JPH1046399A - Method for controlling concentration of insoluble-anode electrogalvanizing solution - Google Patents
Method for controlling concentration of insoluble-anode electrogalvanizing solutionInfo
- Publication number
- JPH1046399A JPH1046399A JP20146896A JP20146896A JPH1046399A JP H1046399 A JPH1046399 A JP H1046399A JP 20146896 A JP20146896 A JP 20146896A JP 20146896 A JP20146896 A JP 20146896A JP H1046399 A JPH1046399 A JP H1046399A
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- zinc
- free acid
- plating
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、不溶性陽極亜鉛電
気めっき液の濃度制御方法、特に不溶性陽極を使用する
硫酸酸性亜鉛電気めっきのめっき液に対する亜鉛イオン
の供給源として金属亜鉛を使用し、亜鉛濃度及び硫酸濃
度(又はpH)を共に所定範囲内に制御する際に適用し
て好適な、不溶性陽極亜鉛電気めっき液の濃度制御方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the concentration of an insoluble anode zinc electroplating solution, and more particularly to a method for controlling the concentration of a zinc ion in a plating solution for a sulfuric acid acid zinc electroplating using an insoluble anode, using zinc as a source of zinc ions. The present invention relates to a method for controlling the concentration of an insoluble anodic zinc electroplating solution, which is preferably applied when controlling both the concentration and the sulfuric acid concentration (or pH) within a predetermined range.
【0002】[0002]
【従来の技術】帯状鋼板を連続的に搬送しながら白金等
の不溶性陽極を使用して電気めっきすることが行われて
いる。このような電気めっきの中でも、合金めっきの場
合は、めっき液の濃度制御において、濃度精度が厳しく
要求されるため、めっき反応で金属イオンが消費される
速度である電析速度や、系外にめっき液が持ち出されて
成分が減少する速度であるドラッグアウト速度を予測し
て、可能な限り厳密に制御する方法が数多く報告されて
いる。しかし、純亜鉛電気めっき等の1種類の金属のめ
っきに用いられる単一めっき液の濃度については、合金
めっきに比べて比較的要求精度が低いために、以下のよ
うな制御方法が知られている。2. Description of the Related Art Electroplating is performed using an insoluble anode such as platinum while continuously transporting a strip-shaped steel sheet. Among such electroplating, in the case of alloy plating, the concentration accuracy of the plating solution is strictly required in controlling the concentration of the plating solution. Many methods have been reported for predicting the drag-out rate, which is the rate at which components are reduced by taking out a plating solution, and controlling the drag-out rate as strictly as possible. However, regarding the concentration of a single plating solution used for plating one kind of metal such as pure zinc electroplating, since the required accuracy is relatively low as compared with alloy plating, the following control method is known. I have.
【0003】例えば、特開昭51−97543や特公昭
63−50439には、不溶性陽極を使用した亜鉛(Z
n)又はニッケル(Ni)等の単一電気めっきの濃度制
御方法として、pH値のみを検出し、そのpH値に基づ
いて金属薬剤の溶解を行うことにより、金属濃度及びp
Hを制御する方法が開示されている。For example, JP-A-51-97543 and JP-B-63-50439 disclose zinc (Z) using an insoluble anode.
As a method for controlling the concentration of single electroplating such as n) or nickel (Ni), by detecting only the pH value and dissolving the metal agent based on the pH value, the metal concentration and p
A method for controlling H is disclosed.
【0004】即ち、この場合は、理論的には以下の
(A)、(B)式の電析反応と(C)式の溶解反応のバ
ランスにより、検出されたpH値に応じて金属Niを溶
解することにより、Ni濃度、pHを共に制御すること
ができる。That is, in this case, theoretically, the metal Ni is added according to the detected pH value by the balance between the electrodeposition reaction of the following formulas (A) and (B) and the dissolution reaction of the formula (C). By dissolving, both Ni concentration and pH can be controlled.
【0005】 (電析反応) Ni2++2e- →Ni↓ …(A) H2 O+SO4 2-→H2 SO4 +1/2O2 ↑+2e- …(B) (溶解反応) Ni+H2 SO4 →NiSO4 +H2 ↑ …(C)[0005] (electrodeposition reaction) Ni 2+ + 2e - → Ni ↓ ... (A) H2 O + SO4 2- → H2 SO4 + 1 / 2O2 ↑ + 2e - ... (B) ( dissolution reaction) Ni + H2 SO4 → NiSO4 + H2 ↑ ... (C )
【0006】又、特公昭60−48598には、不溶性
陽極を使用したZn電気めっき液の濃度制御方法とし
て、Zn濃度を検出し、その検出値に基づいて亜鉛薬剤
(金属Zn、酸化Zn、水酸化Zn)の粉末を供給する
ことにより、Zn濃度及びpHを制御する方法が開示さ
れている。Japanese Patent Publication No. 60-48598 discloses a method for controlling the concentration of a Zn electroplating solution using an insoluble anode by detecting the Zn concentration and, based on the detected value, a zinc agent (metal Zn, Zn oxide, water). A method of controlling the Zn concentration and pH by supplying a powder of Zn oxide) is disclosed.
【0007】即ち、この場合も同様に、理論的には、以
下の(D)、(E)式の電析反応と、(F)式の溶解反
応のバランスにより検出されたZn濃度に応じてZn薬
剤の粉末を投入することにより、Zn濃度、pHを共に
制御することができる。That is, in this case as well, theoretically, according to the Zn concentration detected by the balance between the electrodeposition reaction of the following formulas (D) and (E) and the dissolution reaction of the formula (F), By injecting the powder of the Zn agent, both the Zn concentration and the pH can be controlled.
【0008】 (電析反応) Zn2++2e- →Zn↓ …(D) H2 O+SO4 2-→H2 SO4 +1/2O2 ↑+2e- …(E) (溶解反応) Zn+H2 SO4 →ZnSO4 +H2 ↑ …(F)[0008] (electrodeposition reaction) Zn 2+ + 2e - → Zn ↓ ... (D) H2 O + SO4 2- → H2 SO4 + 1 / 2O2 ↑ + 2e - ... (E) ( dissolution reaction) Zn + H2 SO4 → ZnSO4 + H2 ↑ ... (F )
【0009】[0009]
【発明が解決しようとする課題】しかしながら、前記特
公昭51−97543や特公昭63−50439に開示
されている制御方法には、実際のめっき設備では系外へ
のめっき液の漏出(搬送される鋼板による持ち出し、シ
ール漏れ等を含む)があるため、この方法によってpH
を目標値に制御しようとすると、Ni濃度が徐々に低下
することになり、結果として両者を適切な濃度に制御す
ることができないという問題がある。However, in the control method disclosed in the above-mentioned JP-B-51-97543 and JP-B-63-50439, in an actual plating facility, the plating solution leaks (is conveyed) out of the system. (Including removal by steel plates, leakage of seals, etc.)
