat boiler E, the high-pressure boilers HPE, in order from the upstream side to the downstream side of the exhaust gas passage 200,
Medium pressure boiler MPE, low medium pressure boiler IPE, low pressure boiler L
PEs are provided in four stages (three or more stages), and a economizer ECO is provided in the most downstream part. At the entrance of the economizer ECO,
The water supply pipe 251 from the raw water storage tank 250 is connected, and the outlet pipe 252 of the economizer ECO is connected to the boiler HP of each pressure.
It is connected to the entrance of E, MPE, IPE, LPE.
And the boiler HP of each pressure which comprises the piping system PS
E, MPE, IPE, LPE steam piping (outlet piping) 2
61, 262, 263, 264 are connected to various parts of the gas turbine GT.

【0011】ここでは、各圧ボイラHPE、MPE、I
PE、LPEは次の圧力の蒸気を発生するようになって
いる。 高圧ボイラHPE =8.5MPa(メガパスカル) 中圧ボイラMPE =5.0MPa 低中圧ボイラIPE=2.7MPa 低圧ボイラLPE =1.35MPa
Here, each pressure boiler HPE, MPE, I
PE and LPE are designed to generate steam at the following pressure. High-pressure boiler HPE = 8.5 MPa (megapascal) Medium-pressure boiler MPE = 5.0 MPa Low-medium-pressure boiler IPE = 2.7 MPa Low-pressure boiler LPE = 1.35 MPa

【0012】そして、高圧ボイラHPEの8.5MPa
の蒸気は燃焼器COBの直前に、中圧ボイラMPEの
5.0MPaの蒸気は高圧タービンHPTの出口に、低
圧ボイラLPEの1.35MPaの蒸気は出力タービン
PWTの前にそれぞれ噴射させて、各個所で作動流体中
に直接蒸気を混合させるようになっている。また、低中
圧ボイラIPEの2.7MPaの蒸気は、分岐配管(経
路)263Aを介して中圧タービンMPTの出口、また
は分岐配管263Bを介して中圧圧縮機MPCと高圧圧
縮機HPCの間(低圧部)に選択的に噴射させるように
なっている。
The high-pressure boiler HPE 8.5 MPa
Is injected immediately before the combustor COB, 5.0 MPa steam of the medium pressure boiler MPE is injected into the outlet of the high pressure turbine HPT, and 1.35 MPa steam of the low pressure boiler LPE is injected before the output turbine PWT. At this point, the steam is directly mixed into the working fluid. In addition, the steam of 2.7 MPa of the low- and medium-pressure boiler IPE is supplied to the outlet of the medium-pressure turbine MPT via the branch pipe (path) 263A or between the medium-pressure compressor MPC and the high-pressure compressor HPC via the branch pipe 263B. (Low pressure section).

【0013】この場合、分岐配管263A、263Bの
途中には、遮断弁と流量制御弁とからなる切替手段27
1A、271Bがそれぞれ設けられ、制御手段275で
両切替手段271A、271Bを制御することにより、
両分岐配管263A、263Bへの蒸気の分岐割合を、
0:100〜100:0の間で自由に切替調節できるよ
うになっている。なお、切替手段は分岐配管263A、
263Bの分岐点に一つにまとめて設けることもでき
る。また、原水貯槽250からの水は純粋貯槽270を
介して、低圧圧縮機LPCと中圧圧縮機MPCの間に直
接噴射させるようになっている。
In this case, a switching means 27 comprising a shutoff valve and a flow control valve is provided in the middle of the branch pipes 263A and 263B.
1A and 271B are provided, and the control unit 275 controls both the switching units 271A and 271B.
The branch ratio of steam to both branch pipes 263A and 263B is
Switching can be freely adjusted between 0: 100 and 100: 0. The switching means is a branch pipe 263A,
263B may be provided collectively at a branch point. Water from the raw water storage tank 250 is directly injected between the low-pressure compressor LPC and the medium-pressure compressor MPC via the pure storage tank 270.

