JPH104686A - Power converter, using auxiliary resonance commutation circuit - Google Patents

Power converter, using auxiliary resonance commutation circuit

Info

Publication number
JPH104686A
JPH104686A JP8172888A JP17288896A JPH104686A JP H104686 A JPH104686 A JP H104686A JP 8172888 A JP8172888 A JP 8172888A JP 17288896 A JP17288896 A JP 17288896A JP H104686 A JPH104686 A JP H104686A
Authority
JP
Japan
Prior art keywords
negative
resonance
voltage
auxiliary
main switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8172888A
Other languages
Japanese (ja)
Other versions
JP3253529B2 (en
Inventor
Katsuji Iida
克二 飯田
Takeshi Sakuma
健 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP17288896A priority Critical patent/JP3253529B2/en
Publication of JPH104686A publication Critical patent/JPH104686A/en
Application granted granted Critical
Publication of JP3253529B2 publication Critical patent/JP3253529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

PROBLEM TO BE SOLVED: To obtain the optimum zero-voltage switching by selecting the values of the equivalent inductances of positive- and negative-side routes, connecting the first connecting point between main switch elements and the second connecting point between smoothing capacitors, so that the voltage of a discharge-side resonance capacitor can become zero or negative at the time of commutation. SOLUTION: The values of equivalent inductances of positive- and negative- inductances Lf' connecting points P1 and P2 are selected so that the voltage of a discharge-side resonance capacitor can become zero or negative at the time of commutation. The inductances Lc in smoothing capacitors CD1 and CD2 and inductances around main switch elements S1 and S2 are not able to change freely, even when they exist, and the values of the equivalent inductances Lf' are decided within such a range that the optimum values of the positive- and negative-side equivalent inductances Lf are large than (Lc+Ls). More specifically, a conductor having the inductance value of [Lf-(Lc+Ls)] is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主スイッチ素子間
の接続点と分圧用平滑コンデンサ間の接続点との間に配
された双方向性補助スイッチ素子および共振リアクトル
の直列回路よりなる補助共振助共振転流回路を用いた電
力変換装置に、関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an auxiliary resonance comprising a series circuit of a bidirectional auxiliary switch element and a resonance reactor disposed between a connection point between main switch elements and a connection point between voltage dividing smoothing capacitors. The present invention relates to a power converter using an auxiliary resonance commutation circuit.

【0002】[0002]

【従来の技術】一般に、電力用半導体スイッチ素子から
なる電力変換装置においてはスイッチオン,スイッチオ
フ時にスイッチング損失と呼ばれる損失が発生し、これ
は、高周波動作させるとその動作周波数に比例して増大
し、深刻な問題となる。最近、ゼロ電圧スイッチング
(ZVS)あるいはゼロ電流スイッチング(ZCS)に
よるソフトスイッチング方式がいろいろ提案されている
ものの、大容量の電力変換装置に実用できる方式が見当
たらなかった。
2. Description of the Related Art In general, in a power conversion device including a power semiconductor switching element, a loss called a switching loss occurs when a switch is turned on and off, and this loss increases in proportion to the operating frequency when operated at a high frequency. , Will be a serious problem. Recently, various soft switching systems based on zero voltage switching (ZVS) or zero current switching (ZCS) have been proposed, but no system that can be used for a large-capacity power converter has been found.

【0003】ところが、1989年,(米国)IEEE−I
ASのコンファレンスレコ−ド,P829 〜834 記載の論
文「RESONANT SNUBBERS WITH AUXILIARY SWITCHES (補
助スイッチを有する共振スナバ)」,William Mc M
urray (マックマレ−)による回路は、実用し得る方式
といえる。また、この種の回路の制御方法として、特表
平5-502365号公報「補助共振転流回路を用いて電力変換
器を制御する方法」が示される。かかるものの詳細は文
献によるものとして、ここでは、図6および図7を用い
て簡単に説明する。
However, in 1989, (USA) IEEE-I
AS Conference Record, pp. 829-834, RESONANT SNUBBERS WITH AUXILIARY SWITCHES, William McM.
The circuit based on urray is a practical method. As a method for controlling this type of circuit, Japanese Patent Publication No. 5-502365 discloses a method of controlling a power converter using an auxiliary resonant commutation circuit. The details of such a method are based on literatures, and will be briefly described here with reference to FIGS.