Is controlled to a target value, the Ni concentration gradually decreases, and as a result, there is a problem that both cannot be controlled to an appropriate concentration.
【0010】又、前記特公昭60−48598に開示さ
れている制御方法には、同様に実際のめっき設備では系
外へのめっき液の漏出があるために、この方法によって
はZn濃度は目標値に制御できるものの、H2 SO4 濃
度は徐々に低下(pHは徐々に上昇)するという問題が
ある。In the control method disclosed in Japanese Patent Publication No. 60-48598, the plating solution similarly leaks out of the system in actual plating equipment. However, there is a problem that the H2 SO4 concentration gradually decreases (the pH gradually increases).
【0011】又、Zn濃度、H2 SO4 濃度(又はp
H)の両者を共に適切に制御しようとする場合には、以
下の問題がある。Further, the Zn concentration, the H2 SO4 concentration (or p
In the case where both of H) are to be appropriately controlled, the following problem arises.
【0012】即ち、純Zn電気めっきで、めっき液の漏
出がないと仮定すると、めっき液のZn濃度とH2 SO
4 濃度の関係は、便宜上図2(A)の濃度図の一部を抽
出した同図(B)に模式的に示すように、金属Znの溶
解を開始すると、前記(F)式の溶解反応に従ってZn
イオンが増えてH2 SO4 が減るために右下に移動し、
溶解を停止すると、前記(D)、(E)式の電析反応に
従ってZnイオンが減ってH2 SO4 が増えるために左
上に上昇する。That is, assuming that there is no leakage of the plating solution in pure Zn electroplating, the Zn concentration of the plating solution and H 2 SO 4
4 For the sake of convenience, as shown schematically in FIG. 2B where a part of the concentration diagram of FIG. 2A is extracted for convenience, when the dissolution of metal Zn is started, the dissolution reaction of the formula (F) is started. According to Zn
Move to the lower right to increase ions and decrease H2SO4,
When the dissolution is stopped, Zn ions decrease and H2 SO4 increases according to the electrodeposition reactions of the above formulas (D) and (E), so that the concentration rises to the upper left.
【0013】従って、金属Znの溶解によって成分濃度
を制御するために、例えば図5に太い破線で示すよう
に、Zn濃度に関係なく一定のH2 SO4 濃度供給目標
値が維持されるようにH2 SO4 を供給する場合は、金
属Znを溶解するとH2 SO4濃度が低下することにな
るので、その分を補うためにH2 SO4 を追加供給する
ことが必要になる。しかし、溶解を停止し、溶解した分
のZnが電析反応で消費されると、前記(D)、(E)
式の反応によりH2 SO4 濃度が高くなるために、追加
供給した分のH2 SO4 が過剰となる。従って、Zn濃
度を考慮することなくH2 SO4 濃度のみを、目標値に
維持する制御を行うと、この繰り返しにより徐々にH2
SO4 の過剰量が蓄積され、最終的に制御が不可能にな
る。Therefore, in order to control the component concentration by dissolving the metal Zn, for example, as shown by the thick broken line in FIG. 5, the H2SO4 concentration supply target value is maintained so as to be constant regardless of the Zn concentration. When the metal Zn is dissolved, the concentration of H2 SO4 decreases when the metal Zn is dissolved. Therefore, it is necessary to additionally supply H2 SO4 to compensate for the decrease. However, when the dissolution is stopped and the dissolved Zn is consumed in the electrodeposition reaction, the above (D), (E)
Since the concentration of H2 SO4 is increased by the reaction of the formula, the amount of H2 SO4 additionally supplied becomes excessive. Therefore, when control is performed to maintain only the H2 SO4 concentration at the target value without considering the Zn concentration, the H2 SO4 concentration is gradually increased by repeating this.
An excessive amount of SO4 accumulates and eventually becomes uncontrollable.
【0014】本発明は、前記従来の問題点を解決するべ
くなされたもので、Zn濃度及び遊離酸(例えば、H2
SO4 )濃度(又はpH)の実測値に基づいて金属Zn
の溶解量と遊離酸の供給量を共に制御することにより、
系外へのめっき液の漏出に対しても、高精度でZn濃度
及び遊離酸濃度(又はpH)をめっきに適した範囲に維
持することができる技術を提供することを課題とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems.
SO4) Metal Zn based on the measured value of concentration (or pH)
By controlling both the amount of dissolution and the supply of free acid,
It is an object of the present invention to provide a technique capable of maintaining a Zn concentration and a free acid concentration (or pH) within a range suitable for plating with high accuracy even when a plating solution leaks out of the system.
【0015】[0015]
【課題を解決するための手段】本発明は、不溶性陽極を
使用して亜鉛電気めっきを行うめっき設備本体と、金属
亜鉛に酸性めっき液を接触させて該亜鉛を溶解する溶解
装置との間にめっき液を循環させ、めっき設備本体に亜
鉛イオンを補給することにより、めっき液の濃度を制御
する不溶性陽極亜鉛電気めっき液の濃度制御方法におい
て、前記めっき設備本体のめっき液について実測され
た、亜鉛濃度及び遊離酸濃度(又はpH)に基づいて、
これら両者が所定範囲に維持されるように、前記溶解装
置により金属亜鉛を溶解して亜鉛イオンを補給すると共
に、遊離酸を補給することにより、前記課題を解決した
ものである。SUMMARY OF THE INVENTION The present invention relates to a method for manufacturing a zinc plating apparatus using an insoluble anode, and a dissolving apparatus for dissolving the zinc by bringing an acidic plating solution into contact with metallic zinc. In the method of controlling the concentration of the insoluble anodic zinc electroplating solution, which controls the concentration of the plating solution by circulating the plating solution and replenishing the plating equipment with zinc ions, the zinc solution actually measured for the plating solution in the plating equipment body was used. Based on the concentration and the free acid concentration (or pH),
The object has been achieved by dissolving metallic zinc by the dissolving device to replenish zinc ions and replenishing free acid so that both are maintained in predetermined ranges.
【0016】即ち、本発明においては、遊離酸がH2 S
O4 である場合について説明すると、Znイオン濃度及
びH2 SO4 濃度(又はpH)の実測値に基づいて、こ
れら両者が所定の許容範囲内に維持されるように、前記
(F)式に従って金属Znを溶解してZnイオンを補給
すると共に、その際に副生したSO4 イオンの影響を考
慮した上で、H2 SO4 の補給量を決定して供給するこ
とができるため、系外へのめっき液の漏出に対しても、
高精度でZn濃度及びH2 SO4 濃度(又はpH)をめ
っきに適した範囲に維持することができる。That is, in the present invention, the free acid is H 2 S
The case of O4 will be described. Based on the measured values of the Zn ion concentration and the H2 SO4 concentration (or pH), the metal Zn is added according to the above formula (F) so that both are maintained within a predetermined allowable range. In addition to dissolving and replenishing Zn ions, the amount of H2 SO4 replenishment can be determined and supplied in consideration of the influence of by-produced SO4 ions, so that the plating solution leaks out of the system. For
The Zn concentration and the H2 SO4 concentration (or pH) can be maintained within a range suitable for plating with high precision.