【0014】次に作用を説明する。最初に熱効率重視運
転の場合を述べる。その場合は、制御手段275によ
り、低中圧蒸気を全て圧縮機Cに導入するように切替手
段263A、263Bを切替える。この状態で、空気は
大気中から入口クーラEVAを介して低圧圧縮機LPC
に吸い込まれ、低圧圧縮機LPCの出口にて水噴射され
て蒸発冷却され、中圧圧縮機MPCに導入される。中圧
圧縮機MPCの出口では、蒸気噴射されることにより、
流量の増加と中間冷却の両効果を得る。高圧圧縮機HP
Cの出口を経た圧縮空気は、燃焼器COBの直前にて大
量の蒸気噴射を受け、燃焼器COB中で燃料と混合さ
れ、燃焼し高温化する。タービンTの各部では、燃焼ガ
スが、蒸気噴射を受けつつ膨脹することにより、各圧の
タービンHPT、MPT、LPT並びに出力タービンP
WTを回転させ、排熱ボイラEの入口温度まで低下し
て、排ガス通路200に排出される。そして、出力ター
ビンPWTの回転により、発電機GENが回って発電が
行われ、排熱ボイラEにて4種類の圧力の蒸気が発生す
る。
Next, the operation will be described. First, the case of operation with an emphasis on thermal efficiency will be described. In that case, the switching means 263A and 263B are switched by the control means 275 so that all of the low-to-medium-pressure steam is introduced into the compressor C. In this state, air is supplied from the atmosphere to the low-pressure compressor LPC via the inlet cooler EVA.
At the outlet of the low-pressure compressor LPC, evaporatively cooled, and introduced into the medium-pressure compressor MPC. At the outlet of the medium pressure compressor MPC, steam is injected,
Both effects of increasing the flow rate and intercooling are obtained. High pressure compressor HP
The compressed air that has passed through the outlet of C receives a large amount of steam injection immediately before the combustor COB, is mixed with fuel in the combustor COB, burns, and becomes hot. In each part of the turbine T, the combustion gas expands while receiving the steam injection, so that the turbine HPT, MPT, LPT and the output turbine P of each pressure are generated.
The WT is rotated to lower the temperature to the inlet of the exhaust heat boiler E, and is discharged to the exhaust gas passage 200. Then, by the rotation of the output turbine PWT, the generator GEN rotates to generate electric power, and the exhaust heat boiler E generates steam having four types of pressures.

【0015】排熱ボイラEで発生した蒸気は、ガスター
ビンGTの各所に全て噴射され尽くすので、蒸気がブレ
イトンサイクルの作動流体として全て利用されることに
なって、サイクルの熱効率を向上させることになる。特
に、圧縮機Cでは、低中圧段の水噴射による中間冷却に
加え、中高圧段にて蒸気が熱衝撃を抑えながら中間冷却
効果を果たすので、圧縮機Cの所要動力が低減し、その
分熱効率が向上する。また、燃焼器COBの直前やター
ビンTでは蒸気のエネルギーによる出力増大効果が得ら
れるので、一層の熱効率の向上が図れる。
[0015] Since the steam generated by the exhaust heat boiler E is completely injected into various parts of the gas turbine GT, all the steam is used as the working fluid of the Brayton cycle, thereby improving the thermal efficiency of the cycle. Become. In particular, in the compressor C, in addition to the intermediate cooling by water injection at the low and medium pressure stages, the steam performs an intermediate cooling effect while suppressing the thermal shock at the medium and high pressure stages, so that the required power of the compressor C is reduced. Heat distribution efficiency is improved. Further, immediately before the combustor COB and in the turbine T, an effect of increasing the output by the energy of the steam can be obtained, so that the thermal efficiency can be further improved.

【0016】また、圧縮機Cに蒸気を噴射させることに
より、ガスタービン全体の流量バランスの適正化を図る
ことができるので、圧縮機Cの回転数もそれほど上がら
ず、出力増加及び効率向上が図れる。従って、燃焼器C
OBの直前やタービンTにのみ蒸気を噴射させる方式と
違って、効率向上を図りながら、流量バランスの適正化
により、既存のガスタービンや既設のガスタービンにそ
のまま適用することができる。さらに、排気ガスの排熱
を多段で吸収することにより、異なった圧力の蒸気を発
生させるので、排熱回収効率がよくなる。また、構造的
には、排熱ボイラEを設けて、その発生蒸気をガスター
ビンGTの各所に噴射させるだけであるから、熱交換器
や復水器等の設備が不要で、設備コストを最小限に抑え
ることができる。
Further, by injecting steam into the compressor C, the flow balance of the entire gas turbine can be optimized, so that the number of revolutions of the compressor C does not increase so much, and the output and efficiency can be increased. . Therefore, combustor C
Unlike the method in which steam is injected just before the OB or only to the turbine T, the present invention can be directly applied to an existing gas turbine or an existing gas turbine by optimizing the flow rate balance while improving efficiency. Furthermore, since the exhaust heat of the exhaust gas is absorbed in multiple stages to generate steam at different pressures, the exhaust heat recovery efficiency is improved. Further, structurally, only the exhaust heat boiler E is provided, and the generated steam is simply injected into various parts of the gas turbine GT. Therefore, equipment such as a heat exchanger and a condenser is unnecessary, and the equipment cost is minimized. Can be minimized.