【0004】図6は、逆阻止能力のある補助スイッチ素
子を使用した例すなわち上記マックマレ−論文記載のF
ig1を示し、Eは直流電源、CD1,CD2は直流電源Eを
分圧するため直列接続された平滑コンデンサ、S1 ,S
2 は主スイッチ素子、D1 ,D2 は主スイッチ素子S1
,S2 に逆並列接続されたダイオ−ド、CR1,CR2は
主スイッチ素子S1 ,S2 に並列接続された共振コンデ
ンサ、Lrは共振リアクトル、SA1,SA2は補助スイッ
チ素子である。ここで、補助スイッチ素子SA1,SA2は
逆阻止能力のあるサイリスタであって、両者が逆並列に
接続されて双方向性を有している。
FIG. 6 shows an example in which an auxiliary switch element having a reverse blocking ability is used, that is, F
ig1, E denotes a DC power source, CD1 and CD2 denote smoothing capacitors connected in series to divide the DC power source E, and S1 and S
2 is a main switch element, D1 and D2 are main switch elements S1
, S2 are diodes connected in anti-parallel, CR1 and CR2 are resonance capacitors connected in parallel to the main switch elements S1 and S2, Lr is a resonance reactor, and SA1 and SA2 are auxiliary switch elements. Here, the auxiliary switching elements SA1 and SA2 are thyristors having reverse blocking capability, and both are connected in anti-parallel to have bidirectionality.

【0005】図7は、直列接続ダイオ−ドを有する補助
スイッチ素子を使用した他の例すなわち上記公表特許公
報に記載されたFig1を示し、SA3,SA4は補助スイッ
チ素子である。ここで補助スイッチ素子SA3,SA4は、
逆阻止能力の低いスイッチ素子と逆素子能力の大きいダ
イオ−ドを直列接続したものをそれぞれ用い、それらの
逆並列接続構成により双方向性を有している。実際に
は、スイッチ素子とダイオ−ドがそれぞれ一体にモジュ
ールされている場合が多く、その場合に図示の点線のよ
うに接続され、したがって、動作的には図6と同じくな
る。
FIG. 7 shows another example in which an auxiliary switch element having a series connection diode is used, that is, FIG. 1 described in the above-mentioned publication, where SA3 and SA4 are auxiliary switch elements. Here, the auxiliary switch elements SA3 and SA4 are
A switch element having a low reverse blocking capability and a diode having a large reverse element capability connected in series are used, and have a bidirectional property by their anti-parallel connection configuration. In practice, the switch element and the diode are often integrated into a single module, in which case they are connected as shown by the dotted lines in FIG.

【0006】[0006]

【発明が解決しようとする課題】かかる図6および図7
の動作を、図8の回路図および図9の波形図を参照して
説明する。Ioは負荷電流、Ipは正側電流、Inは負
側電流、VC1は共振コンデンサCR1の電圧である。図8
において、いま主スイッチ素子S2 にゲ−トが加えられ
ている状態であるが、負荷電流Ioが図示の方向に流れ
ていると、主スイッチ素子S2 には流れず、ダイオ−ド
D2 に流れる。この状態から、時刻T0 で主スイッチ素
子S2 のゲ−トオフと補助スイッチ素子SA1のオンを同
時に行うと、一点鎖線で示す経路に電流が流れて共振リ
アクトルLrの電流が負荷電流Ioになるまで直線的に
増えて行き、時刻Tまでダイオ−ドD2 は導通してい
る。ここで、共振リアクトル電流が負荷電流Ioとなる
とダイオ−ドD2 は非導通となって、共振リアクトルL
rと共振コンデンサCR1,CR2〔CR1,CR2のキャパシ
タンスは(1/2C)とする〕による共振動作が始ま
り、実線で示す経路に電流が流れるようになる。これに
より、図9に点線で示すように、共振コンデンサCR1の
電圧VC1は放電して時刻Tで零となる。そして、このと
きに主スイッチ素子S1 にゲ−トを印加すると、ZVS
となってスイッチング損失は発生しない。
FIG. 6 and FIG.
Will be described with reference to the circuit diagram of FIG. 8 and the waveform diagram of FIG. Io is a load current, Ip is a positive current, In is a negative current, and VC1 is the voltage of the resonance capacitor CR1. FIG.
At this point, the gate is being applied to the main switch element S2. However, if the load current Io flows in the direction shown in the figure, it does not flow to the main switch element S2 but to the diode D2. From this state, when the gate-off of the main switching element S2 and the turning-on of the auxiliary switching element SA1 are performed simultaneously at time T0, a current flows through a path shown by a dashed line and a straight line is obtained until the current of the resonant reactor Lr becomes the load current Io. The diode D2 is conducting until time T. Here, when the resonance reactor current becomes the load current Io, the diode D2 becomes non-conductive, and the resonance reactor L
The resonance operation by r and the resonance capacitors CR1 and CR2 (the capacitance of CR1 and CR2 is assumed to be (1 / 2C)) starts, and a current flows through a path shown by a solid line. Thereby, as shown by the dotted line in FIG. 9, the voltage VC1 of the resonance capacitor CR1 is discharged and becomes zero at time T. When a gate is applied to the main switch element S1 at this time, ZVS
Therefore, no switching loss occurs.