【0017】[0017]
【発明の実施の形態】まず、本発明の好ましい実施形態
におけるH2 SO4 の供給方法の原理について以下に説
明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the principle of a method for supplying H2 SO4 in a preferred embodiment of the present invention will be described below.
【0018】めっき設備本体と溶解装置との間にめっき
液を循環させ、該めっき液を金属Znに接触させて溶解
するオンと、その接触を解除して溶解を停止するオフと
を繰り返す金属Znのオン/オフ制御を行う際には、H
2 SO4 の供給方法として、前記図2(A)に示すよう
に、金属Znの溶解を開始する目標下限Zn濃度A1以
下の領域では、H2 SO4 濃度を高めの、例えば目標上
限濃度B2 にしておき、金属Znの溶解運転を開始する
と前記(F)式の溶解反応により自然にH2 SO4 濃度
は低下する(図2(B)に示す溶解反応方向)。又、金
属Znの溶解運転を停止する目標上限Zn濃度A2 以上
の領域では、H2 SO4 濃度を低めの、例えば目標下限
濃度B1 にしておき、金属Znの溶解を停止すると、前
記(D)、(E)式の電析反応により自然にH2 SO4
濃度は上昇する(図2(B)の電析反応方向)。The metal Zn is circulated between the plating equipment main body and the melting device, and the metal Zn is repeatedly turned on to contact the metal Zn and dissolve the metal plating and to stop the melting by releasing the contact. When the on / off control of
As shown in FIG. 2A, as a method of supplying 2 SO4, as shown in FIG. 2A, the H2 SO4 concentration is set to a higher value, for example, the target upper limit concentration B2, in the region where the target lower limit Zn concentration A1 at which the dissolution of metal Zn is started. When the dissolution operation of the metal Zn is started, the H2SO4 concentration naturally decreases due to the dissolution reaction of the formula (F) (dissolution reaction direction shown in FIG. 2B). Further, in the region above the target upper limit Zn concentration A2 at which the dissolution operation of the metal Zn is stopped, the H2 SO4 concentration is set to a lower value, for example, the target lower limit concentration B1, and the dissolution of the metal Zn is stopped. E) spontaneously H2 SO4 by the electrodeposition reaction of the formula
The concentration increases (the direction of the electrodeposition reaction in FIG. 2B).
【0019】本実施形態は、このように、H2 SO4 濃
度を考慮しながら、金属Znの溶解量を制御することに
より、H2 SO4 を過剰供給することなく、Zn濃度、
H2SO4 濃度(又はpH)を共に適切な濃度範囲に制
御可能であること、即ち図2(A)においてZn濃度は
A1 〜A2 の許容濃度範囲内に、H2 SO4 はB1 〜B
2 の許容濃度範囲内にそれぞれ制御可能であることを知
見してなされたものである。In this embodiment, by controlling the dissolution amount of metallic Zn while taking the H2 SO4 concentration into consideration, the Zn concentration and the Zn concentration can be reduced without excessively supplying H2 SO4.
Both the H2SO4 concentration (or pH) can be controlled within an appropriate concentration range, that is, in FIG. 2A, the Zn concentration is within the allowable concentration range of A1 to A2, and the H2 SO4 is B1 to B
It was made based on the finding that each can be controlled within the allowable concentration range of 2.
【0020】又、本発明の好ましい実施形態では、成分
濃度が許容範囲を超えてしまう場合には、H2 SO4 濃
度(又はpH)をZn濃度に優先させて、その許容範囲
内に維持されるように制御する。In a preferred embodiment of the present invention, when the component concentration exceeds the allowable range, the H 2 SO 4 concentration (or pH) is maintained within the allowable range by giving priority to the Zn concentration. To control.
【0021】即ち、実測されたZn濃度及びH2 SO4
濃度に基づいて、金属Znの溶解運転を開始/停止する
ことを、図6に示すようにZn濃度、H2 SO4 濃度が
共に高いときでも停止領域とすると、この状態でも金属
Znの溶解運転を行わないことになるため、電析反応の
みが進行してH2 SO4 濃度が更に上昇することにな
る。That is, the measured Zn concentration and H 2 SO 4
Starting and stopping the melting operation of the metal Zn based on the concentration is defined as a stop region even when both the Zn concentration and the H2 SO4 concentration are high as shown in FIG. 6, and the melting operation of the metal Zn is performed even in this state. Therefore, only the electrodeposition reaction proceeds, and the H2 SO4 concentration further increases.
【0022】このように、H2 SO4 濃度が必要以上に
高くなると(又はpHが必要以上に低くなると)、電析
反応の効率の悪化(電力原単位の悪化)や電極の劣化を
招くことになることが明らかとなり、その結果、純Zn
めっき液の濃度を制御する上で、H2 SO4 濃度を優先
的に制御することが品質上、コスト上最良であることが
知見された。As described above, when the concentration of H 2 SO 4 becomes higher than necessary (or when the pH becomes lower than necessary), the efficiency of the electrodeposition reaction deteriorates (the power consumption decreases) and the electrode deteriorates. As a result, pure Zn
It has been found that in controlling the concentration of the plating solution, preferentially controlling the H2 SO4 concentration is the best in terms of quality and cost.
【0023】以下、図面を参照して、より具体的な本発
明の実施の形態について詳細に説明する。Hereinafter, a more specific embodiment of the present invention will be described in detail with reference to the drawings.
【0024】図1は、本発明に係る一実施形態に適用さ
れるめっき設備全体の概要を示し、これは、不溶性陽極
を使用して亜鉛電気めっきを行うめっき設備本体10
と、金属Znに硫酸酸性めっき液を接触させて該Znを
溶解する溶解装置12とを備えている。FIG. 1 shows an outline of an entire plating facility applied to one embodiment of the present invention, which is a plating facility body 10 for performing zinc electroplating using an insoluble anode.
And a dissolving device 12 for dissolving the metal Zn by bringing a sulfuric acid plating solution into contact with the metal Zn.
【0025】上記めっき設備本体10では、液分析計1
4によりめっき液成分の分析が行われるようになってい
る。又、上記金属Zn溶解装置12は、金属Znを収容
し、該Znにめっき液を接触させて溶解する溶解槽16
を有し、該溶解槽16には金属Znが補充されると共
に、H2 SO4 薬剤がその供給弁18を介して供給され
るようになっている。In the plating equipment body 10, the liquid analyzer 1
4, the analysis of the plating solution component is performed. Further, the metal Zn dissolving apparatus 12 contains a metal Zn, and a dissolving tank 16 for dissolving the Zn by contacting a plating solution with the Zn.
The dissolution tank 16 is replenished with metallic Zn, and the H2 SO4 chemical is supplied through its supply valve 18.