【0017】表1は、効率重視運転時のガスタービンサ
イクルの各場所のマテリアルバランスの一例を示してい
る。
Table 1 shows an example of the material balance at each location of the gas turbine cycle during the efficiency-oriented operation.

【0018】[0018]

【表1】 [Table 1]

【0019】各圧ボイラHPE、MPE、IPE、LP
Eの出口91、93、95、97における蒸気圧力は前
述した通りになっている。また、低中圧蒸気は全て圧縮
機Cに導入し、タービンTには導入しないので、中圧圧
縮機MPCと高圧圧縮機HPCの間(27)の蒸気流量
が「4.3」で、中圧タービンMPTと低圧タービンL
PTの間(47)の蒸気流量が「0」になっている。こ
のときの出力はガスタービン端で154.5MW、熱効
率はガスタービン端で56.9%であった。
Each pressure boiler HPE, MPE, IPE, LP
The steam pressures at the outlets 91, 93, 95, 97 of E are as described above. In addition, since all the low and medium pressure steam is introduced into the compressor C and not into the turbine T, the steam flow between the medium pressure compressor MPC and the high pressure compressor HPC (27) is “4.3”, Pressure turbine MPT and low pressure turbine L
The steam flow rate during (47) during PT is “0”. The output at this time was 154.5 MW at the gas turbine end, and the thermal efficiency was 56.9% at the gas turbine end.

【0020】また、例えば夏場の電力需要の急増に対し
て出力重視運転の必要が生じた場合は、制御手段275
により、低中圧蒸気を全て中低圧タービンMPT、LP
T間に導入するように切替手段263A、263Bを切
替える。そうした場合、圧縮機Cの中間冷却の効果は期
待できなくなるが、中圧タービンMPTと低圧タービン
LPT間(47)において蒸気混合による流体エネルギ
ーの増加があるので、出力が向上することになる。
If, for example, the need for output-oriented operation arises in response to a sudden increase in power demand in summer, the control means 275
To convert all low and medium pressure steam into medium and low pressure turbines MPT and LP
The switching means 263A and 263B are switched so as to be introduced between T. In such a case, the effect of the intermediate cooling of the compressor C cannot be expected, but the output is improved because there is an increase in fluid energy between the intermediate pressure turbine MPT and the low pressure turbine LPT (47) due to steam mixing.

【0021】表2は、出力重視運転時のガスタービンサ
イクルの各場所のマテリアルバランスの一例を示してい
る。
Table 2 shows an example of the material balance at each point of the gas turbine cycle during the power-oriented operation.

【0022】[0022]

【表2】 [Table 2]

【0023】この場合は、低中圧蒸気は全て中圧タービ
ンMPTと低圧タービンLPTの間に導入し、圧縮機C
には導入しないので、中圧圧縮機MPCと高圧圧縮機H
PCの間(27)の蒸気流量が「0」で、中圧タービン
MPTと低圧タービンLPTの間(47)の蒸気流量が
「4.8」になっている。このときの出力はガスタービ
ン端で159.0MW、熱効率はガスタービン端で5
5.9%であった。
In this case, all the low and medium pressure steam is introduced between the medium pressure turbine MPT and the low pressure turbine LPT, and the compressor C
, The medium-pressure compressor MPC and the high-pressure compressor H
The steam flow between PC (27) is “0”, and the steam flow between medium pressure turbine MPT and low pressure turbine LPT (47) is “4.8”. The output at this time was 159.0 MW at the gas turbine end, and the thermal efficiency was 5 at the gas turbine end.
It was 5.9%.

【0024】なお、低中圧蒸気を圧縮機CとタービンT
に分岐する割合は、上述の運転例のように、片方を0、
他方を100とする以外に、その間の適当な比率に設定
してもよい。また、運転内容をチェックしながら、割合
を自動調節してもよい。
The low and medium pressure steam is supplied to the compressor C and the turbine T
The ratio of branching to one is 0,
Instead of setting the other as 100, an appropriate ratio between them may be set. Further, the ratio may be automatically adjusted while checking the operation details.