【0007】ところが、かような動作は理想的な回路条
件において実現できるものであり、実用回路では不可能
となる。例えば、共振リアクトルLrに抵抗があると、
これによる損失のために図9の実線で示すように電圧V
C1は零とならず、したがってZVSが実現できなくな
る。この問題を解決する方法として、特表平5-502365号
公報に詳述されているように、共振動作を開始する前に
補助スイッチ素子SA1と主スイッチ素子S2 の導通する
時間をラップさせ、予め共振リアクトル電流を流してか
ら、主スイッチ素子S2 をタ−ンオフさせる、ブースト
と呼ばれている動作をさせている。しかしながら、その
ためには共振リアクトル電流を検出する等の複雑な制御
が必要となって、価格の上昇や信頼性の低下等の問題が
ある。
However, such an operation can be realized under ideal circuit conditions, and is impossible with a practical circuit. For example, if the resonance reactor Lr has a resistance,
Due to the loss due to this, as shown by the solid line in FIG.
C1 does not become zero, so that ZVS cannot be realized. As a method for solving this problem, as described in JP-A-5-502365, before conducting the resonance operation, the conduction time between the auxiliary switch element SA1 and the main switch element S2 is wrapped, and After the resonance reactor current is passed, the main switch element S2 is turned off to perform an operation called boost. However, for that purpose, complicated control such as detection of the resonance reactor current is required, and there are problems such as an increase in price and a decrease in reliability.

【0008】しかして本発明の目的とするところは、正
側ル−トおよび負側ル−トの等価インダクタンスの値を
最適に選択してZVSを行い得る格別な補助共振転流回
路を用いた電力変換装置を提供する、ことにある。
An object of the present invention is to use a special auxiliary resonance commutation circuit capable of performing ZVS by optimally selecting the equivalent inductance value of the positive route and the negative route. To provide a power converter.

【0009】[0009]

【課題を解決するための手段】本発明は上述したような
点に鑑みなされたものであって、つぎの如くに構成した
ものである。すなわち、2個の主スイッチ素子間の第1
の接続点と平滑コンデンサ間の第2の接続点とを結ぶ正
側ル−トおよび負側ル−トの等価インダクタンスの値
を、転流の際に放電側の共振コンデンサの電圧が零もし
くは負になる如くに、選択してなるものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has the following structure. That is, the first between the two main switch elements
The value of the equivalent inductance of the positive side route and the negative side route connecting the connection point of (1) and the second connection point between the smoothing capacitors is determined as follows. It is a matter of choice.

【0010】つぎに、前述の公表特許公報を始めとして
どのような文献にても見られないところの、補助スイッ
チ素子および共振リアクトルの直列回路よりなる補助共
振転流回路を除いた回路構成部におけるインダクタンス
の存在について、検討する。これは、実際に回路構成に
おいては僅かではあるが必ず存在する部品自身および配
線のインダクタンスを、無視できないためである。特
に、電力変換装置の出力容量が大きくなると、共振リア
クトルのインダクタンスの値を小さくする必要があり、
したがって、配線インダクタンス等の値に近づき大きな
影響を与えることが判明した。これを、図1を用いて説
明する。
[0010] Next, in a circuit component except for an auxiliary resonance commutation circuit composed of a series circuit of an auxiliary switch element and a resonance reactor, which is not found in any document including the above-mentioned published patent publication. Consider the presence of inductance. This is because the inductance of the component itself and the wiring, which are inevitably present in the circuit configuration, albeit slightly, cannot be ignored. In particular, when the output capacity of the power converter increases, it is necessary to reduce the inductance value of the resonance reactor,
Therefore, it has been found that the value approaches the value of the wiring inductance and the like, and has a great influence. This will be described with reference to FIG.