【0026】又、めっき設備本体10と、金属Zn溶解
装置12の間は配管で接続され、それぞれの出側に設置
されたポンプ20、22により、両者間にめっき液が循
環されるようになっていると共に、受入弁24、バイパ
ス弁26の開閉操作により、循環するめっき液を溶解槽
16内に導入して金属Znを溶解するか否かのオン/オ
フ制御が行われるようになっている。なお、図中符号2
8、30は、それぞれめっき設備本体10、溶解槽16
に付設されたレベル計である。The plating equipment body 10 and the metal Zn dissolving device 12 are connected by piping, and the plating solution is circulated between the two by pumps 20 and 22 installed on the respective outlet sides. In addition, by opening and closing the receiving valve 24 and the bypass valve 26, on / off control of whether or not the circulating plating solution is introduced into the dissolving tank 16 to dissolve the metal Zn is performed. . Incidentally, reference numeral 2 in the figure
Reference numerals 8 and 30 denote a plating equipment main body 10 and a melting tank 16, respectively.
It is a level meter attached to.
【0027】本実施形態においては、めっき設備本体1
0のめっき液について液分析計14で実測されたZnイ
オン濃度及びH2 SO4 濃度に基づいて、これら両者が
それぞれ所定範囲、即ち、それぞれ前記図2(A)に示
したA1 〜A2 及びB1 〜B2 の濃度範囲に維持される
ように、前記溶解装置12を運転してめっき液を循環さ
せ、溶解槽16内に収容されている金属亜鉛を溶解して
Znイオンを上記本体10に補給すると共に、不足した
H2 SO4 を補給する制御が行われる。In the present embodiment, the plating equipment body 1
On the basis of the Zn ion concentration and the H2 SO4 concentration actually measured by the solution analyzer 14 for the plating solution No. 0, these two are respectively within predetermined ranges, that is, A1 to A2 and B1 to B2 shown in FIG. The dissolving device 12 is operated to circulate the plating solution to dissolve the metallic zinc contained in the dissolving tank 16 and replenish the Zn ions to the main body 10 so that the concentration is maintained within the range of Control for replenishing the insufficient H2SO4 is performed.
【0028】本実施形態の制御方法を具体的に説明する
と、金属Zn溶解装置12の運転/停止による溶解槽1
6から設備本体10へのZnイオンの供給(オン)/停
止(オフ)の操作は、以下のように行うことができる。More specifically, the control method of the present embodiment will be described.
The operation of supplying (on) / stopping (off) Zn ions from 6 to the equipment body 10 can be performed as follows.
【0029】前記液分析計14で実測した結果、Zn濃
度測定値及びH2 SO4 濃度測定値が前記図2(A)に
示す運転領域にある場合、受入弁24を開き、バイパス
弁26を閉じて溶解装置12を運転状態にする。このよ
うにすることにより、めっき設備本体10から溶解装置
12内にめっき液を受入れ、金属Znを溶解した後、そ
のめっき液をめっき設備本体10に送り返す循環を行
う。As a result of the actual measurement by the liquid analyzer 14, when the measured Zn concentration and the measured H2 SO4 concentration are in the operation region shown in FIG. 2A, the receiving valve 24 is opened and the bypass valve 26 is closed. The dissolving device 12 is brought into an operating state. In this way, the plating solution is received from the plating equipment body 10 into the dissolving device 12, and after dissolving the metal Zn, the plating solution is sent back to the plating equipment body 10 for circulation.
【0030】その後、前記(F)式の反応が進行したた
めに、液分析計14で実測したZn濃度測定値及びH2
SO4 濃度測定値が、図2(A)に示す停止領域になっ
たときは、上記受入弁24を閉じ、バイパス弁26を開
くことにより、金属Znの溶解を停止する。Thereafter, since the reaction of the formula (F) proceeded, the measured Zn concentration and the H 2 value measured by the liquid analyzer 14 were measured.
When the measured SO4 concentration reaches the stop region shown in FIG. 2A, the dissolution of the metallic Zn is stopped by closing the receiving valve 24 and opening the bypass valve 26.
【0031】その後、この停止状態のままでめっきを継
続し、液分析計14による実測結果が再び運転領域に達
したら、上記金属Znの溶解を再開する。このようにし
て、溶解装置12の運転/停止による金属Znの溶解の
オン/オフ制御により、Zn濃度、H2 SO4 濃度を共
に許容範囲内に制御するようにする。Thereafter, the plating is continued with this stopped state, and when the measured result by the liquid analyzer 14 reaches the operating region again, the dissolution of the metal Zn is restarted. In this way, the on / off control of the dissolution of metallic Zn by operating / stopping the dissolving device 12 controls both the Zn concentration and the H2 SO4 concentration within the allowable range.
【0032】又、このような制御を行っているときに、
めっき液の漏出等が原因でH2 SO4 が不足したときに
は、その補給を行う。When such control is performed,
When H2 SO4 becomes insufficient due to leakage of the plating solution or the like, replenishment is performed.
【0033】H2 SO4 の補給に際しては、所定範囲の
Zn濃度に関して、H2 SO4 を補給する際の目標とな
るH2 SO4 供給目標濃度曲線を予め作成しておき、実
測されたZn濃度を該供給目標濃度曲線に適用して、実
測時のH2 SO4 の供給目標濃度を決定し、決定された
H2 SO4 の供給目標濃度と、実測されたH2 SO4の
実濃度(又はpH)との偏差に基づいてH2 OS4 の供
給量を決定し、H2 SO4 の供給を行う。When replenishing H 2 SO 4, a target H 2 SO 4 supply concentration curve which is a target when replenishing H 2 SO 4 is prepared in advance for a predetermined range of Zn concentration, and the actually measured Zn concentration is used as the target concentration. By applying the curve to the curve, a target supply concentration of H2SO4 at the time of actual measurement is determined, and H2OS4 is determined based on a deviation between the determined target supply concentration of H2SO4 and the actual concentration (or pH) of H2SO4 actually measured. Is determined, and H2 SO4 is supplied.
【0034】上記供給目標濃度曲線としては、図2
(A)に太い破線で示したものを使用することができ
る。この供給目標濃度曲線について以下に説明する。FIG. 2 shows the target supply density curve.
What is shown by a thick broken line in (A) can be used. The target supply concentration curve will be described below.
【0035】図3は、上記図2(B)をより具体的に示
したものである。この図3に示した線分ABは、前記
(D)、(E)式のめっき反応と前記(F)式の溶解反
応のプロセスの関係をグラフ化したものに相当する。FIG. 3 shows the above-mentioned FIG. 2 (B) more specifically. The line segment AB shown in FIG. 3 corresponds to a graph obtained by plotting the relationship between the plating reaction of the formulas (D) and (E) and the dissolution reaction of the formula (F).