【0025】また、前記第1実施形態のガスタービンサ
イクルでは、低圧圧縮機LPCと中圧圧縮機MPCの間
に水噴射を行っていたが、低圧ボイラLPEの発生する
蒸気を、低圧圧縮機LPCと中圧圧縮機MPCの間に噴
射させてもよい。また、蒸気に代えて、節炭器ECOの
発生する加熱水を、低圧圧縮機LPCと中圧圧縮機MP
Cの間に噴射させてもよい。また、圧縮機Cやタービン
Tの段数や排熱ボイラEの段数等は任意に設定してよ
い。
In the gas turbine cycle of the first embodiment, water is injected between the low-pressure compressor LPC and the medium-pressure compressor MPC. However, the steam generated by the low-pressure boiler LPE is supplied to the low-pressure compressor LPC. And the medium pressure compressor MPC. Also, instead of steam, the heating water generated by the economizer ECO is supplied to the low-pressure compressor LPC and the medium-pressure compressor MP.
It may be injected during C. The number of stages of the compressor C and the turbine T, the number of stages of the exhaust heat boiler E, and the like may be set arbitrarily.

【0026】[0026]

【発明の効果】以上説明したように、請求項1の発明に
よれば、タービンの排熱で発生させた蒸気を、圧縮機ま
たはタービンに対して必要に応じて選択的に噴射させる
ことができる。例えば、圧縮機に蒸気を噴射させた場合
は、圧縮機の圧縮空気を蒸気によって中間冷却すること
ができるので、圧縮機に対する熱衝撃を抑えながら、圧
縮機の所要動力の低減を図ることができ、その分熱効率
の向上を図ることができる。また、圧縮機に蒸気を噴射
させることにより、ガスタービン全体の流量バランスの
適正化を図ることができるので、燃焼器の直前やタービ
ンにのみ蒸気を噴射させる方式と違って、既存のガスタ
ービンや既設のガスタービンにそのまま適用することが
できる。また、タービンに蒸気を噴射させた場合は、蒸
気の増加によりタービンの流体エネルギーが増大するの
で、出力の向上が図れる。よって、効率重視運転と出力
重視運転を任意に選ぶことができる。また、構造的に
は、蒸気発生手段を設けて、その蒸気を各所に噴射させ
るだけであり、ガスタービンの基本サイクルであるブレ
イトンサイクルを充実化させるだけであるから、設備コ
ストを最小限に抑えることができる。
As described above, according to the first aspect of the present invention, the steam generated by the exhaust heat of the turbine can be selectively injected as necessary to the compressor or the turbine. . For example, when steam is injected into the compressor, the compressed air of the compressor can be intercooled by the steam, so that the required power of the compressor can be reduced while suppressing thermal shock to the compressor. Therefore, the heat efficiency can be improved accordingly. In addition, by injecting steam into the compressor, it is possible to optimize the flow balance of the entire gas turbine. It can be applied to an existing gas turbine as it is. Further, when steam is injected into the turbine, the output of the turbine can be improved because the fluid energy of the turbine increases due to the increase in steam. Therefore, efficiency-oriented operation and output-oriented operation can be arbitrarily selected. Further, structurally, the steam generation means is provided and the steam is simply injected into various places, and only the Brayton cycle, which is the basic cycle of the gas turbine, is enriched, thereby minimizing equipment costs. be able to.

【0027】請求項2の発明によれば、低圧蒸気を圧縮
機およびタービンの低圧部に選択的に噴射させる以外
に、それより高圧の蒸気をタービンの高圧部に噴射し、
さらにそれより高圧の蒸気を燃焼器の直前に噴射するよ
うにしたので、さらに効率向上と出力向上を図ることが
できる。
According to the second aspect of the present invention, in addition to selectively injecting low-pressure steam to the low-pressure section of the compressor and the turbine, higher-pressure steam is injected to the high-pressure section of the turbine,
Further, since higher-pressure steam is injected immediately before the combustor, it is possible to further improve efficiency and output.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態の系統図である。FIG. 1 is a system diagram of a first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

C 圧縮機 LPC 低圧圧縮機 MPC 中圧圧縮機 HPC 高圧圧縮機 COB 燃焼器 T タービン LPT 低圧タービン MPT 中圧タービン HPT 高圧タービン PWT 出力タービン E ボイラ(蒸気発生手段) HPE 高圧ボイラ MPE 中圧ボイラ IPE 低中圧ボイラ LPE 低圧ボイラ 263A,263B 分岐配管(経路) 271A,271B 切替手段 C Compressor LPC Low pressure compressor MPC Medium pressure compressor HPC High pressure compressor COB Combustor T turbine LPT Low pressure turbine MPT Medium pressure turbine HPT High pressure turbine PWT Output turbine E Boiler (steam generating means) HPE High pressure boiler MPE Medium pressure boiler IPE Low Medium pressure boiler LPE Low pressure boiler 263A, 263B Branch pipe (path) 271A, 271B Switching means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機により空気を圧縮して燃焼器に送
り込み、燃焼器にて圧縮空気に燃料を混合して燃焼を行
わせ、この燃焼ガスをタービンに導入して膨脹させ、タ
ービンの回転より機械的出力を得るガスタービンサイク
ルにおいて、 前記タービンの排熱により蒸気を発生させる蒸気発生手
段を設け、 該蒸気発生手段の発生した同条件の蒸気を、前記圧縮機
内に中間冷却が可能なように噴射させる経路と、タービ
ンに噴射させる経路とを設け、 前記両経路または両経路への分岐点に、両経路への前記
同条件の蒸気の分岐割合を切替調節する切替手段を設け
たことを特徴とするガスタービンサイクル。
1. A compressor compresses air and sends it to a combustor. The combustor mixes fuel with the compressed air to cause combustion. The combustion gas is introduced into a turbine to expand it, and the rotation of the turbine is increased. In a gas turbine cycle for obtaining a more mechanical output, steam generating means for generating steam by exhaust heat of the turbine is provided, and steam under the same conditions generated by the steam generating means can be intercooled in the compressor. A path for injecting the steam into the turbine and a path for injecting the steam into the turbine, and a switching means for switching and adjusting the branch ratio of the steam under the same condition to both the paths at the two paths or at a branch point to the two paths. Characteristic gas turbine cycle.
【請求項2】 蒸気発生手段の発生する低圧の蒸気を前
記経路を介して圧縮機およびタービンの低圧部に噴射可
能とすると共に、それより高圧の蒸気をタービンの高圧
部に噴射可能とし、さらにそれより高圧の蒸気を燃焼器
の直前に噴射可能としたことを特徴とする請求項1記載
のガスタービンサイクル。
2. A low-pressure steam generated by a steam generating means can be injected to a low-pressure portion of a compressor and a turbine through the path, and a higher-pressure steam can be injected to a high-pressure portion of the turbine. The gas turbine cycle according to claim 1, wherein higher pressure steam can be injected immediately before the combustor.
JP20625396A 1996-08-05 1996-08-05 Gas turbine cycle Withdrawn JPH1047077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20625396A JPH1047077A (en) 1996-08-05 1996-08-05 Gas turbine cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20625396A JPH1047077A (en) 1996-08-05 1996-08-05 Gas turbine cycle

Publications (1)

Publication Number Publication Date
JPH1047077A true JPH1047077A (en) 1998-02-17

Family

ID=16520279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20625396A Withdrawn JPH1047077A (en) 1996-08-05 1996-08-05 Gas turbine cycle

Country Status (1)

Country Link
JP (1) JPH1047077A (en)

Similar Documents

Publication Publication Date Title
RU2719413C2 (en) Systems with closed regenerative thermodynamic cycle of electric power generation and methods of their operation
US6276123B1 (en) Two stage expansion and single stage combustion power plant
JP4705018B2 (en) Operation method of gas turbine assembly
US6782703B2 (en) Apparatus for starting a combined cycle power plant
US6109019A (en) Steam cooled gas turbine system
JP2680792B2 (en) POWER GENERATION METHOD AND POWER GENERATION DEVICE
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
US5809768A (en) Hydrogen-oxygen combustion turbine plant
JP3170686B2 (en) Gas turbine cycle
JP2898290B2 (en) Mechanical energy generator
JP2004506831A (en) Method for utilizing gas expansion energy and power utilization apparatus for implementing the method
US20070256424A1 (en) Heat recovery gas turbine in combined brayton cycle power generation
JP2011137448A (en) Ejector obb system for gas turbine
US6336316B1 (en) Heat engine
JP2003533624A (en) Gas turbine plant and method for increasing the power of the plant
US9404395B2 (en) Selective pressure kettle boiler for rotor air cooling applications
RU2199020C2 (en) Method of operation and design of combination gas turbine plant of gas distributing system
JP2003106163A (en) Gas and air combined turbine facility and power plant and operating method thereof
US5337554A (en) Method for reducing the pressure of a gas from a primary network
KR101936327B1 (en) Combined Heat and power system using supercritical carbon dioxide power cycle
JPH1047077A (en) Gas turbine cycle
JP2002129977A (en) Gas turbine equipment
JPH11270347A (en) Gas turbine combined generating set using lng
JPH10103078A (en) Gas turbine cycle
JP2001241304A (en) Combined power generation system utilizing gas pressure energy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007