【0011】図1は内部インダクタンスや配線インダク
タンス等を等価インダクタンスに置き換え図6に類して
示したものであつて、Lfは等価インダクタンス、P1
は直列接続された平滑コンデンサCD1,CD2間の接続
点、P2 は直列接続された主スイッチ素子S1 ,S2 間
の接続点である。ここで、等価インダクタンスLfは平
滑コンデンサの内部インダクタンスや配線インダクタン
ス等がまとめられ、さらには、接続点P1 ,P2 間の正
側ル−トおよび負側ル−トに分割して配されている。さ
らにこの動作を、図2および図3の等価回路図を参照し
て、説明する。
FIG. 1 is a view similar to FIG. 6 in which the internal inductance and the wiring inductance are replaced with an equivalent inductance, wherein Lf is an equivalent inductance, P1
Is a connection point between the smoothing capacitors CD1 and CD2 connected in series, and P2 is a connection point between the main switch elements S1 and S2 connected in series. Here, the equivalent inductance Lf includes the internal inductance and the wiring inductance of the smoothing capacitor, and is further divided into a positive route and a negative route between the connection points P1 and P2. This operation will be further described with reference to the equivalent circuit diagrams of FIGS.

【0012】さて、前述した場合と同様に、負荷電流I
oがダイオ−ドD2 に流れている状態にて、補助スイッ
チ素子SA2をターンオンさせると、負側電流Inが零と
なるまで図2に示す等価回路で動作し、正側電流Ipお
よび共振コンデンサCR1の電圧VC1は、式(1),
(2)となる。ただし、ωは式(3)であって、(C/
2)はCR1,CR2のキャパシタンス、LはLrのインダ
クタンス、Lfは等価インダクタンス、Eは電源電圧で
ある。
Now, as in the case described above, the load current I
When the auxiliary switch element SA2 is turned on in a state where o is flowing through the diode D2, the circuit operates in the equivalent circuit shown in FIG. 2 until the negative side current In becomes zero, and the positive side current Ip and the resonance capacitor CR1 Of the voltage VC1 of the equation (1),
(2). Here, ω is the equation (3), and (C /
2) is the capacitance of CR1 and CR2, L is the inductance of Lr, Lf is the equivalent inductance, and E is the power supply voltage.

【0013】[0013]

【数1】 (Equation 1)

【0014】また、時刻Tで負側電流Inがが零となる
とダイオ−ドD2 がオフし、図3に示す等価回路に移行
し、新たな共振が起こることになる。ここに、時刻Tに
おける正側電流Ipの値をIP1,電圧VC1の値をVC1と
すると、その値IP1,VC1は、式(4),(5)で表せ
る。ただし、ω1 ,ω2 は式(6),(7)である。
When the negative current In becomes zero at time T, the diode D2 is turned off, and the operation shifts to the equivalent circuit shown in FIG. 3, where a new resonance occurs. Here, assuming that the value of the positive-side current Ip at time T is IP1 and the value of the voltage VC1 is VC1, the values IP1 and VC1 can be expressed by equations (4) and (5). Here, ω1 and ω2 are equations (6) and (7).

【0015】[0015]

【数2】 (Equation 2)