【0036】従って、図中の線分AB上にZn濃度、H
2 SO4 濃度を制御できれば、めっき、Zn溶解によっ
て、それぞれの濃度は目標値(図中●)へ近づいていく
ことが期待できる。そこで、この線分ABのことを、適
正変動線と呼ぶことにする。即ち、この適正変動線は、
外部との間で硫酸の収支が無い時のZn濃度の変動に対
するH2 SO4 濃度の適正な変動を表わしている。Accordingly, the Zn concentration and H
If the 2 SO4 concentration can be controlled, it can be expected that the respective concentrations approach the target values (● in the figure) by plating and dissolution of Zn. Therefore, this line segment AB will be referred to as an appropriate fluctuation line. That is, the appropriate fluctuation line is
This shows an appropriate change in H2SO4 concentration with respect to a change in Zn concentration when there is no balance between sulfuric acid and the outside.
【0037】純Znめっき液については、Zn濃度及び
H2 SO4 濃度の許容幅が、Zn−Ni合金めっき液に
比べ比較的広いことから、制御時に設定する目標値をこ
の適正変動線上の点に置くことにする。Since the allowable range of the Zn concentration and the H2 SO4 concentration of the pure Zn plating solution is relatively wider than that of the Zn-Ni alloy plating solution, the target value set at the time of control is set at a point on the appropriate fluctuation line. I will.
【0038】上記適正変動線は、Zn濃度目標値CZC
sp(又は、CZsp) [g/l]とH2 SO4 濃度目標値CA
sp [g/l]を通って、ZnとH2 SO4 のグラム当量比の
傾きを持つ線分であるから、 (CZ−CZCsp)/Mz+(CAC−CAsp)/Ma=0 …(1) を満足するように、下式により適正変動線上の値である
修正H2 SO4 濃度CAC [g/l]を求めることができ
る。The above-mentioned appropriate fluctuation line is a Zn concentration target value CZC.
sp (or CZsp) [g / l] and H2 SO4 concentration target value CA
Since the line segment passes through sp [g / l] and has a gradient of the gram equivalent ratio of Zn and H2 SO4, (CZ-CZCsp) / Mz + (CAC-CAsp) / Ma = 0 (1) is satisfied. Thus, the corrected H2 SO4 concentration CAC [g / l], which is a value on the appropriate fluctuation line, can be obtained by the following equation.
【0039】 CAC=CAsp−(Ma/Mz)(CZ−CZCsp) [g/l] …(2) 但し、CZ:Zn濃度測定値 Mz:Zn原子量 Ma:H2 SO4 分子量CAC = CAsp− (Ma / Mz) (CZ−CZCsp) [g / l] (2) where CZ: measured value of Zn concentration Mz: atomic weight of Zn Ma: molecular weight of H 2 SO 4
【0040】そして、実際の制御時に設定する修正H2
SO4 濃度目標値CACsp(前記図2(A)に太い破線
で示したH2 SO4 濃度供給目標値に当る)は、上記
(2)式の右辺第2項の適正変動線上を、H2 SO4 濃
度目標値CAspとH2 SO4 濃度下限値CALの範囲内
で決定する。従って、上記CACspは、次の(3)式で
設定できる。即ち、CAspと上記(2)で求まる修正濃
度CACのいずれか小さい方と、下記(4)式で求まる
CALとの間で大きい方を修正目標値CACspとする。
なお、上記(2)式によりCACを求める際には、Zn
濃度測定値CZ [g/l]は、最新値を使用する。Then, the correction H2 set at the time of actual control
The SO4 concentration target value CACsp (corresponding to the H2 SO4 concentration supply target value shown by the thick broken line in FIG. 2A) is expressed by the H2 SO4 concentration target value on the appropriate fluctuation line of the second term on the right side of the above equation (2). The determination is made within the range of the lower limit CAL of the concentration of CAsp and H2 SO4. Therefore, the CACsp can be set by the following equation (3). In other words, the smaller one of CAsp and the corrected density CAC obtained in the above (2) and the larger one between the CAL obtained by the following equation (4) are set as the corrected target value CACsp.
When CAC is calculated by the above equation (2), Zn
As the measured concentration value CZ [g / l], the latest value is used.
【0041】 CACsp=MAX(MIN(CAsp,CAC),CAL) [g/l]…(3) CAL=CAsp−ΔCAL [g/l] …(4) 但し、ΔCAL:H2 SO4 濃度下限偏差 [g/l]CACsp = MAX (MIN (CAsp, CAC), CAL) [g / l] (3) CAL = CAsp−ΔCAL [g / l] (4) where ΔCAL: H 2 SO 4 concentration lower limit deviation [g / l]
【0042】上記(3)式で与えられる修正H2 SO4
濃度目標値CACspを概念的に示すと図4の太い実線の
ようになり、この図4は、前記図2(A)に対応してい
る。The modified H 2 SO 4 given by the above equation (3)
The concentration target value CACsp is conceptually shown as a thick solid line in FIG. 4, and FIG. 4 corresponds to FIG. 2A.
【0043】従って、前記図2(A)おけるA1 はZn
目標濃度CZspに、B1 はH2 SO4 濃度下限値CA
L、B2 はH2 SO4 濃度目標値CAspにそれぞれ対応
しており、A2 はその時に許容されるZn濃度の上限値
である。Therefore, A1 in FIG. 2A is Zn
In the target concentration CZsp, B1 is the H2 SO4 concentration lower limit value CA.
L and B2 correspond to the H2 SO4 concentration target value CAsp, respectively, and A2 is the upper limit of the Zn concentration allowed at that time.
【0044】なお、図4において容量リンク“入”とあ
るのは、浴量変動が生じたとしてもH2 SO4 濃度を一
定に保持するように、Zn濃度の目標値を修正して濃度
制御を行う浴量リンクモードを選択する場合を意味す
る。In FIG. 4, the capacity link "ON" means that the target value of the Zn concentration is corrected and the concentration control is performed so that the H2 SO4 concentration is kept constant even when the bath amount fluctuates. This means that the bath amount link mode is selected.
【0045】即ち、本濃度制御では、(1)H2 SO4
濃度を安定制御するための浴量リンクと、(2)金属供
給量の自由度を大きくとるための前記適正変動線とを採
用することができる。濃度制御のための計算周期は、計
装からの浴量計測値の受信周期(浴量測定周期)、例え
ば30秒とする。That is, in this concentration control, (1) H2SO4
A bath amount link for stably controlling the concentration and (2) the appropriate fluctuation line for increasing the degree of freedom of the metal supply amount can be adopted. The calculation cycle for the concentration control is a reception cycle (bath volume measurement cycle) of the bath volume measurement value from the instrumentation, for example, 30 seconds.
【0046】浴量リンクモードの選択時には、めっき液
中のトータルSO4 2-量が一定の下で、H2 SO4 濃度
の目標値を一定に保てるように、浴量の変動に応じて、
Zn濃度の目標値を修正する。その修正Zn濃度目標値
CZCsp [g/l]は、次の(5)式を根拠に導かれる下記
(6)式により求めることができる。When the bath amount link mode is selected, the target value of the H2 SO4 concentration is kept constant while the total amount of SO4 2- in the plating solution is constant.
Correct the target value of the Zn concentration. The corrected Zn concentration target value CZCsp [g / l] can be obtained by the following equation (6) derived based on the following equation (5).
【0047】目標トータルSO4 2-量は、次式の左辺の
ようになり、循環系から切り離された付帯設備中の金属
濃度、全体のH2 SO4 濃度に影響を与えないように修
正Zn濃度CZCspを考えると、右辺のようになる。The target total SO 4 2− quantity is as shown on the left side of the following equation. The modified Zn concentration CZCsp is set so as not to affect the metal concentration in the incidental equipment separated from the circulation system and the entire H 2 SO 4 concentration. If you think about it, it looks like the right side.
【0048】 (CZsp/Mz)Vsp+(CAsp/Ma)Vsp =(CZCsp/Mz)Vrot +(CZsp/Mz)(Vall −Vrot ) +(CAsp/Ma)Vall [kmol]…(5) ここで、CZsp:Zn濃度目標値 [g/l] CAsp:H2 SO4 濃度目標値 [g/l] Vsp:総浴量目標値 [m3 ] Vall :総浴量実績値 [m3 ] Vrot :循環浴量実績値 [m3 ] Mz:Zn原子量 Ma:H2 SO4 分子量 故に、 CZCsp=CZsp(Vrot +Vsp−Vall )/Vrot +CAsp(Mz/Ma)(Vsp−Vall )/Vrot [g/l] …(6)(CZsp / Mz) Vsp + (CAsp / Ma) Vsp = (CZCsp / Mz) Vrot + (CZsp / Mz) (Vall−Vrot) + (CAsp / Ma) Vall [kmol] (5) CZsp: target Zn concentration [g / l] CAsp: target H2 SO4 concentration [g / l] Vsp: total bath target [m 3 ] Vall: total bath actual value [m 3 ] Vrot: circulating bath Actual value [m 3 ] Mz: Zn atomic weight Ma: H2 SO4 molecular weight Therefore, CZCsp = CZsp (Vrot + Vsp-Vall) / Vrot + CAsp (Mz / Ma) (Vsp-Vall) / Vrot [g / l] (6)
【0049】以降、浴量リンクモード選択時は、CZsp
の代わりにCZCspを用いる。即ち、上記(6)式によ
り浴量増加時には希釈されるため、図4に*1で示した
ように、CZsp及び適正変動線が低濃度方向に、逆に、
浴量減少時には濃縮されるため、*2で示したように、
これらが高濃度方向に修正されて制御が行われる。Thereafter, when the bath amount link mode is selected, CZsp
Is replaced with CZCsp. That is, since the solution is diluted when the bath volume is increased according to the above equation (6), as shown by * 1 in FIG.
As the concentration decreases when the bath volume decreases, as indicated by * 2,
These are corrected in the high density direction and control is performed.
【0050】本実施形態で行うH2 SO4 薬剤の具体的
な供給方法としては、液分析計14によるH2 SO4 濃
度測定値が、前記図2(A)に示すH2 SO4 濃度供給
目標値以下になったときに、その供給弁18をth時間
だけ開状態にすることにより、上記目標値からの偏差量
に応じた、次の(7)式により算出されるH2 SO4薬
剤供給量:ShのH2 SO4 薬剤を供給する方法を採用
することができる。As a specific method of supplying the H2SO4 chemical in the present embodiment, the measured value of the H2SO4 concentration by the liquid analyzer 14 becomes equal to or less than the target value of the H2SO4 concentration supply shown in FIG. At this time, the supply valve 18 is kept open for the th time, so that the H2SO4 chemical supply amount calculated by the following equation (7) according to the deviation from the target value: H2SO4 chemical of Sh Can be adopted.
【0051】 Sh=g×(CAsp−CA)×Vall [m3 ] …(7) 但し、CAsp:H2 SO4 濃度供給目標値 [g/l] CA:H2 SO4 濃度測定値 [g/l] Vall :めっき液総浴量実績値 [m3 ] g:調整係数 H2 SO4 薬剤供給弁開時間:th th=3600×Sh/HS [sec] 但し、HS:H2 SO4 薬剤供給能力 [m3 /h]Sh = g × (CAsp−CA) × Vall [m 3 ] (7) where CAsp: H2SO4 concentration supply target value [g / l] CA: H2SO4 concentration measurement value [g / l] Vall : Actual value of plating bath total bath amount [m 3 ] g: Adjustment coefficient H2 SO4 chemical supply valve opening time: th th = 3600 × Sh / HS [sec] where HS: H2 SO4 chemical supply capacity [m 3 / h]
【0052】上記(7)式で求めた供給量のH2 SO4
を補給することにより、H2 SO4濃度を、常にZn濃
度に応じて設定されている目標濃度に制御することが可
能となる。The supply amount of H 2 SO 4 obtained by the above equation (7)
Makes it possible to always control the H2 SO4 concentration to the target concentration set according to the Zn concentration.
【0053】なお、上記Vall は、レベル計28、30
による測定値等からめっき設備本体10を含む全めっき
液量を計算することにより求めることができる。The above Vall is a level meter 28, 30
The total amount of the plating solution including the plating equipment main body 10 can be calculated from the measurement values obtained by the above method.
【0054】以上詳述した本実施形態によれば、H2 S
O4 濃度供給目標値を、前記図2(A)に示すように、
金属Znの溶解を開始するZn濃度の運転領域ではH2
SO4 濃度を高めにしておくことにより、その後の溶解
反応により自然にH2 SO4濃度を低下させ、又、金属
Znの溶解運転を停止するZn濃度の停止領域ではH2
SO4 濃度を低めにしておくことにより、実行中の電析
反応により自然にH2SO4 濃度を上昇させることがで
きることから、Zn濃度及びH2 SO4 濃度を共に許容
されるめっきに適した濃度範囲に制御することが可能と
なる。According to the present embodiment described in detail above, H 2 S
As shown in FIG. 2 (A), the O4 concentration supply target value is
In the operating range of Zn concentration at which the dissolution of metallic Zn starts, H2
By keeping the SO4 concentration high, the H2 SO4 concentration is naturally reduced by the subsequent dissolution reaction, and in the stop region of the Zn concentration where the dissolution operation of the metal Zn is stopped, the H2 concentration is reduced.
By keeping the SO4 concentration low, the H2SO4 concentration can be spontaneously increased by the electrodeposition reaction during the process. Therefore, it is necessary to control both the Zn concentration and the H2SO4 concentration to a concentration range suitable for plating where both are allowed. Becomes possible.
【0055】又、このような制御を行うことにより、以
下のような効果もある。By performing such control, the following effects are also obtained.
【0056】(1)金属Znの溶解はH2 SO4 濃度が
高いほど溶解性が増す。従って、金属Znの溶解運転を
開始する時に、H2 SO4 濃度を高めにすることによ
り、速く所定の濃度に戻すことができる。(1) The solubility of metal Zn increases as the H2 SO4 concentration increases. Therefore, when starting the dissolution operation of the metal Zn, the concentration can be quickly returned to the predetermined concentration by increasing the H2 SO4 concentration.
【0057】(2)前述した如く、図5に示したよう
に、一定のH2 SO4 濃度供給目標値に維持するため
に、H2 SO4 を供給した場合は、溶解運転を行うとH
2 SO4濃度が低下するために、H2 SO4 を追加供給
することになる。しかし、溶解を停止すると、電析反応
によりH2 SO4 濃度が高くなるために、追加供給した
分のH2 SO4 が過剰となる。従って、この繰り返しに
より徐々にH2 SO4 濃度が上昇すると共に、Zn濃度
も上昇することになるが、このような現象が生じること
も防止することができる。(2) As described above, as shown in FIG. 5, when H2 SO4 is supplied in order to maintain a constant H2 SO4 concentration supply target value, when the melting operation is performed, H
Since the 2 SO4 concentration decreases, H2 SO4 is additionally supplied. However, when the dissolution is stopped, the H2SO4 concentration increases due to the electrodeposition reaction, so that the additional supply of H2SO4 becomes excessive. Accordingly, the H2 SO4 concentration gradually increases and the Zn concentration also increases by this repetition, but such a phenomenon can be prevented from occurring.
【0058】(3)安価な金属Znを使用して、Zn濃
度、H2 SO4 濃度を共に比較的高精度に自動制御する
ことが実現できる。(3) By using inexpensive metal Zn, it is possible to automatically control both the Zn concentration and the H 2 SO 4 concentration with relatively high accuracy.
【0059】従って、本実施形態によれば、純Zn電気
めっきにおいて、安価な設備と安価なZn薬剤を使用し
た上で、めっき液のZn濃度、H2 SO4 濃度を共に許
容される範囲に比較的高精度で自動制御することを実現
できた。そして、この自動制御の実現により、手動分析
の省略が可能となったことから、オペレータの負荷を削
減でき、引いては要員の合理化が可能となった(但し、
設備コストの削減を重視する場合は、液分析計14によ
る分析の操作は手動入力で対応することも可能であ
る)。Therefore, according to the present embodiment, in the pure Zn electroplating, the inexpensive equipment and the inexpensive Zn chemical are used, and the Zn concentration and the H2SO4 concentration of the plating solution are both set within a permissible range. Automatic control with high accuracy was realized. The realization of this automatic control makes it possible to omit the manual analysis, so that the load on the operator can be reduced and the personnel can be rationalized (however,
When the reduction of the equipment cost is emphasized, the analysis operation by the liquid analyzer 14 can be handled by manual input.)
【0060】又、本実施形態によれば、Zn及びH2 S
O4 を共に許容される所定の濃度範囲に安定して維持で
きることにより、めっき効率が高安定となり、電力原単
位の削減と共に、安定した品質の製品提供が可能となっ
た。According to the present embodiment, Zn and H 2 S
By being able to stably maintain O4 within a predetermined concentration range that is both acceptable, plating efficiency has become highly stable, and it has become possible to provide a product of stable quality while reducing power consumption.
【0061】以上、本発明について具体的に説明した
が、本発明は、前記実施形態に示したものに限られるも
のでなく、その要旨を逸脱しない範囲で種々変更可能で
ある。Although the present invention has been specifically described above, the present invention is not limited to the above-described embodiment, and can be variously modified without departing from the gist thereof.
【0062】例えば、前記実施形態では、遊離酸の実測
値としてH2 SO4 の濃度を使用する場合を示したが、
pH値を使用するようにしてもよい。For example, in the above embodiment, the case where the concentration of H 2 SO 4 is used as the measured value of the free acid has been described.
A pH value may be used.
【0063】又、金属Znの溶解をオン/オフ制御する
場合を示したが、これに限定されず、溶解槽を循環させ
るめっき液の流量を制御しても、又は補充する金属Zn
の量を制御してもよい。Further, the case where the on / off control of the dissolution of the metal Zn has been described. However, the present invention is not limited to this case.
May be controlled.
【0064】[0064]
【発明の効果】以上説明したとおり、本発明によれば、
Zn濃度およびH2 SO4 濃度(又はpH)の実測値に
基づいて金属Znの溶解量とH2 SO4 の供給量を共に
制御することにより、系外へのめっき液の漏出に対して
も、高精度でZn濃度およびH2 SO4 濃度(又はp
H)をめっきに適した範囲に維持することができる。As described above, according to the present invention,
By controlling both the dissolution amount of metal Zn and the supply amount of H2 SO4 based on the actually measured values of the Zn concentration and the H2 SO4 concentration (or pH), the leakage of the plating solution to the outside of the system can be controlled with high accuracy. Zn concentration and H2 SO4 concentration (or p
H) can be maintained in a range suitable for plating.
【図1】本発明に係る一実施形態に適用されるめっき設
備全体の概要を示すブロック図FIG. 1 is a block diagram showing an outline of an entire plating facility applied to an embodiment according to the present invention.
【図2】本実施形態の効果を明らかにするための説明図FIG. 2 is an explanatory diagram for clarifying the effect of the present embodiment.
【図3】硫酸濃度の適正変動線を示す線図FIG. 3 is a diagram showing an appropriate fluctuation line of the sulfuric acid concentration.
【図4】修正H2 SO4 濃度目標値を概念的に示す線図FIG. 4 is a diagram conceptually showing a corrected H2SO4 concentration target value;
【図5】従来の問題点を指摘するための説明図FIG. 5 is an explanatory diagram for pointing out a conventional problem.
【図6】従来の他の問題点を指摘するための説明図FIG. 6 is an explanatory diagram for pointing out another conventional problem.
10…めっき設備本体 12…金属Zn溶解装置 14…液分析計 16…溶解槽 18…H2 SO4 薬剤供給弁 20、22…ポンプ 24…受入弁 26…バイパス弁 28、30…レベル計 DESCRIPTION OF SYMBOLS 10 ... Plating equipment main body 12 ... Metal Zn dissolution apparatus 14 ... Liquid analyzer 16 ... Dissolution tank 18 ... H2 SO4 chemical supply valve 20,22 ... Pump 24 ... Reception valve 26 ... Bypass valve 28,30 ... Level meter
Claims (4)
うめっき設備本体と、金属亜鉛に酸性めっき液を接触さ
せて該亜鉛を溶解する溶解装置との間にめっき液を循環
させ、めっき設備本体に亜鉛イオンを補給することによ
り、めっき液の濃度を制御する不溶性陽極亜鉛電気めっ
き液の濃度制御方法において、 前記めっき設備本体のめっき液について実測された、亜
鉛濃度及び遊離酸濃度(又はpH)に基づいて、これら
両者が所定範囲に維持されるように、前記溶解装置によ
り金属亜鉛を溶解して亜鉛イオンを補給すると共に、遊
離酸を補給することを特徴とする不溶性陽極亜鉛電気め
っき液の濃度制御方法。A plating solution is circulated between a plating equipment body for performing zinc electroplating using an insoluble anode and a dissolving device for dissolving the zinc by bringing an acidic plating solution into contact with metallic zinc. In a method for controlling the concentration of an insoluble anodic zinc electroplating solution, which controls the concentration of a plating solution by replenishing zinc ions into a body, the zinc concentration and the free acid concentration (or pH) measured for the plating solution of the plating equipment body. ), The dissolving device dissolves zinc metal and replenishes zinc ions, and replenishes free acid so that both are maintained within predetermined ranges. Concentration control method.
(又はpHが低い)時は、遊離酸濃度が目標上限濃度以
上(又はpHが目標下限以下)にならないように金属亜
鉛を溶解し、遊離酸濃度(又はpH)の制御を優先して
行うことを特徴とする不溶性陽極亜鉛電気めっき液の濃
度制御方法。2. The method according to claim 1, wherein when the measured zinc concentration is high and the free acid concentration is high (or pH is low), the free acid concentration is higher than the target upper limit concentration (or pH is lower than the target lower limit). A method of controlling the concentration of an insoluble anodic zinc electroplating solution, comprising dissolving metallic zinc so as not to cause dissolution and giving priority to control of the free acid concentration (or pH).
標となる遊離酸供給目標濃度(又はpH)曲線を予め作
成しておき、 実測された亜鉛濃度を該供給目標濃度曲線に適用して、
実測時の遊離酸の供給目標濃度(又はpH)を決定し、 決定された遊離酸の供給目標濃度(又はpH)と、実測
された遊離酸の実濃度(又はpH)との偏差に基づいて
遊離酸の供給量を決定し、遊離酸の補給を行うことを特
徴とする不溶性陽極亜鉛電気めっき液の濃度制御方法。3. A target free acid supply target concentration (or pH) curve for replenishing free acid is prepared in advance for a predetermined range of zinc concentration, and an actually measured zinc concentration is determined. Applying to the target supply concentration curve,
Determine the supply target concentration (or pH) of the free acid at the time of actual measurement, and, based on the deviation between the determined supply target concentration (or pH) of the free acid and the actually measured actual concentration (or pH) of the free acid. A method for controlling the concentration of an insoluble anodic zinc electroplating solution, comprising determining a supply amount of a free acid and replenishing the free acid.
環させるめっき液を接触させるか否かのオン/オフ制御
で行うことを特徴とする不溶性陽極亜鉛電気めっき液の
濃度制御方法。4. The insoluble anode zinc electroplating according to claim 1, wherein replenishment of zinc ions by said melting device is performed by on / off control of whether or not a plating solution to be circulated to metal zinc is brought into contact. Liquid concentration control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20146896A JP3550896B2 (en) | 1996-07-31 | 1996-07-31 | Concentration control method of insoluble anode zinc electroplating solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20146896A JP3550896B2 (en) | 1996-07-31 | 1996-07-31 | Concentration control method of insoluble anode zinc electroplating solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1046399A true JPH1046399A (en) | 1998-02-17 |
JP3550896B2 JP3550896B2 (en) | 2004-08-04 |
Family
ID=16441592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20146896A Expired - Fee Related JP3550896B2 (en) | 1996-07-31 | 1996-07-31 | Concentration control method of insoluble anode zinc electroplating solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3550896B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020038224A (en) * | 2000-11-17 | 2002-05-23 | 이구택 | apparatus for preventing an oxidation on non-coating surface of strip and removing a metal precipitation material |
KR20070098134A (en) * | 2006-03-31 | 2007-10-05 | 신도플라텍 주식회사 | Automatic supplying device for plating solution |
KR102271818B1 (en) * | 2021-01-22 | 2021-07-02 | (주)네오피엠씨 | Auto control method and control system of copper ion concentration in plating solution |
-
1996
- 1996-07-31 JP JP20146896A patent/JP3550896B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020038224A (en) * | 2000-11-17 | 2002-05-23 | 이구택 | apparatus for preventing an oxidation on non-coating surface of strip and removing a metal precipitation material |
KR20070098134A (en) * | 2006-03-31 | 2007-10-05 | 신도플라텍 주식회사 | Automatic supplying device for plating solution |
KR102271818B1 (en) * | 2021-01-22 | 2021-07-02 | (주)네오피엠씨 | Auto control method and control system of copper ion concentration in plating solution |
Also Published As
Publication number | Publication date |
---|---|
JP3550896B2 (en) | 2004-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100290616B1 (en) | Method of controlling component concentration of plating solution in continuous electroplating | |
US6471845B1 (en) | Method of controlling chemical bath composition in a manufacturing environment | |
TWI585823B (en) | Electroplating apparatus and process for wafer level packaging | |
US7172683B2 (en) | Method of managing a plating liquid used in a plating apparatus | |
CN112714803B (en) | Plating solution production and regeneration process and device for insoluble anode acid copper electroplating | |
JPS61199069A (en) | Method for automatically controlling plating solution | |
JP3550896B2 (en) | Concentration control method of insoluble anode zinc electroplating solution | |
Schultz et al. | Modeling the galvanostatic pulse and pulse reverse plating of nickel‐iron alloys on a rotating disk electrode | |
JP2000034595A (en) | Method and device for producing and reproducing electrolytic solution used in electrochemical treating plant | |
US20100221571A1 (en) | System and method of plating metal alloys by using galvanic technology | |
JP3423823B2 (en) | Zinc electrolysis method for controlling Pb quality in electric zinc using Pb automatic analyzer | |
JP3551627B2 (en) | Plating solution component concentration control method | |
JPS6116440B2 (en) | ||
JP2785626B2 (en) | Metal ion supply method | |
JP3834701B2 (en) | Method for measuring dissolved amount of metal ion and method for controlling concentration of plating bath using insoluble anode | |
JP2764337B2 (en) | Ni or Ni-Zn alloy or Ni-Zn-Co alloy plating method | |
JPH07316896A (en) | Method for replenishing metal ions to plating liquid and device therefor | |
JPH0331800B2 (en) | ||
JP3699410B2 (en) | Plating apparatus and plating solution composition adjusting method | |
CN117626364A (en) | Copper supplementing system and method thereof | |
US4422912A (en) | Method and apparatus for recovering metals from metal rich solutions | |
US20050067275A1 (en) | Water treatment apparatus that can reduce water treatment time | |
Bek et al. | Kinetics of gold electrodeposition from cyanide electrolytes at a monitored surface coverage by thallium atoms | |
KR20230091811A (en) | Electrolytic processing device equipped with an electrolyte mixer | |
US6024922A (en) | Method of controlling an oxygen analyzer of the Hersch galvanic type |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Effective date: 20040106 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040305 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040330 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040412 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20100514 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20110514 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20120514 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20120514 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20130514 |
|
LAPS | Cancellation because of no payment of annual fees |