JPH1046364A - Brass material, its production, brass product, its production, faucet fitting parts and its production - Google Patents

Brass material, its production, brass product, its production, faucet fitting parts and its production

Info

Publication number
JPH1046364A
JPH1046364A JP20234996A JP20234996A JPH1046364A JP H1046364 A JPH1046364 A JP H1046364A JP 20234996 A JP20234996 A JP 20234996A JP 20234996 A JP20234996 A JP 20234996A JP H1046364 A JPH1046364 A JP H1046364A
Authority
JP
Japan
Prior art keywords
brass
phase
layer
hot
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20234996A
Other languages
Japanese (ja)
Inventor
Ryuta Onodera
龍太 小野寺
Katsuaki Nakamura
克昭 中村
Masanao Hamazaki
正直 濱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP20234996A priority Critical patent/JPH1046364A/en
Publication of JPH1046364A publication Critical patent/JPH1046364A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • B21J1/025Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough affecting grain orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/001Extruding metal; Impact extrusion to improve the material properties, e.g. lateral extrusion

Abstract

PROBLEM TO BE SOLVED: To provide a brass material excellent in corrosion resistance and in which the hot workability of αbrass is remarkably improved, particularly, the one usable most suitably for a faucet fitting, and its method to produce faucet fitting parts. SOLUTION: The surface of α brass is coated with a metal forming β phases or α+β phases, which is subjected to diffusing treatment under heating to form a layer of β phases or α+β phases on the surface of the α brass. Furthermore, a brass material 1 in which the surface of α brass is applied with a layer in which β phases or α+βphases are formed is subjected to hot forging, thereafter, the layer in which β phases are formed on the surface is removed, by which the brass product excellent in corrosion resistance can be produced. Moreover, cold working is executed after the hot forging, by which the surface roughness can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、黄銅材の表面改質
に係り、特に水栓金具等として好適に利用できる熱間加
工性に優れた黄銅材及びその製造方法並びに水栓金具部
品等の黄銅製品及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface modification of a brass material, and more particularly to a brass material excellent in hot workability which can be suitably used as a faucet fitting, a method for producing the same, and a faucet fitting part. The present invention relates to a brass product and a method for producing the same.

【0002】[0002]

【従来の技術】単水栓や湯水混合水栓等の各種の水栓金
具は、黄銅や青銅を鋳造した後に熱間鍛造し、切削等の
機械加工を経て製品化される。このような水栓金具の製
造において多用されている黄銅材としては、α+β黄銅
やα黄銅がある。
2. Description of the Related Art Various faucet fittings such as a single faucet and a hot and cold water faucet are commercialized after casting brass or bronze, hot forging, and machining such as cutting. Brass materials frequently used in the manufacture of such faucet fittings include α + β brass and α brass.

【0003】α+β黄銅は、例えば、青銅よりも安価で
あることや、比較的軟らかく変形しやすく、熱間加工性
にも優れることから、水栓金具の素材として好適とされ
ているものであるが、耐圧性が低いために弁よりも下流
側である二次側の低圧用部材とすることが一般的であ
る。そして、その製造工程は、鋳造後の半製品(例えば
棒)を鍛造しやすくするため、例えば、約700°Cの
温度に加熱保持してβ相を増加させた後に熱間鍛造し、
この後にさらにα相化焼鈍するものである。
[0003] α + β brass is considered to be suitable as a material for faucet fittings, for example, because it is less expensive than bronze, is relatively soft and easily deformed, and has excellent hot workability. In general, a low pressure member on the secondary side, which is downstream from the valve because of its low pressure resistance, is used. Then, in the manufacturing process, in order to easily forge a semi-finished product (for example, a bar) after casting, for example, after heating and holding at a temperature of about 700 ° C. to increase the β phase, hot forging is performed.
After this, α-phase annealing is further performed.

【0004】このような製造工程において、黄銅材を加
熱する理由は、変形抵抗を小さくするためで、後工程で
の熱間鍛造での加工性を良好にして鍛造しやすくするた
めにβ黄銅を増加させることを目的としたものである。
そして、α相化焼鈍は、β相の黄銅が増加すると耐食性
が劣化してしまうので、熱間鍛造後にはα相化してβ相
の黄銅を除去処理することで耐食性を回復させるための
処理である。
[0004] In such a manufacturing process, brass material is heated to reduce deformation resistance, and β brass is used to improve workability in hot forging in a subsequent process and facilitate forging. It is intended to increase.
And, in the α-phase annealing, the corrosion resistance is degraded when the β-phase brass increases, so after hot forging, the α-phase is converted to the α-phase and the β-phase brass is removed to recover the corrosion resistance. is there.

【0005】また、α黄銅も各種の金属製品の製造に利
用されているが、α黄銅はα+β黄銅に比べると硬くて
耐食性が高いものの、600〜800°C程度の高温で
の鍛造性は良好ではないほか、高価であるという不利な
面がある。そして、その製造は、鋳造後の半製品を常温
での冷間鍛造によって成形することが一般的である。
[0005] α-brass is also used in the production of various metal products. Although α-brass is harder and has higher corrosion resistance than α + β brass, it has good forgeability at high temperatures of about 600 to 800 ° C. Not only that, it has the disadvantage of being expensive. In the manufacture thereof, it is general that a semi-finished product after casting is formed by cold forging at room temperature.

【0006】[0006]

【発明が解決しようとする課題】耐脱亜鉛材料を鍛造す
る場合、鍛造性と耐食性とを持たせるため、常温ではα
相、鍛造温度(約700°C)ではα+βの混合相とな
るように成分比を決定する。しかしながら、鍛造時の加
熱により生じたβ相は常温まで持ち込まれることから、
そのままでは耐食性を劣化させるβ相が残留し耐食特性
が不足する。したがって、従来の通常の成形工程では、
熱間鍛造後に熱処理(α化焼鈍)を実施する必要があっ
た。
In the case of forging a dezincification-resistant material, at room temperature, α is used in order to provide forgeability and corrosion resistance.
The component ratio is determined so that the phase and forging temperature (about 700 ° C.) become a mixed phase of α + β. However, since the β phase generated by heating during forging is brought to room temperature,
If left as it is, the β phase that deteriorates the corrosion resistance remains, and the corrosion resistance is insufficient. Therefore, in the conventional normal molding process,
Heat treatment (gelatinized annealing) had to be performed after hot forging.

【0007】ところが、α+β黄銅では、熱間鍛造する
前の工程で増加させたβ相の黄銅をα相化焼鈍によって
除去処理しようとしても、良好な鍛造性を得るための成
分範囲では後熱処理でのβ相の除去が困難である。この
ため、最終製品では耐食性に劣ることになり、これを補
うために製品の肉厚を厚くすることが必要となるほか、
α相化焼鈍の熱処理は550°C程度の高温で3時間程
度の処理時間が費やされるので、コスト面に与える影響
も大きい。
However, in the case of α + β brass, even if an attempt is made to remove the β-phase brass increased in the step before hot forging by α-phase annealing, the post-heat treatment is performed within the component range for obtaining good forgeability. Is difficult to remove. For this reason, the final product will have poor corrosion resistance, and in order to compensate for this, it is necessary to increase the thickness of the product,
Since the heat treatment of the α-phase annealing requires a processing time of about 3 hours at a high temperature of about 550 ° C., the influence on the cost is great.

【0008】次に、黄銅の結晶組織と鍛造性、鍛造法と
成形品の特性についてみると、それぞれ表1及び表2の
とおりとなる。
Next, the crystal structure and forgeability of brass, and the forging method and the characteristics of the molded product are shown in Tables 1 and 2, respectively.

【0009】[0009]

【表1】 [Table 1]

【表2】 表1から、元来、黄銅材料は亜鉛含有量にもとづく結晶
組織の違いにより加工性を選択しなければならないし、
一方、表2に示すとおり、加工法によって、得られた部
品の特性に大きな違いを生じてくるので、この双方の加
工の長所を併せ持った加工を実現する必要がある。
[Table 2] From Table 1, the brass material originally had to choose the workability by the difference of the crystal structure based on the zinc content,
On the other hand, as shown in Table 2, since the characteristics of the obtained parts greatly differ depending on the processing method, it is necessary to realize processing having both of the advantages of the processing.

【0010】ところが、α黄銅は、α+β黄銅より耐食
性に優れているが、α黄銅を鍛造加工する場合、高温
(600〜800°C)での鍛造の際、表面に割れが発
生しやすいため、水栓金具等の複雑な形状の製品の製造
には適しておらず、例えば、水栓の部材として比較的簡
単な形状のスパウトについても成形が困難である。
[0010] However, α brass is more excellent in corrosion resistance than α + β brass. However, when forging α brass, cracks are easily generated on the surface when forging at a high temperature (600 to 800 ° C). It is not suitable for manufacturing products having complicated shapes such as faucet fittings. For example, it is difficult to form a spout having a relatively simple shape as a faucet member.

【0011】このように、α+β黄銅では、その加工性
は、良好であるものの耐食性に劣ることから、水栓金具
の肉厚を大きくしなければならないという制限を受け、
一方、α黄銅は熱間加工性の障害が大きく製品形状にも
制約を受けるという問題がある。
As described above, in the case of α + β brass, although its workability is good, it is inferior in corrosion resistance. Therefore, it is limited that the thickness of the faucet must be increased.
On the other hand, α-brass has a problem in that the hot workability is greatly impaired and the product shape is restricted.

【0012】そこで、本発明は、耐食性に優れたα黄銅
の熱間加工性を大幅に向上させた黄銅材、特に、水栓金
具に最適に使用できる黄銅材及びその製造方法、黄銅製
品及びその製造方法並びに水栓金具部品及びその製造方
法を提供することにある。
Accordingly, the present invention provides a brass material having a significantly improved hot workability, particularly a brass material which can be optimally used for faucet fittings, a method of manufacturing the same, and a brass product and the like. An object of the present invention is to provide a manufacturing method, a faucet fitting part, and a method for manufacturing the same.

【0013】[0013]

【課題を解決するための手段】本発明の黄銅材は、α黄
銅表面にβ相又はα+β相を形成する金属をコーティン
グし、加熱拡散処理し、α黄銅表面にβ相又はα+β相
が形成されている層を形成する。コーティングする金属
としては、亜鉛が好ましく、コーティングは、めっき
法、結合媒体を介して加熱拡散処理する方法を用いる。
したがって、コーティング法は、結合媒体を介し、熱拡
散可能な厚さに付着させた後、熱拡散されるものであれ
ばよい。
The brass material of the present invention is obtained by coating a surface of an α brass with a metal forming a β phase or an α + β phase, and subjecting the metal to heat diffusion treatment to form a β phase or an α + β phase on the α brass surface. Forming a layer. The metal to be coated is preferably zinc, and the coating is performed by a plating method or a method of performing heat diffusion treatment through a bonding medium.
Therefore, any coating method may be used as long as it is applied to a thickness capable of thermally diffusing through a bonding medium and then thermally diffused.

【0014】加熱拡散処理は、600°C〜融点の温度
で1分以上行うことが好ましい。さらに、α黄銅表面に
β相又はα+β相が形成されている層を有する黄銅材を
熱間鍛造した後に表面のβ相が形成されている層を除去
することにより、耐食性に優れた黄銅製品を製造するこ
とが可能となる。
The heat diffusion treatment is preferably performed at a temperature of 600 ° C. to the melting point for one minute or more. Furthermore, after hot-forging a brass material having a layer in which a β phase or an α + β phase is formed on the surface of an α brass, the layer in which the β phase is formed on the surface is removed to obtain a brass product excellent in corrosion resistance. It can be manufactured.

【0015】黄銅製品として水栓金具部品が適してお
り、水栓金具部品は、α黄銅表面にβ相又はα+β相が
形成されている層を有する黄銅材を熱間鍛造した後に表
面のβ相が形成されている層を研磨及び/又は切削によ
り除去して製造する。
A faucet fitting part is suitable as a brass product. The faucet fitting part is formed by hot forging a brass material having a layer in which a β phase or an α + β phase is formed on an α brass surface, and then forming a β phase on the surface. Is manufactured by removing the layer on which is formed by polishing and / or cutting.

【0016】熱間鍛造した後に表面のβ相が形成されて
いる層を除去したあと鍍金を施してもよい。
After hot forging, plating may be performed after removing the layer on the surface where the β phase is formed.

【0017】また、α黄銅表面にβ相又はα+β相が形
成されている層を有する黄鋼材を熱間鍛造した後に、冷
間加工を行って水栓金具部品を製造することもでき、冷
間加工としては、コイニング加工及び/又はねじ転造が
利用できる。
Also, after hot forging a brass material having a layer in which a β phase or an α + β phase is formed on the surface of α brass, cold working can be performed to manufacture a faucet fitting part. As the processing, coining processing and / or thread rolling can be used.

【0018】[0018]

【発明の実施の形態】表3は本発明の黄銅材と比較例の
組成を示すものであり、本発明の実施例であるC220
0及びC2600はα黄銅、耐脱亜鉛黄銅棒は熱処理に
よるα黄銅である。比較例であるC3771はα+β黄
銅である。
Table 3 shows the composition of the brass material of the present invention and the composition of the comparative example.
0 and C2600 are α brass, and the dezincification resistant brass rod is α brass by heat treatment. C3771 as a comparative example is α + β brass.

【0019】[0019]

【表3】 図1にCu−Zn二元系平衡状態図を示す。本発明にお
いて、α黄銅は、α相からなる黄銅(例えば、C220
0及びC2600)、あるいはα+β黄銅が熱処理によ
ってα黄銅となる黄銅(例えば、耐脱亜鉛黄銅棒)であ
る。
[Table 3] FIG. 1 shows a Cu—Zn binary system equilibrium diagram. In the present invention, α brass is brass composed of α phase (for example, C220
0 and C2600), or brass (for example, a dezincification-resistant brass rod) in which α + β brass becomes α brass by heat treatment.

【0020】比較例のα+β黄銅であるC3771は、
その変形抵抗を小さくするために熱間鍛造の前の工程で
700°C程度の温度で加熱保持し、この加熱によって
β黄銅を増加させたものである。そして、熱間鍛造の後
に、耐食性の改善が必要な場合は、β相の黄銅を低減す
るため、550°C程度の温度で3時間程度熱処理して
α相化焼鈍することにより最終製品を得る。
C3771 which is α + β brass of the comparative example is
In order to reduce the deformation resistance, it is heated and held at a temperature of about 700 ° C. in a step before hot forging, and β-brass is increased by this heating. Then, if improvement of corrosion resistance is necessary after hot forging, in order to reduce brass in the β phase, heat treatment is performed at a temperature of about 550 ° C. for about 3 hours and α phase annealing is performed to obtain a final product. .

【0021】熱間加工性を改善させるために、α黄銅の
表面にβ相又はα+β相の層を形成させる亜鉛めっき
は、電気めっき法また溶融亜鉛めっき法を適用すること
ができる。
In order to improve the hot workability, an electroplating method or a hot-dip galvanizing method can be applied to the zinc plating for forming a β phase or α + β phase layer on the surface of α brass.

【0022】なお、金属のコーティングには、亜鉛の電
気めっき法又は溶融亜鉛めっき法に代えて、化学的な方
法の一つとしてバレルめっき法を用いることもでき、ま
た、機械的な方法としてメカニカルプレーティング法や
パウダー噴射法を採用することもできる。さらに、めっ
き法に代えて、接着剤による接合やイオンコーティング
による結合媒体を利用した付着法としてもよい。
For the metal coating, a barrel plating method can be used as one of the chemical methods in place of the zinc electroplating method or the hot-dip galvanizing method, and a mechanical method can be used. A plating method or a powder injection method can also be employed. Further, instead of the plating method, a bonding method using a bonding medium by bonding with an adhesive or ion coating may be used.

【0023】そして、亜鉛めっきしたものを例えば、6
00〜800°Cの温度で5〜15分間加熱することに
よって、めっきした亜鉛の加熱拡散処理を行う。この亜
鉛の加熱拡散処理による界面反応によって、表面にβ相
又はα+β相の層が形成される。これによって鍛造加工
性を向上させることができ、製品形状が複雑であっても
その成形が可能となり、α黄銅では困難であった熱間鍛
造が可能となる。当然のことながら、α相化焼鈍は不要
になる。
Then, the zinc-plated one is, for example, 6
By heating at a temperature of 00 to 800 ° C. for 5 to 15 minutes, a heat diffusion treatment of the plated zinc is performed. A layer of β phase or α + β phase is formed on the surface by the interfacial reaction due to the heat diffusion treatment of zinc. As a result, forging workability can be improved, and even if the product shape is complicated, it can be formed, and hot forging, which has been difficult with α-brass, can be performed. Naturally, the α-phase annealing becomes unnecessary.

【0024】そして、最終工程として必要部位を機械加
工によって切削処理等を施すことで製品を得ることがで
き、めっき等の所要の工程を経た後に最終製品を得るこ
とができる。ここで、水栓金具を製品対象とする場合、
機械加工の工程で表面に形成されている腐食の原因とな
るβ相の層を除去するので、その腐食の発生も抑えるこ
とができる。
Then, as a final step, a product can be obtained by subjecting a necessary portion to a cutting process or the like by machining, and a final product can be obtained after required steps such as plating. Here, when the faucet fitting is targeted for the product,
Since the β-phase layer which is formed on the surface in the machining process and causes corrosion is removed, the occurrence of the corrosion can be suppressed.

【0025】[0025]

【実施例】図2は本発明の黄銅材を製作していく工程を
示す概略図である。
FIG. 2 is a schematic view showing a process of manufacturing a brass material according to the present invention.

【0026】黄銅材は、直径20mm、高さ20mmの
円柱状で、表3で示した本発明の実施例に係るC220
0、C2600及び耐脱亜鉛黄銅棒、比較例に係るC3
771のそれぞれの組成のものについて同一形状に製作
した。
The brass material was a columnar shape having a diameter of 20 mm and a height of 20 mm.
0, C2600 and dezincification-resistant brass rod, C3 according to comparative example
771 were manufactured in the same shape.

【0027】本発明の実施例に係るC2200、C26
00及び耐脱亜鉛黄銅棒の各黄銅材1の表面に亜鉛めっ
きする。亜鉛の電気めっき法には、公知の電気めっき法
を用いることができ、特に限定されるものではなく、本
実施例においては、例えば、硫酸亜鉛:360g/リッ
トル、塩化アンモニウム:30g/リットル、酢酸ナト
リウム:15g/リットルの組成でpHを3〜4.5と
した500ccの硫酸浴を用い、この硫酸浴の中に脱脂
した黄銅材を約1分間浸漬し、常温中において電流0.
1〜0.2アンペアで30〜60秒間通電することによ
って良好に亜鉛めっき層2を形成させることができる。
C2200, C26 according to the embodiment of the present invention
Zinc plating is applied to the surface of each brass material 1 of the 00 and dezincification-resistant brass rods. A known electroplating method can be used for the electroplating method of zinc, and is not particularly limited. In the present embodiment, for example, zinc sulfate: 360 g / liter, ammonium chloride: 30 g / liter, acetic acid Sodium: Using a 500 cc sulfuric acid bath having a composition of 15 g / liter and a pH of 3 to 4.5, immersed the degreased brass material in the sulfuric acid bath for about 1 minute, and supplied a current of 0.5 at room temperature.
The galvanized layer 2 can be satisfactorily formed by energizing at 1 to 0.2 amps for 30 to 60 seconds.

【0028】次いで、黄銅材1の上面及び下面には後工
程の鍛造の際の潤滑剤3としてカーボンを付着させてお
き、黄銅材1を加熱炉の中に入れて600〜800°C
の温度で5〜15分間加熱する。この加熱によって、表
面に形成されている亜鉛めっき層2は界面反応を起こし
て亜鉛が拡散し、表面にβ相が形成された層が生成す
る。
Next, carbon is adhered to the upper and lower surfaces of the brass material 1 as a lubricant 3 at the time of forging in a later step, and the brass material 1 is placed in a heating furnace at 600 to 800 ° C.
Heat at a temperature of 5 to 15 minutes. By this heating, the zinc plating layer 2 formed on the surface causes an interfacial reaction to diffuse zinc, thereby generating a layer having a β phase formed on the surface.

【0029】図3は本発明の黄銅材の表面近傍の縦断面
の組織の拡大図で、亜鉛めっきを施した後に加熱処理す
ることによって、亜鉛が拡散して試験片の周面には粗大
β相からなるβ相の層が形成され、その厚さは150〜
250ミクロン程度であった。
FIG. 3 is an enlarged view of the structure of the longitudinal section near the surface of the brass material of the present invention. By performing a heat treatment after galvanizing, zinc is diffused and a coarse β A β-phase layer is formed, and its thickness is 150 to
It was about 250 microns.

【0030】このようなβ相の層が表面に形成された黄
銅材について、プレス機4によって軸線方向に圧縮し、
加工率70〜80%で圧縮成形した後、最終的な成型品
5を得る。
The brass material having the β-phase layer formed on its surface is compressed in the axial direction by a press machine 4,
After compression molding at a processing rate of 70 to 80%, a final molded product 5 is obtained.

【0031】C2200、C2600及び耐脱亜鉛黄銅
棒にめっきを施した本発明のものとめっきをしないもの
とを熱間加工性について比較した結果、めっきをしない
ものは加工率50%前後で表面に割れが発生したが、本
発明の試験片は80%加工しても表面に割れが発生する
ことがなく、β相の層が表面に形成されることで熱間鍛
造が良好に行われることが確認された。
Comparison of the hot workability between the C2200, C2600 and the non-plated brass rods of the present invention plated with the zinc-free zinc-free rods shows that the non-plated ones have a working rate of about 50% on the surface. Although cracking occurred, the test piece of the present invention did not crack on the surface even when processed by 80%, and hot forging was favorably performed by forming a β phase layer on the surface. confirmed.

【0032】すなわち、めっきをしないα黄銅は、高温
での鍛造性が不良であって、鍛造時に表面にクラックの
発生が避けられないのに対し、β相の層が形成されたα
黄銅であれば、延性が高いために表面割れの発生がな
く、熱間鍛造による成形に十分に適用し得るものとな
る。
That is, unplated α-brass has poor forgeability at high temperatures, and cracks cannot be avoided on the surface during forging, whereas α-brass having a β-phase layer is formed.
Brass does not cause surface cracks due to its high ductility, and can be sufficiently applied to forming by hot forging.

【0033】表4は各黄銅材について最大腐食深さを実
測した数値により比較したものである。この試験に際し
ては、鍛造成形後に表面のβ黄銅層を除去するために表
面を切削する後処理を施す。
Table 4 compares the maximum corrosion depths of the brass materials with numerical values obtained by actual measurement. In this test, a post-treatment of cutting the surface to remove the β-brass layer on the surface after forging is performed.

【0034】[0034]

【表4】 表4から明らかなように、比較例であるα+β黄銅のC
3771では耐食性が劣るために、腐食深さは、本発明
のα黄銅に比べると格段に大きい。
[Table 4] As is clear from Table 4, C of the comparative example α + β brass
Since 3771 has poor corrosion resistance, the corrosion depth is much larger than that of the α-brass of the present invention.

【0035】実施例1 バルブ本体として3方向に開口部を形成した水栓金具本
体の製造について説明する。図4は本発明の水栓金具本
体の製造工程図で、α黄銅表面にβ相又はα+β相を形
成した黄銅材1を熱間鍛造温度に加熱した後、黄銅材1
を型にセットし、熱間鍛造によりパンチで成形して中空
部を有する水栓金具本体の成形品5を得る。
Example 1 The manufacture of a faucet fitting body having openings in three directions as a valve body will be described. FIG. 4 is a manufacturing process diagram of the faucet fitting main body of the present invention. After the brass material 1 having the β phase or α + β phase formed on the surface of α brass is heated to the hot forging temperature, the brass material 1 is heated.
Is set in a mold, and is formed by hot forging with a punch to obtain a molded product 5 of a faucet fitting main body having a hollow portion.

【0036】水栓金具本体の成形品5の外表面及び内面
は、研磨及び/又はねじ切削等により、バリ等を除去
し、β相又はα+β相を除去し、ねじを形成し、仕上げ
加工する。
The outer surface and inner surface of the molded product 5 of the faucet fitting body are subjected to polishing and / or thread cutting to remove burrs and the like, remove the β phase or α + β phase, form a screw, and finish the processing. .

【0037】仕上げ加工した水栓金具本体6は、表面を
洗浄した後、ニッケルクロム鍍金して仕上げる。
The finished faucet fitting body 6 is finished by nickel chrome plating after cleaning the surface.

【0038】本実施例においては、Cu:70%、S
n:1%、Zn:29%(α単相)の成分を有する耐脱
亜鉛材料を使用し、材料の表面に亜鉛リッチの表面処理
を施すことにより、鍛造性を確保したままで熱処理を省
略することが可能となった。この熱処工程の廃止により
加熱エネルギーの低減など省エネルギー効果が大きく得
られた。
In this embodiment, Cu: 70%, S
Using a dezincification-resistant material having a composition of n: 1% and Zn: 29% (α single phase), and performing a zinc-rich surface treatment on the surface of the material, thereby eliminating heat treatment while ensuring forgeability. It became possible to do. The elimination of this heat treatment step resulted in significant energy saving effects such as a reduction in heating energy.

【0039】実施例2 図2に示す実施例において、Cu:70%、Sn:1
%、Zn:29% (α単相)の成分を有する耐脱亜鉛
材料を使用し、表面に亜鉛リッチの表面処理を施すこと
により、鍛造加工により得られた部品はネジ転造・コイ
ニング加工の冷間加工が可能となる。
Embodiment 2 In the embodiment shown in FIG. 2, Cu: 70%, Sn: 1
%, Zn: 29% (α-single phase) using a dezincification-resistant material and subjecting the surface to a zinc-rich surface treatment, the parts obtained by forging are subjected to thread rolling and coining. Cold working becomes possible.

【0040】図5は本発明の水栓金具本体の製造工程図
で、まず、α黄銅表面にβ相又はα+β相を形成した黄
銅材1を熱間鍛造温度に加熱した後、黄銅材1を型にセ
ットし、パンチで中空部を有する水栓金具部品7を熱間
鍛造により成形する。
FIG. 5 is a view showing a manufacturing process of the faucet fitting body according to the present invention. It is set in a mold, and a faucet fitting part 7 having a hollow portion is formed by hot forging with a punch.

【0041】次いで、成形した水栓金具部品を、冷間コ
イニング加工により六角ナット部8を形成するとともに
曲面部9を仕上げる。円筒部10は転造によりねじ11
を形成する。
Next, the formed faucet fitting part is formed into a hexagonal nut part 8 by cold coining and a curved surface part 9 is finished. The cylindrical portion 10 is formed by rolling a screw 11
To form

【0042】六角ナット部8は研磨が困難であるが、冷
間コイニング加工による仕上げにより、面粗度が向上
し、そのため内面の嵌合精度も向上し、研磨切削等の仕
上げが不要となる。さらに、円筒部10は長尺ねじのた
め、ねじ転造のメリットを生かすことができる。したが
って、従来切削により加工されていた同部分の生産性を
大幅に向上させることが可能となった。
Although the hexagon nut 8 is difficult to grind, finishing by cold coining improves the surface roughness, thereby improving the fitting accuracy of the inner surface, and makes finishing such as grinding and cutting unnecessary. Furthermore, since the cylindrical portion 10 is a long screw, the advantages of thread rolling can be utilized. Therefore, it has become possible to greatly improve the productivity of the same portion that has been conventionally processed by cutting.

【0043】[0043]

【発明の効果】【The invention's effect】

(1) 本発明は、α黄銅表面にβ相の層を形成してい
るので、従来のα黄銅の鍛造では割れが発生していた加
工率、あるいはそれ以上の加工率であるにかかわらず表
面に割れを発生させることなく鍛造加工することが可能
となり、安価で形状の複雑な黄銅製品を得ることができ
る。
(1) In the present invention, since a β-phase layer is formed on the surface of α-brass, the surface is processed regardless of the processing rate at which cracking has occurred in the conventional α-brass forging or a processing rate higher than that. Forging can be performed without causing cracks in the brass, and a brass product having an inexpensive and complicated shape can be obtained.

【0044】(2) 熱間鍛造した後に表面のβ相の層
を除去することにより製造した黄銅製品は、α黄銅であ
るので、耐食性に優れた黄銅製品が得られ、特に水栓金
具等の製造に適用することによって、低コストで耐腐食
性も高い製品を提供することが可能となる。
(2) Since the brass product produced by removing the β phase layer on the surface after hot forging is α brass, a brass product excellent in corrosion resistance can be obtained. By applying the method to manufacturing, it is possible to provide a low-cost and highly corrosion-resistant product.

【0045】(3) 複雑な形状を熱間鍛造で成形で
き、耐食性の小さいβ相は除去するため耐食性の要求さ
れる水栓金具を成形できる。
(3) A complicated shape can be formed by hot forging, and a faucet which requires corrosion resistance can be formed because the β phase having low corrosion resistance is removed.

【0046】(4) 水栓金具の場合、表面がきれいな
ことが要求されるので研磨が必要であるが、その研磨に
より耐食性の小さいβ相を削除できる。
(4) In the case of a faucet, it is necessary to polish the surface because the surface is required to be clean. However, the polishing can remove the β phase having low corrosion resistance.

【0047】(5) 中空部を有する水栓金具本体を熱
間鍛造により成形し、中空部の内面を切削することによ
り酎食性の小さいβ相を削除できる。
(5) The faucet body having a hollow portion is formed by hot forging, and the inner surface of the hollow portion is cut to remove a β phase having a low edible property.

【0048】(6) β相を除去した後に鍍金を施すた
め鍍金との結合もよく、鍍金による耐食性と相俟つて耐
食性が増す。水栓金具には冷たい水、熱い湯、適温の湯
等種々の温度の水が通るため、熱膨脹による変化がはげ
しいが、鍍金がよく結合しているので剥げたりしにく
い。
(6) Since plating is performed after the β phase is removed, bonding with plating is also good, and the corrosion resistance is increased in combination with the corrosion resistance due to plating. Water of various temperatures such as cold water, hot water and hot water flows through the faucet fittings, so the change due to thermal expansion is remarkable, but the plating is well bonded, so it is difficult to peel off.

【0049】(7) 熱間鍛造性に優れ、冷間加工性も
よいため、熱間鍛造により複雑な水栓部品を成形し、冷
間加工により面租度を向上することができるため、研
磨、切削等の機械加工による仕上げが必要ない。ただ
し、この場合耐食性の小さいβ相が表面に薄く残つてい
るため耐食性の要求される部品には不向きである。
(7) Because of excellent hot forgeability and good cold workability, complex faucet parts can be formed by hot forging, and surface roughness can be improved by cold working, so polishing There is no need for finishing by machining such as cutting. However, in this case, since the β phase having low corrosion resistance remains thin on the surface, it is not suitable for parts requiring corrosion resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 Cu−Zn二元系平衡状態図である。FIG. 1 is a Cu—Zn binary system equilibrium diagram.

【図2】 本発明の黄銅材を製作していく工程を示す概
略図である。
FIG. 2 is a schematic view showing a process of manufacturing a brass material of the present invention.

【図3】 本発明の黄銅材の表面近傍の縦断面の組織の
拡大図である。
FIG. 3 is an enlarged view of a structure of a longitudinal section near the surface of the brass material of the present invention.

【図4】 本発明の水栓金具本体の製造工程図である。FIG. 4 is a manufacturing process diagram of the faucet fitting main body of the present invention.

【図5】 本発明の水栓金具部品の製造工程図である。FIG. 5 is a manufacturing process diagram of the faucet fitting part of the present invention.

【符号の説明】[Explanation of symbols]

1 黄銅材 2 Znめっき層 3 潤滑剤 4 プレス機 5 成型品 6 水栓金具本体 7 水栓金具部品 8 六角ナット部 9 曲面部 10 円筒部 11 ねじ DESCRIPTION OF SYMBOLS 1 Brass material 2 Zn plating layer 3 Lubricant 4 Press machine 5 Molded product 6 Faucet fitting main body 7 Faucet fitting part 8 Hex nut part 9 Curved surface part 10 Cylindrical part 11 Screw

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 α黄銅表面にβ相又はα+β相が形成さ
れている層を有する熱間加工性に優れた黄銅材。
1. A brass material having a layer in which a β phase or an α + β phase is formed on an α brass surface and having excellent hot workability.
【請求項2】 α黄銅表面にβ相又はα+β相を形成す
る金属をコーティングし、加熱拡散処理し、α黄銅表面
にβ相又はα+β相が形成されている層を形成する熱間
加工性に優れた黄銅材の製造方法。
2. A hot workability in which a metal forming a β phase or an α + β phase is coated on an α brass surface and subjected to a heat diffusion treatment to form a layer having a β phase or an α + β phase formed on the α brass surface. Excellent brass material manufacturing method.
【請求項3】 コーティングする金属が亜鉛である請求
項2記載の熱間加工性に優れた黄銅材の製造方法。
3. The method for producing a brass material having excellent hot workability according to claim 2, wherein the metal to be coated is zinc.
【請求項4】 コーティングがめっき法である請求項2
又は3記載の熱間加工性に優れた黄銅材の製造方法。
4. The coating according to claim 2, wherein the coating is a plating method.
Or the method for producing a brass material excellent in hot workability according to 3.
【請求項5】 コーティングが結合媒体を介して加熱拡
散処理される請求項2又は3記載の熱間加工性に優れた
黄銅材の製造方法。
5. The method for producing a brass material excellent in hot workability according to claim 2, wherein the coating is subjected to heat diffusion treatment through a bonding medium.
【請求項6】 加熱拡散処理を600°C〜融点の温度
で1分以上行う請求項2又は3記載の加工性に優れた黄
銅材の製造方法。
6. The method according to claim 2, wherein the heat diffusion treatment is performed at a temperature of 600 ° C. to a melting point for 1 minute or more.
【請求項7】 α黄銅表面にβ相又はα+β相が形成さ
れている層を有する黄銅材を熱間鍛造した後に表面のβ
相が形成されている層を除去する黄銅製品の製造方法。
7. After hot forging a brass material having a layer in which a β phase or an α + β phase is formed on the surface of α brass, the β
A method for producing a brass product in which a layer in which a phase is formed is removed.
【請求項8】 α黄銅表面にβ相又はα+β相が形成さ
れている層を有する黄銅材を熱間鍛造した後に表面のβ
相が形成されている層を除去する水栓金具部品の製造方
法。
8. A hot-forging brass material having a layer in which a β phase or an α + β phase is formed on the surface of α brass,
A method for manufacturing a faucet fitting part for removing a layer in which a phase is formed.
【請求項9】 α黄銅表面にβ相又はα+β相が形成さ
れている層を有する黄銅材を熱間鍛造した後に表面のβ
相が形成されている層を研磨及び/又は切削により除去
する請求項8記載の水栓金具部品の製造方法。
9. A hot-forging brass material having a layer in which a β phase or an α + β phase is formed on an α-brass surface, and thereafter the surface
The method for manufacturing a faucet fitting part according to claim 8, wherein the layer in which the phase is formed is removed by polishing and / or cutting.
【請求項10】 α黄銅表面にβ相又はα+β相が形成
されている層を有する黄銅材を熱間鍛造した後に表面の
β相が形成されている層を除去したあと鍍金を施す請求
項8又は9記載の水栓金具部品の製造方法。
10. A brass material having a layer in which a β phase or an α + β phase is formed on an α brass surface is hot forged, and thereafter, plating is performed after removing the layer in which the β phase is formed on the surface. Or a method of manufacturing the faucet fitting part according to 9.
【請求項11】 α黄銅表面にβ相又はα+β相が形成
されている層を有する黄銅材を熱間鍛造した後に表面の
β相が形成されている層を除去する水栓金具部品。
11. A faucet fitting component for hot forging a brass material having a layer in which a β phase or an α + β phase is formed on the surface of an α brass, and then removing the layer in which the β phase is formed on the surface.
【請求項12】 α黄銅表面にβ相又はα+β相が形成
されている層を有する黄銅材を熱間鍛造した後に、冷間
加工を行う水栓金具部品の製造方法。
12. A method of manufacturing a faucet component, comprising: forging a brass material having a layer in which a β phase or an α + β phase is formed on an α brass surface, followed by cold working.
【請求項13】 冷間加工をコイニング加工及び/又は
ねじ転造とした請求項12の水栓金具部品の製造方法。
13. The method of manufacturing a faucet fitting part according to claim 12, wherein the cold working is coining and / or thread rolling.
【請求項14】 α黄銅表面にβ相又はα+β相が形成
されている層を有する黄銅材を熱間鍛造した後に、冷間
加工を行い成形した水栓金具部品。
14. A faucet component formed by hot forging a brass material having a layer in which a β phase or an α + β phase is formed on an α brass surface, and then performing cold working.
JP20234996A 1996-07-31 1996-07-31 Brass material, its production, brass product, its production, faucet fitting parts and its production Pending JPH1046364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20234996A JPH1046364A (en) 1996-07-31 1996-07-31 Brass material, its production, brass product, its production, faucet fitting parts and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20234996A JPH1046364A (en) 1996-07-31 1996-07-31 Brass material, its production, brass product, its production, faucet fitting parts and its production

Publications (1)

Publication Number Publication Date
JPH1046364A true JPH1046364A (en) 1998-02-17

Family

ID=16456066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20234996A Pending JPH1046364A (en) 1996-07-31 1996-07-31 Brass material, its production, brass product, its production, faucet fitting parts and its production

Country Status (1)

Country Link
JP (1) JPH1046364A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005008A1 (en) * 1998-07-24 2000-02-03 Toto Ltd. Die forging method
CN102065170A (en) * 2010-12-23 2011-05-18 蚌埠玻璃工业设计研究院 Method and apparatus for preventing wiretapping and disturbing for two-in-one hand-free telephone
US20130104349A1 (en) * 2010-07-05 2013-05-02 Yasuharu Yoshimura Copper-Zinc Alloy Product and Process for Producing Copper-Zinc Alloy Product
JP2018158373A (en) * 2017-03-23 2018-10-11 株式会社デンソー Method for manufacturing piping component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005008A1 (en) * 1998-07-24 2000-02-03 Toto Ltd. Die forging method
US20130104349A1 (en) * 2010-07-05 2013-05-02 Yasuharu Yoshimura Copper-Zinc Alloy Product and Process for Producing Copper-Zinc Alloy Product
US9023272B2 (en) * 2010-07-05 2015-05-05 Ykk Corporation Copper-zinc alloy product and process for producing copper-zinc alloy product
CN102065170A (en) * 2010-12-23 2011-05-18 蚌埠玻璃工业设计研究院 Method and apparatus for preventing wiretapping and disturbing for two-in-one hand-free telephone
JP2018158373A (en) * 2017-03-23 2018-10-11 株式会社デンソー Method for manufacturing piping component

Similar Documents

Publication Publication Date Title
EP1008664B1 (en) Copper-based alloy excellent in corrosion resistance, hot workability, and resistance to stress corrosion cracking, and process for producing the copper-based alloy
CN112226588B (en) Bolt machining process
JP5099660B2 (en) High strength tapping screw
US20150196980A1 (en) Method of manufacturing gear with teeth involving forging
CN111203695A (en) Cup head screw production process method
JPH1046364A (en) Brass material, its production, brass product, its production, faucet fitting parts and its production
CN109274231B (en) Machining process for producing motor shell by using titanium metal
EP2896471A1 (en) Method of manufacturing gear with teeth involving forging
US6213884B1 (en) Case hardened self-drilling, self-tapping, self-piercing fasteners and process for making the same
US6688148B1 (en) Manufacturing process for making engine components of high carbon content steel using cold forming techniques
JP2005199329A (en) METHOD FOR MANUFACTURING beta TITANIUM ALLOY BOLT
JP2006212699A (en) Method for manufacturing stepped shaft component of titanium alloy
JP3118342B2 (en) Method of heating titanium and titanium alloy rolled material
CN111001658B (en) Steel-aluminum composite plate for automobile covering part and preparation method thereof
WO2015013970A1 (en) Water tap water-control spool and method for manufacturing same
CN103084525A (en) Method for machining connection rod bolt of diesel engine
JP3653258B2 (en) Fastening part manufacturing method and fastening part
KR100602897B1 (en) Method for forming metal parts by cold deformation
KR100892159B1 (en) Shank for core drill manufactured by cold forging process and Method thereof
US20200124085A1 (en) Method for producing a ball stud
US3384950A (en) Method of making bearing material
JP6361437B2 (en) Production method of pure titanium plate
JPH0571677B2 (en)
JP4632239B2 (en) Beta titanium alloy material for cold working
JPH0297696A (en) Ni-ti-based alloy material and production thereof