【0016】さらに、かような式(1),(2)および
式(4),(5)について、共振リアクトルLrの値L
を(L=4μH),共振コンデンサCR1,CR2の値Cを
(C=0.5μF)とし、等価インダクタンスLfを変
えて計算した結果を、図示すると図3の如くである。こ
の図のように、正側共振コンデンサCR1の電圧VC1の最
小値が、等価インダクタンスLfの値によってかなり影
響を受けていることが分かる。そして、この電圧VC1の
最小値のところで、主スイッチ素子S1 をオンさせても
VC1の最小値が正の電圧であると、ZVSが行われず、
主スイッチ素子のタ−ンオン損失が増大するばかりでは
なく、急峻な電流変化による電磁ノイズの発生も問題と
なる。
Further, with respect to the equations (1) and (2) and the equations (4) and (5), the value L of the resonance reactor Lr
(L = 4 μH), the value C of the resonance capacitors CR1 and CR2 is (C = 0.5 μF), and the calculation result is shown in FIG. 3 by changing the equivalent inductance Lf. As shown in this figure, it can be seen that the minimum value of the voltage VC1 of the positive side resonance capacitor CR1 is considerably affected by the value of the equivalent inductance Lf. If the minimum value of VC1 is a positive voltage even when the main switch element S1 is turned on at the minimum value of the voltage VC1, ZVS is not performed.
Not only does the turn-on loss of the main switch element increase, but also the occurrence of electromagnetic noise due to a sharp current change poses a problem.

【0017】そこで、正,負側の等価インダクタンスの
値を、共振コンデンサCR1電圧の最小値が零もしくは負
(実際の回路では逆並列ダイオードにより負にはならな
い)となるように、選ぶものする。かように等価インダ
クタンスの最適値に選ぶことにより、共振コンデンサ電
圧の最小値を零もしくは負となるようにして、最小値近
辺で主スイッチ素子をタ−ンオンさせる。これより、Z
VSがなされてタ−ンオン損失を著しく減少させるとと
もに、急峻な電流変化を生じさせないために電磁ノイズ
の発生も抑制することができる。
Therefore, the value of the equivalent inductance on the positive and negative sides is selected so that the minimum value of the voltage of the resonance capacitor CR1 is zero or negative (in an actual circuit, it does not become negative due to the anti-parallel diode). By selecting the optimum value of the equivalent inductance as described above, the minimum value of the resonance capacitor voltage is set to zero or negative, and the main switch element is turned on near the minimum value. From this, Z
As a result, the turn-on loss is significantly reduced by the VS, and the generation of electromagnetic noise can be suppressed because no sharp current change occurs.

【0018】[0018]

【発明の実施の形態】図5は本発明が適用された一実施
例を図1に類して示し、Lf’は等価インダクタンス、
Lc,Lsはインダクタンスである。ここに、等価イン
ダクタンスLf’は(Lf’=Lf−Ls−Lc)であ
る。すなわち、図1においては、接続点P1 ,P2 間の
補助スイッチ素子SA1,SA2および共振リアクトルLr
の直列回路抜きであるところの、接続点P1 と接続点P
2 とを結ぶ正側ル−トおよび負側ル−トにおける等価イ
ンダクタンスLf’の値を、転流の際に放電側の共振コ
ンデンサの電圧が零もしくは負になる如くに、選択し得
るものである。ここで、平滑コンデンサCD1,CD2内部
のインダクタンスLcおよび主スイッチ素子S1 ,S2
周りのインダクタンスLsは必ず存在しても、自由に変
えることができず、等価インダクタンスLf’の値を、
前述した如き正,負側の等価インダクタンスLfの最適
値が(Lc+Ls)より大きい範囲で決定する。具体的
には、インダクタンスの値を〔Lf−(Lc+Ls)〕
を有する導体を用い、平滑コンデンサCD1,CD2と主ス
イッチ素子S1 ,S2 (並列にダイオ−ドと共振コンデ
ンサが接続されている)との間を接続するものであって
よい。なお、主スイッチ素子S1 から主スイッチ素子S
2 への転流について説明したが、負荷電流の方向を逆に
すればS2 〜S1 への転流も同じようになることは勿論
である。
FIG. 5 shows an embodiment to which the present invention is applied in a manner similar to FIG. 1, where Lf 'is an equivalent inductance,
Lc and Ls are inductances. Here, the equivalent inductance Lf ′ is (Lf ′ = Lf−Ls−Lc). That is, in FIG. 1, the auxiliary switching elements SA1 and SA2 between the connection points P1 and P2 and the resonance reactor Lr
Connection points P1 and P
2 can be selected so that the value of the equivalent inductance Lf 'at the positive side route and the negative side route connecting to the discharge side resonance capacitor becomes zero or negative during commutation. is there. Here, the inductance Lc inside the smoothing capacitors CD1 and CD2 and the main switch elements S1 and S2
Even if the surrounding inductance Ls always exists, it cannot be changed freely, and the value of the equivalent inductance Lf ′ is
As described above, the optimum value of the positive and negative side equivalent inductances Lf is determined in a range larger than (Lc + Ls). Specifically, the value of the inductance is [Lf- (Lc + Ls)]
May be used to connect between the smoothing capacitors CD1, CD2 and the main switch elements S1, S2 (diodes and resonant capacitors are connected in parallel). Note that the main switch element S1 to the main switch element S
The commutation to S2 has been described, but if the direction of the load current is reversed, the commutation to S2 to S1 is of course the same.

【0019】[0019]

【発明の効果】以上詳述したように本発明によれば、格
別に主スイッチ素子のタ−ンオンが零電圧によって行わ
れ、電力変換装置の効率の向上とともに電磁ノイズの発
生も抑制し得る補助共振転流回路を用いた電力変換装置
を、提供できる。
As described above in detail, according to the present invention, the turn-on of the main switch element is performed at zero voltage, and the efficiency of the power converter can be improved and the generation of electromagnetic noise can be suppressed. A power converter using a resonant commutation circuit can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は内部インダクタンスや配線インダクタン
ス等を等価インダクタンスに置き換えて示した回路図で
ある。
FIG. 1 is a circuit diagram in which internal inductance, wiring inductance, and the like are replaced with equivalent inductance.

【図2】図2は図1の動作を説明するため示した第1の
等価回路図である。
FIG. 2 is a first equivalent circuit diagram shown for explaining the operation of FIG. 1;

【図3】図3は図1の動作を説明するため示した第2の
等価回路図である。
FIG. 3 is a second equivalent circuit diagram shown for explaining the operation of FIG. 1;

【図4】図4は等価インダクタンス値の選択例を示した
波形図である。
FIG. 4 is a waveform chart showing an example of selecting an equivalent inductance value.

【図5】図5は本発明が適用された一実施例を示す回路
図である。
FIG. 5 is a circuit diagram showing one embodiment to which the present invention is applied.

【図6】図6は逆阻止能力のある補助スイッチ素子を使
用した従来例を示す回路図である。
FIG. 6 is a circuit diagram showing a conventional example using an auxiliary switch element having a reverse blocking ability.

【図7】図7は直列接続ダイオ−ドを有する補助スイッ
チ素子を使用した他の従来例を示す回路図である。
FIG. 7 is a circuit diagram showing another conventional example using an auxiliary switching element having a series connection diode.

【図8】図8は図6および図7の動作を説明するために
示した回路図である。
FIG. 8 is a circuit diagram shown for explaining the operation of FIGS. 6 and 7;

【図9】図9は図6および図7の動作を説明するために
示した波形図である。
FIG. 9 is a waveform chart shown for explaining the operation of FIGS. 6 and 7;

【符号の説明】[Explanation of symbols]

E 直流電源 CD1 平滑コンデンサ S1 主スイッチ素子 D1 ダイオ−ド CR1 共振コンデンサ Lr 共振リアクトル SA1 補助スイッチ素子 Lf 等価インダクタンス Lf’ 等価インダクタンス Io 負荷電流 Ip 正側電流 In 負側電流 VC1 電圧 P1 接続点 P2 接続点 Lc インダクタンス Ls インダクタンス E DC power supply CD1 Smoothing capacitor S1 Main switch element D1 Diode CR1 Resonant capacitor Lr Resonance reactor SA1 Auxiliary switch element Lf Equivalent inductance Lf 'Equivalent inductance Io Load current Ip Positive current In Negative current VC1 Voltage P1 Connection point P2 Connection point Lc inductance Ls inductance

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 直流電源の正負極間に直列接続されて逆
並列ダイオードおよび並列接続された共振コンデンサを
備える2個の主スイッチ素子間の第1の接続点と、前記
直流電源に直列接続された分圧のための平滑コンデンサ
間の第2の接続点との間に、双方向性補助スイッチ素子
および共振リアクトルの直列回路よりなる補助共振転流
回路を具備して成る電力変換装置において、前記第1の
接続点と第2の接続点とを結ぶ正側ル−トおよび負側ル
−トの等価インダクタンスの値を、転流の際に放電側の
共振コンデンサの電圧が零もしくは負になる如くに選択
してなることを特徴とする補助共振転流回路を用いた電
力変換装置。
1. A first connection point between two main switch elements connected in series between a positive electrode and a negative electrode of a DC power supply and having an anti-parallel diode and a resonance capacitor connected in parallel, and connected in series to the DC power supply. A power conversion device comprising an auxiliary resonance commutation circuit including a series circuit of a bidirectional auxiliary switch element and a resonance reactor between the smoothing capacitor for the voltage division and a second connection point between the smoothing capacitors. The value of the equivalent inductance of the positive side route and the negative side route connecting the first connection point and the second connection point is determined by determining whether the voltage of the discharge side resonance capacitor becomes zero or negative during commutation. A power converter using an auxiliary resonance commutation circuit, which is selected as described above.
JP17288896A 1996-06-12 1996-06-12 Power converter using auxiliary resonant commutation circuit Expired - Fee Related JP3253529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17288896A JP3253529B2 (en) 1996-06-12 1996-06-12 Power converter using auxiliary resonant commutation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17288896A JP3253529B2 (en) 1996-06-12 1996-06-12 Power converter using auxiliary resonant commutation circuit

Publications (2)

Publication Number Publication Date
JPH104686A true JPH104686A (en) 1998-01-06
JP3253529B2 JP3253529B2 (en) 2002-02-04

Family

ID=15950191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17288896A Expired - Fee Related JP3253529B2 (en) 1996-06-12 1996-06-12 Power converter using auxiliary resonant commutation circuit

Country Status (1)

Country Link
JP (1) JP3253529B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717457A (en) * 1983-09-15 1988-01-05 U.S. Philips Corporation Method of providing a transparent layer on a substrate
US8199544B2 (en) 2007-09-01 2012-06-12 Brusa Elektronik Ag Zero-voltage switching power converter
US8508962B2 (en) 2009-09-24 2013-08-13 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion apparatus
CN110036559A (en) * 2016-09-07 2019-07-19 布鲁萨电子公司 High power charge pump with inductance element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569194B1 (en) 2000-12-28 2003-05-27 Advanced Cardiovascular Systems, Inc. Thermoelastic and superelastic Ni-Ti-W alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717457A (en) * 1983-09-15 1988-01-05 U.S. Philips Corporation Method of providing a transparent layer on a substrate
US8199544B2 (en) 2007-09-01 2012-06-12 Brusa Elektronik Ag Zero-voltage switching power converter
US8508962B2 (en) 2009-09-24 2013-08-13 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion apparatus
CN110036559A (en) * 2016-09-07 2019-07-19 布鲁萨电子公司 High power charge pump with inductance element
CN110036559B (en) * 2016-09-07 2021-03-23 布鲁萨电子公司 High-power charge pump with inductive element

Also Published As

Publication number Publication date
JP3253529B2 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
CN102347702B (en) Highly efficient half-bridge dcac converter
US7006362B2 (en) DC/DC converter
US7307857B2 (en) Non-isolated DC-DC converters with direct primary to load current
JP4240141B1 (en) Direct AC power converter
JP2009055747A (en) Bidirectional dc-dc converter and method of controlling the same
JPWO2008020629A1 (en) Isolated step-up push-pull soft switching DC / DC converter
JP4626722B1 (en) Power converter and control method thereof
CN1210390A (en) Sub-resonant series resonant converter having improved form factor and reduced EMI
US5625549A (en) Boost-buck rectifier bridge circuit topology with diode decoupled boost stage
JPH0746853A (en) Controller and control method for soft switching inverter
JPH0622551A (en) Resonance-type dc-dc converter
JP3253529B2 (en) Power converter using auxiliary resonant commutation circuit
JP2003230276A (en) Control method for power converter
JP2001309647A (en) Chopper circuit
JP6547709B2 (en) Voltage converter
JP2019140890A (en) Three level power conversion device
KR100834031B1 (en) Power factor correction circuit using snubber circuit
WO2011058665A1 (en) Power conversion device
CN109194168B (en) Efficient rectifying circuit and control method thereof
JP2803069B2 (en) Power converter using auxiliary resonant commutation circuit
JP3877042B2 (en) Auxiliary resonance circuit
KR100815567B1 (en) Power factor correction circuit using snubber circuit
JP3296424B2 (en) Power converter
KR101749826B1 (en) Zero voltage full-bridge inverter with additive coupled inductor
JP2004260882A (en) Power converter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees