JPH1046342A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH1046342A
JPH1046342A JP26803296A JP26803296A JPH1046342A JP H1046342 A JPH1046342 A JP H1046342A JP 26803296 A JP26803296 A JP 26803296A JP 26803296 A JP26803296 A JP 26803296A JP H1046342 A JPH1046342 A JP H1046342A
Authority
JP
Japan
Prior art keywords
substrate
target electrode
etching
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26803296A
Other languages
Japanese (ja)
Inventor
Katsuhiko Oguri
克彦 小栗
Yukio Okumura
臾紀雄 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP26803296A priority Critical patent/JPH1046342A/en
Publication of JPH1046342A publication Critical patent/JPH1046342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To impart a consistency with etching in the subsequent process etching and to improve the yield of a device production in a method in which a target electrode having a rectangular planar shape is used and thin coating is formed by a sputtering method while a substrate with a large area is carried to a direction parallel to a short side of an electrode. SOLUTION: The carrying rate of a substrate holder 3 is controlled so as to make the distribution of coating thickness in the carrying direction of a substrate 4 to approximately coincide with the distribution of coating thickness in the direction vertical to the carrying direction to form thin coating having axial symmetry as for an axis vertical to a substrate face through the center of a substrate 4. Since, in an etching stage, a etching pregresses to the outer circumferential direction from the center part to a thin coating on the substrate 4, the possibility for over etching is eliminated, and a uniformity of a coating thickness after etching can be secured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は薄膜形成方法に係
り、スパッタリング法で平面形状が矩形状のターゲット
電極を用いて大面積基板に薄膜を形成する場合におい
て、成膜された薄膜の膜厚分布を次のエッチング工程と
の関係で整合性をもたせることにより、エッチングを基
板の全面にわたってほぼ同時間で終了させ、オーバーエ
ッチングによって基板に形成される素子の歩留まりが低
下することを防止するための成膜制御に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thin film, and more particularly to a method for forming a thin film on a large-area substrate using a target electrode having a rectangular planar shape by a sputtering method. Is made to have consistency in relation to the next etching step, so that the etching is completed in substantially the same time over the entire surface of the substrate to prevent the yield of elements formed on the substrate from being reduced by over-etching. Regarding membrane control

【0002】[0002]

【従来の技術】従来から、スパッタリング法で大面積基
板に均一な分布で薄膜を形成する場合には、平面形状が
矩形状のターゲット電極を用い、そのターゲット電極に
対向させた基板をターゲット電極の短辺と平行な方向に
一定速度で搬送して成膜させる方法が採用されている。
2. Description of the Related Art Conventionally, when a thin film is formed on a large area substrate with a uniform distribution by a sputtering method, a target electrode having a rectangular planar shape is used, and the substrate opposed to the target electrode is used as a target electrode. A method is adopted in which a film is conveyed at a constant speed in a direction parallel to the short side to form a film.

【0003】そして、そのための薄膜形成装置の概略構
成は図3に示される。同図において、1は0.1〜10P
a程度のArガス圧状態を実現する真空容器、2は真空容
器1内に固定された矩形状(長辺:W×短辺:B)のターゲ
ット電極(例えば,原材料がAl)、3は真空容器1内をタ
ーゲット電極2の短辺と平行な方向へ移動可能な基板ホ
ルダ、4は基板ホルダ3に装着された大面積の基板、5は
基板ホルダ3を前記方向へ駆動させる搬送駆動装置、6は
搬送駆動装置5の移動を制御する搬送コントローラ、7は
ターゲット電極2に高周波電力を供給するための電力供
給源、8はマッチング回路、9はコンデンサを示す。
FIG. 3 shows a schematic configuration of a thin film forming apparatus for that purpose. In the figure, 1 is 0.1 to 10P
a vacuum vessel for realizing an Ar gas pressure state of about a, a rectangular (long side: W × short side: B) target electrode (for example, the raw material is Al) fixed in the vacuum vessel 1, and 3 is a vacuum A substrate holder movable in a direction parallel to the short side of the target electrode 2 in the container 1, 4 is a large-area substrate mounted on the substrate holder 3, 5 is a transport driving device that drives the substrate holder 3 in the direction, Reference numeral 6 denotes a transfer controller for controlling the movement of the transfer drive device 5, 7 a power supply source for supplying high-frequency power to the target electrode 2, 8 a matching circuit, and 9 a capacitor.

【0004】薄膜形成動作の原理は通常のスパッタリン
グ法と同様であり、電極供給源7からマッチング回路8と
コンデンサ9を介してターゲット電極2に高周波電力が供
給されると、ターゲット電極2と真空容器1の間にグロー
放電が発生し、そのプラズマ中で生じた高エネルギのA
rイオンがターゲット電極2の表面に衝突して原材料の原
子を放出させ、それが基板4の表面に付着して薄膜を形
成する。一方、この装置では、大面積の基板4に対する
成膜を効率的に行うために、搬送駆動装置4が搬送コン
トローラ6の制御に基づいて基板ホルダ3をターゲット電
極2の短辺と平行な方向へ移動させるようになってお
り、前記原理によるスパッタリング状態で基板4をター
ゲット電極2に対向させながら基板4を一定速度で搬送す
る。即ち、平面形状が円形のターゲット電極を用いる場
合より小さな平面面積のターゲット電極2を用いて大面
積の基板4に対して広範囲に均一な成膜を行えるという
利点がある。
The principle of the thin film forming operation is the same as that of the ordinary sputtering method. When high frequency power is supplied from the electrode supply source 7 to the target electrode 2 via the matching circuit 8 and the capacitor 9, the target electrode 2 and the vacuum container A glow discharge occurs during 1 and the high-energy A generated in the plasma
The r ions collide with the surface of the target electrode 2 and release atoms of the raw material, which adhere to the surface of the substrate 4 to form a thin film. On the other hand, in this apparatus, the transfer driving device 4 moves the substrate holder 3 in a direction parallel to the short side of the target electrode 2 based on the control of the transfer controller 6 in order to efficiently form a film on the substrate 4 having a large area. The substrate 4 is conveyed at a constant speed while facing the target electrode 2 in a sputtering state according to the above principle. That is, there is an advantage that uniform film formation can be performed over a large area of the substrate 4 using the target electrode 2 having a smaller plane area than when a target electrode having a circular planar shape is used.

【0005】[0005]

【発明が解決しようとする課題】ところで、前記の薄膜
形成装置では、ターゲット電極2の長辺の長さWが基板4
のサイズに対して十分に大きい場合には基板4に成膜さ
れた薄膜の膜厚分布を全面で均一にできるが、そうでな
い場合には、搬送方向に関する膜厚分布が一定になって
いても、搬送方向と垂直な方向に関しては、中央領域が
厚く、中央領域から離隔するにつれて薄くなるような膜
厚分布状態を呈する。これは、ターゲット電極2の長辺
の長さWが基板4のサイズに対して十分な大きさを有し
ていないとターゲット電極2から放出された原子の密度
が基板4の両側部側で低くなるためである
In the above-mentioned thin film forming apparatus, the length W of the long side of the target electrode 2 is
If the film thickness is sufficiently large with respect to the size, the film thickness distribution of the thin film formed on the substrate 4 can be made uniform over the entire surface; otherwise, even if the film thickness distribution in the transport direction is constant. In the direction perpendicular to the transport direction, the film has a film thickness distribution state in which the central region is thick and becomes thinner as the distance from the central region increases. This is because if the length W of the long side of the target electrode 2 is not large enough for the size of the substrate 4, the density of atoms emitted from the target electrode 2 is low on both sides of the substrate 4. To become

【0006】具体的には、図4に示すように、平面形状
が円形の基板4において、その中心を原点として搬送方
向にX軸を、搬送方向に垂直な方向にY軸をとり、Y軸
に平行で基板4に垂直な断面をとってみると、成膜され
た薄膜10の表面が2次関数曲線で近似できるような凸状
の膜厚分布状態になる。尚、同図では前記断面でみた膜
厚の分布係数がα(Y)=1−aY2(但し、aはスパッタ
リング条件やターゲット電極2の長辺Wの長さ等で決定
される定数)で表される例を示してある。
More specifically, as shown in FIG. 4, on a substrate 4 having a circular planar shape, an X axis is set in the transfer direction with the center thereof as an origin, a Y axis is set in a direction perpendicular to the transfer direction, and a Y axis is set. Taking a cross section parallel to and perpendicular to the substrate 4, the surface of the formed thin film 10 has a convex thickness distribution state that can be approximated by a quadratic function curve. In the figure, the distribution coefficient of the film thickness as viewed in the cross section is α (Y) = 1−aY 2 (where a is a constant determined by sputtering conditions, the length of the long side W of the target electrode 2 and the like). An example is shown.

【0007】また、スパッタリング法で基板に薄膜を形
成する方式としては、図3のようにターゲット電極2に
基板4を対向させる方式だけでなく、図5や図6に示す
ように基板4をターゲット電極2a,(2b,2c)の前方空間に
対してそのターゲット電極2a,(2b,2c)の短辺と垂直な関
係を有して対向させ、そのターゲット電極2a,(2b,2c)の
電極面に垂直な方向に搬送しながら成膜する方式もあ
る。ここに、図5の構成は単一のターゲット電極2aを用
いる方式であり、図6の構成は2個のターゲット電極2
b,2cがそれらの電極面同志を対向させた態様で配備され
る対向ターゲット方式であるが、それらの何れの方式に
おいても、基板4が前記条件下で搬送されると図3の場
合と同様に図4で示した成膜状態になる。
As a method of forming a thin film on a substrate by sputtering, not only a method in which the substrate 4 is opposed to the target electrode 2 as shown in FIG. 3 but also a method in which the substrate 4 is formed as shown in FIGS. The electrodes 2a, (2b, 2c) are opposed to the space in front of the target electrode 2a, (2b, 2c) in a perpendicular relationship with the short side of the target electrode 2a, (2b, 2c). There is also a method of forming a film while transporting the film in a direction perpendicular to the surface. Here, the configuration of FIG. 5 is a system using a single target electrode 2a, and the configuration of FIG.
b and 2c are opposed target systems which are arranged in such a manner that their electrode surfaces face each other. In any of these systems, when the substrate 4 is transported under the above conditions, the same as in the case of FIG. FIG. 4 shows the film formation state.

【0008】一方、薄膜形成技術を駆使して製作される
デバイスは、一般に各種の成膜工程とエッチング工程を
組み合わせながら基板上に素子を形成してゆくことで完
成する。従って、デバイスの製造上の歩留まりを向上さ
せるには、基板上に均一に成膜すると共にその膜に対す
る均一なエッチングが行われることが理想的であるが、
大面積の基板では前記のように成膜工程で膜厚の均一性
を確保できない場合があり、またエッチング工程でも完
全に均一なエッチングを実行させることは困難であり、
例えばイオンミリング装置では一般に基板の中央領域に
対するエッチングが先に進行して周囲に及んで行く傾向
がある。
On the other hand, a device manufactured by making full use of thin film forming technology is generally completed by forming elements on a substrate while combining various film forming processes and etching processes. Therefore, in order to improve the production yield of the device, it is ideal that a uniform film is formed on the substrate and the film is uniformly etched.
In the case of a large-area substrate, uniformity of the film thickness may not be ensured in the film forming step as described above, and it is difficult to perform completely uniform etching also in the etching step,
For example, in an ion milling apparatus, generally, the etching of the central region of the substrate tends to proceed first and reach the periphery.

【0009】今、図4に示すような膜厚分布の薄膜成形
がなされた基板4に対して次工程でイオンミリング装置
でエッチングが施される場合を想定してみると、図7の
(1)〜(5)に示すような順序でエッチング状態が進行して
ゆくことになる。但し、同図での斜線領域は所要深さの
エッチングが完了した領域を、それ以外の領域は未完了
領域を示してある。同図から明らかなように、図4の膜
厚分布になった基板4ではその搬送方向に係る両側部の
エッチングが遅れ、全面のエッチングが完了した時点で
中央領域がオーバーエッチング状態になる可能性があ
り、また全面にわたる均一なエッチングを保証できな
い。
Now, assuming that a substrate 4 on which a thin film having a film thickness distribution as shown in FIG. 4 has been formed is etched by an ion milling device in the next step, FIG.
The etching state proceeds in the order shown in (1) to (5). However, the hatched area in the figure indicates an area where etching to a required depth has been completed, and the other areas indicate unfinished areas. As is apparent from FIG. 4, in the substrate 4 having the film thickness distribution shown in FIG. 4, the etching of both sides in the transport direction is delayed, and when the etching of the entire surface is completed, the central region may be over-etched. In addition, uniform etching over the entire surface cannot be guaranteed.

【0010】以上のように、デバイスのプロセスにおい
て、成膜工程とエッチング工程で個別に十分な均一性を
確保させながら高い歩留まりを維持することには極めて
困難である。しかし、個別工程で均一性を確保させよう
とする方法に代えて、エッチング工程での不均一性をキ
ャンセルさせるように成膜工程で膜厚分布を制御すると
いう考え方に基づき、両工程の不均一傾向を考慮して整
合性を図るようにすれば、前記の不具合を解消させて歩
留まりの向上を図ることが可能になる。
As described above, in a device process, it is extremely difficult to maintain a high yield while ensuring sufficient uniformity separately in a film forming step and an etching step. However, instead of a method of ensuring uniformity in the individual steps, based on the idea that the film thickness distribution is controlled in the film forming step so as to cancel the non-uniformity in the etching step, the non-uniformity in both steps is controlled. If the consistency is achieved in consideration of the tendency, it is possible to solve the above-mentioned problem and improve the yield.

【0011】そこで、本発明は、上記のように成膜工程
とエッチング工程での整合性を図るという基本的思想に
基づき、エッチング工程において結果的に歩留まりを高
くできる薄膜形成方法を提供することを目的として創作
された。
Therefore, the present invention provides a method of forming a thin film capable of increasing the yield in the etching step based on the basic idea of achieving the consistency between the film forming step and the etching step as described above. Created for the purpose.

【0012】[0012]

【課題を解決するための手段】本発明は、スパッタリン
グ法による薄膜形成方法であって、平面形状が矩形状で
あるターゲット電極を用い、基板を前記ターゲット電極
に対向させてそのターゲット電極の短辺と平行な方向に
搬送しながら成膜する場合、又は基板を前記ターゲット
電極の前方空間に対してそのターゲット電極の短辺と垂
直な関係を有して対向させ、そのターゲット電極の電極
面に垂直な方向に搬送しながら成膜する場合において、
前記基板の搬送方向の膜厚分布が搬送方向と垂直な方向
の膜厚分布と略一致するように前記基板の搬送速度を制
御することを特徴とした薄膜形成方法に係る。
The present invention relates to a method of forming a thin film by a sputtering method, wherein a target electrode having a rectangular planar shape is used, and a substrate is opposed to the target electrode, and a short side of the target electrode is formed. When the film is formed while being transported in a direction parallel to the target electrode, or the substrate is opposed to the space in front of the target electrode in a relationship perpendicular to the short side of the target electrode, and is perpendicular to the electrode surface of the target electrode. When forming a film while transporting it in different directions,
The present invention relates to a method for forming a thin film, wherein the transport speed of the substrate is controlled such that the thickness distribution of the substrate in the transport direction substantially coincides with the thickness distribution in the direction perpendicular to the transport direction.

【0013】本発明によれば、基板面に成膜される膜厚
について、基板面の中央を通って基板面に垂直な軸に関
してほぼ軸対称となるような分布状態を実現でき、エッ
チング工程においてエッチングが中央領域から外周方向
に向けて進行することとの関係で、結果的にオーバーエ
ッチングを生じさせずに全面が均一になったエッチング
完了状態を得ることが可能になる。
According to the present invention, it is possible to realize a distribution state in which the film thickness formed on the substrate surface is substantially axially symmetric with respect to an axis passing through the center of the substrate surface and perpendicular to the substrate surface. As a result of the fact that the etching proceeds from the central region toward the outer periphery, it is possible to obtain an etching completed state in which the entire surface becomes uniform without over-etching.

【0014】[0014]

【発明の実施の形態】以下、本発明の「薄膜形成方法」に
係る実施形態を図1及び図2を用いて詳細に説明する。
先ず、図1は本発明の方法を実施するための薄膜形成装
置の概略構成図であり、図3と同一符号で示されるもの
は同一の構成部分を示し、真空容器1内で基板ホルダ3を
ターゲット電極2の短辺と平行な方向に移動させながら
基板4の表面に薄膜を成膜する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the "thin film forming method" of the present invention will be described below in detail with reference to FIGS.
First, FIG. 1 is a schematic configuration diagram of a thin film forming apparatus for carrying out the method of the present invention, and those denoted by the same reference numerals as those in FIG. A thin film is formed on the surface of the substrate 4 while moving in a direction parallel to the short side of the target electrode 2.

【0015】この実施形態の特徴は、(1)搬送コントロ
ーラ6が、図3の装置のように一定速度で基板ホルダ3を
移動させずに、その移動位置によって移動速度を逐次変
化させるプログラムを有している点、及び(2)ターゲッ
ト電極2と基板4の間に、基板4の搬送方向と垂直な方向
にスリット11aを形成した遮蔽板11が介装されている点
にある。より具体的には、搬送コントローラ6は基板4の
中心がターゲット電極2の中心の直下を通過する時に基
板ホルダ3の移動速度が最小になるように搬送駆動装置5
を制御し、その速度制御が基板4の搬送方向(ターゲット
電極2の短辺と平行な方向)と垂直な方向(ターゲット電
極2の長辺と平行な方向)に係る膜厚分布に対応した関数
で制御され、遮蔽板11はそのスリット11aがターゲット
電極2の中心の直下で基板4の搬送方向に垂直な方向にな
るように設置されている。ここに、遮蔽板11は基板4の
搬送方向に関する膜厚分布をより正確に制御できるよう
にする機能を果たし、スリット11aの幅を狭くするほ
ど、また遮蔽板11と基板4の間隔を狭くするほど制御の
分解能を向上させることができる。但し、スリット11a
の幅をあまり狭くすると成膜速度が低下するため、制御
性と成膜効率を考慮して決定される。更に、スリット11
aの幅を一定とせずに変化させれば膜厚分布を制御する
こともできる。
The features of this embodiment are as follows: (1) The transfer controller 6 has a program that does not move the substrate holder 3 at a constant speed as in the apparatus shown in FIG. And (2) a shielding plate 11 in which a slit 11a is formed between the target electrode 2 and the substrate 4 in a direction perpendicular to the direction in which the substrate 4 is transported. More specifically, the transport controller 6 controls the transport driving device 5 so that the moving speed of the substrate holder 3 is minimized when the center of the substrate 4 passes immediately below the center of the target electrode 2.
A function corresponding to the film thickness distribution in the direction perpendicular to the transport direction of the substrate 4 (the direction parallel to the short side of the target electrode 2) (the direction parallel to the long side of the target electrode 2). The shielding plate 11 is installed so that the slit 11a thereof is located immediately below the center of the target electrode 2 and in a direction perpendicular to the transport direction of the substrate 4. Here, the shielding plate 11 functions to more accurately control the film thickness distribution in the transport direction of the substrate 4, and the narrower the width of the slit 11a, the narrower the distance between the shielding plate 11 and the substrate 4. The more the control resolution can be improved. However, slit 11a
If the width is too narrow, the film forming speed will be reduced, so that it is determined in consideration of controllability and film forming efficiency. Furthermore, slit 11
The film thickness distribution can be controlled by changing the width of a without making it constant.

【0016】ところで、図3の装置では基板ホルダ3の
搬送速度を一定にして図4に示すような薄膜10の膜厚分
布を得ていた。即ち、Y軸方向の分布係数がα(Y)=1
−aY2で与えられ、X軸方向はY軸方向の分布係数で
決定される一定の膜厚になっている。一方、本実施形態
の搬送コントローラ6の搬送速度制御プログラムで搬送
駆動装置5が制御されると、図2に示すように、基板4の
搬送方向(X軸方向)に関しても膜厚の分布係数:α(X)=
1−aX2が与えられ、X軸方向とY軸方向に関してそ
れぞれ中央領域が厚く、中心から離れるにつれて薄くな
った態様でAlの薄膜12が形成される。
Meanwhile, in the apparatus shown in FIG. 3, the thickness distribution of the thin film 10 as shown in FIG. That is, the distribution coefficient in the Y-axis direction is α (Y) = 1.
−aY 2 , and the X-axis direction has a constant film thickness determined by the distribution coefficient in the Y-axis direction. On the other hand, when the transport driving device 5 is controlled by the transport speed control program of the transport controller 6 of the present embodiment, as shown in FIG. 2, the distribution coefficient of the film thickness also in the transport direction of the substrate 4 (X-axis direction): α (X) =
1-aX 2 is provided, each thicker central region with respect to the X-axis direction and the Y-axis direction, a thin film 12 of Al is formed by thinned manner with distance from the center.

【0017】従って、図4に示すように、基板4の平面
状の任意の点Pを(X=rcosθ,Y=rsinθ)で表す
と、点Pにおける膜厚分布係数βは次式で表現され
る。 β(X,Y)=α(X)・α(Y)=(1−aX2)・(1−aY2) =(1−ar2)+a24sin2θ・cos2θ … これに対して、図3における膜厚の分布係数αは次式
で表現される。 α(X,Y)=1−ar2sin2θ =(1−ar2)+ar2cos2θ …
Therefore, as shown in FIG. 4, when an arbitrary point P on the plane of the substrate 4 is represented by (X = rcos θ, Y = rsin θ), the film thickness distribution coefficient β at the point P is expressed by the following equation. You. β (X, Y) = α (X) · α (Y) = (1−aX 2 ) · (1−aY 2 ) = (1−ar 2 ) + a 2 r 4 sin 2 θ · cos 2 θ On the other hand, the distribution coefficient α of the film thickness in FIG. α (X, Y) = 1 -ar 2 sin 2 θ = (1-ar 2) + ar 2 cos 2 θ ...

【0018】ここで、前記の及びの式における第1
項目の(1−ar2)は、基板4の中心を通って基板4に垂
直な直線に関する軸対称となる場合の分布係数を与えて
おり、各式の第2項目はその軸対称性からの誤差を与え
ている。そして、各式の2項目を比較してみると、1−
ar2≧0であって、且つaが一般的に極めて小さい定
数であるという条件下においては次式が成立する。 a24sin2θ・cos2θ≪ar2cos2θ … (ar2sin2θ≪1) 換言すれば、式の分布係数β(X,Y)は式の分布係数
α(X,Y)よりも全面にわたって遥かに軸対称に近似した
薄膜分布状態を与えていることになる。特に、式では
基板4の搬送方向の両側領域(|cosθ|が1に近いθの
範囲で、rが基板の最大半径Rに近い領域)で軸対称性
からかけ離れた膜厚分布になるが、この実施形態に基づ
く式では前記領域においても軸対称面に極めて近似し
た膜厚分布を構成させることができる。
Here, the first in the above equations and
The item (1-ar 2 ) gives the distribution coefficient in the case of being axially symmetric with respect to a straight line passing through the center of the substrate 4 and perpendicular to the substrate 4, and the second item of each equation is based on the axial symmetry. Error is given. Then, comparing the two items of each equation, 1-
Under the condition that ar 2 ≧ 0 and a is generally a very small constant, the following equation holds. a 2 r 4 sin 2 θ · cos 2 θ≪ar 2 cos 2 θ (ar 2 sin 2 θ≪1) In other words, the distribution coefficient β (X, Y) of the equation is the distribution coefficient α (X, This gives a thin film distribution state that is much more axially symmetrical over the entire surface than Y). In particular, in the formula, the film thickness distribution is far away from the axial symmetry in both sides of the substrate 4 in the transport direction (| cos θ | is a range of θ near 1 and r is close to the maximum radius R of the substrate). In the formula based on this embodiment, it is possible to form a film thickness distribution very similar to the axially symmetric plane even in the region.

【0019】ところで、この実施形態による膜厚分布に
おいて最も軸対称性が悪くなる箇所は、θ=(π/4),
(3π/4),(5π/4),(7π/4)で、rが基板4の最
大半径Rになる点であるが、その点では式では左辺が
24/4、右辺がaR2/2となり、1−aR2=0と
仮定しても左辺が1/4、右辺が1/2となって、この
実施形態のほうがより良い軸対称性を有している。ま
た、より現実的な軸対称性を示す分布係数として1−a
2=0.9とした場合において、前記と同様に最も軸対
称性が悪くなる箇所でのβ(X,Y)の誤差の比率をみる
と、 (a24sin2θ・cos2θ)/1−aR2 =(0.1)2・{1/sin(π/4)}2・{1/cos(π/4)}2/0.9 =0.0027 (≒0.3%) となり、一定速度で搬送した場合における図4の膜厚分
布では10%の誤差率が生じることから、その改善度合
いは非常に大きい。
In the film thickness distribution according to this embodiment, the point where the axial symmetry is the worst is θ = (π / 4),
(3π / 4), (5π / 4), with (7 [pi] / 4), r is is the point of maximum radius R of the substrate 4, in this respect the left side in the expression a 2 R 4/4, the right side aR 2/2 becomes, 1-aR 2 = 0 left even assuming 1/4, and the right side becomes 1/2, more of this embodiment has a better axial symmetry. Moreover, 1-a is used as a distribution coefficient indicating more realistic axial symmetry.
In the case where R 2 = 0.9, the ratio of the error of β (X, Y) at the point where the axial symmetry becomes the worst as described above is as follows: (a 2 r 4 sin 2 θ · cos 2 θ) / 1−aR 2 = (0.1) 2 • {1 / sin (π / 4)} 2 • {1 / cos (π / 4)} 2 /0.9 = 0.0027 (≒ 0.3%), constant speed Since the error rate of 10% occurs in the film thickness distribution of FIG.

【0020】そして、この実施形態に係る薄膜形成装置
で図2に示すように薄膜12が成膜された基板4を次工程
のイオンミリング装置にかけた場合には、従来技術で説
明したように中央領域から外周方向に向かって軸対称性
を有してエッチングが進行してゆく。一方、薄膜12は前
記の式の分布係数β(X,Y)が与える軸対称性を有して
中央領域側が厚く形成されている。従って、薄膜12の膜
厚分布は時間的に生じるエッチング深さの誤差をキャン
セルさせることになり、最外周部分が所定の深さにエッ
チングされた段階で中央領域が丁度その深さまでエッチ
ングされた状態にすることができる。
When the substrate 4 on which the thin film 12 is formed as shown in FIG. 2 is subjected to an ion milling apparatus in the next step in the thin film forming apparatus according to this embodiment, the central processing is performed as described in the prior art. The etching proceeds axially symmetrically from the region toward the outer periphery. On the other hand, the thin film 12 has an axial symmetry given by the distribution coefficient β (X, Y) in the above equation, and is formed thick on the central region side. Therefore, the thickness distribution of the thin film 12 cancels the error of the etching depth occurring with time, and the state where the outermost portion is etched to a predetermined depth and the central region is just etched to that depth. Can be

【0021】尚、以上の実施形態ではターゲット電極2
と基板4を遮蔽板11を介して対向させるスパッタリング
方式について説明したが、図5及び図6に示した方式に
おいても図4に示した成膜状態が得られるため、図5及
び図6の方式で搬送コントローラ6にこの実施形態の搬
送速度制御プログラムを与えておけば図2の成膜状態と
なり、同様の効果が得られる。また、遮蔽板11は上記の
ように搬送方向に関する膜厚分布をより正確に制御させ
るための機能を有しているが、精度確保のための要素で
あり、それがなくても結果的にほぼ軸対称性を有した成
膜状態が得られるのであれば必須の構成要素ではない。
In the above embodiment, the target electrode 2
The sputtering method in which the substrate and the substrate 4 are opposed to each other via the shielding plate 11 has been described. However, the film formation state shown in FIG. 4 can be obtained in the method shown in FIGS. If the transfer speed control program of this embodiment is given to the transfer controller 6, the film formation state shown in FIG. 2 is obtained, and the same effect can be obtained. Further, the shielding plate 11 has a function for more accurately controlling the film thickness distribution in the transport direction as described above, but it is an element for ensuring accuracy, and as a result, without it, almost no It is not an essential component if a film-formed state having axial symmetry can be obtained.

【0022】[0022]

【発明の効果】本発明の「薄膜形成方法」は、以上の構成
を有していることにより、次のような効果を奏する。請
求項(1)の発明は、スパッタリング法による薄膜形成方
法であって、平面形状が矩形状であるターゲット電極を
用い、基板を前記ターゲット電極に対向させてそのター
ゲット電極の短辺と平行な方向に搬送しながら成膜する
場合、又は基板を前記ターゲット電極の前方空間に対し
てそのターゲット電極の短辺と垂直な関係を有して対向
させ、そのターゲット電極の電極面に垂直な方向に搬送
しながら成膜する場合において、薄膜の分布を、基板面
の中央を通って基板面に垂直な軸に関してほぼ軸対称に
することができ、次工程のエッチングの進行状態に整合
させてオーバーエッチングの可能性をなくすると共にデ
バイス製造の歩留まりを向上させる。請求項(2)の発明
は、基板の搬送方向と垂直なスリットを形成した遮蔽板
を設けることにより、前記搬送方向に係る成膜制御の分
解能を高め、またそのスリットの幅を変化させてそのス
リット方向に係る膜厚分布を制御することを可能にす
る。
The "thin film forming method" of the present invention has the following effects by having the above-described structure. The invention according to claim (1) is a method for forming a thin film by a sputtering method, wherein a target electrode having a rectangular planar shape is used, and a substrate is opposed to the target electrode and a direction parallel to a short side of the target electrode. When a film is formed while being transported, or when the substrate is opposed to the space in front of the target electrode in a relationship perpendicular to the short side of the target electrode, and is transported in a direction perpendicular to the electrode surface of the target electrode. When the film is formed while being formed, the distribution of the thin film can be made substantially axially symmetric with respect to an axis passing through the center of the substrate surface and perpendicular to the substrate surface. Eliminate the potential and increase device manufacturing yield. The invention of claim (2) is to increase the resolution of film formation control in the transport direction by providing a shielding plate having a slit perpendicular to the transport direction of the substrate, and by changing the width of the slit. It is possible to control the film thickness distribution in the slit direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の薄膜形成方法の実施形態に係る薄膜製
造装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a thin film manufacturing apparatus according to an embodiment of a thin film forming method of the present invention.

【図2】実施形態に係る薄膜製造装置での成膜態様を示
す基板の平面図と搬送方向から見た側面図と搬送方向に
垂直な方向から見た側面図である。
FIG. 2 is a plan view, a side view as viewed from a transfer direction, and a side view as viewed from a direction perpendicular to the transfer direction, showing a film formation mode in the thin film manufacturing apparatus according to the embodiment.

【図3】従来技術に係る薄膜製造装置(ターゲット電極
と基板を対向させる方式)の概略構成図である。
FIG. 3 is a schematic configuration diagram of a thin film manufacturing apparatus (a method in which a target electrode and a substrate are opposed to each other) according to a conventional technique.

【図4】従来技術に係る薄膜製造装置での成膜態様を示
す基板の平面図と搬送方向から見た側面図と搬送方向に
垂直な方向から見た側面図である。
FIG. 4 is a plan view of a substrate, a side view viewed from a transfer direction, and a side view viewed from a direction perpendicular to the transfer direction, showing a film formation mode in a thin film manufacturing apparatus according to a conventional technique.

【図5】従来技術に係る薄膜製造装置(基板を単一ター
ゲット電極の前方空間に対向させる方式)の概略構成図
である。
FIG. 5 is a schematic configuration diagram of a thin film manufacturing apparatus (system in which a substrate is opposed to a space in front of a single target electrode) according to a conventional technique.

【図6】従来技術に係る薄膜製造装置(対向ターゲット
方式)の概略構成図である。
FIG. 6 is a schematic configuration diagram of a thin film manufacturing apparatus (opposite target method) according to a conventional technique.

【図7】従来技術に係る薄膜製造装置で成膜した基板を
エッチングした際のエッチングの進行状態を示す図であ
る。
FIG. 7 is a diagram showing the progress of etching when a substrate formed by a thin film manufacturing apparatus according to a conventional technique is etched.

【符号の説明】[Explanation of symbols]

1…真空容器、2,2a,2b,2c…ターゲット電極、3…基板ホ
ルダ、4…基板、5…搬送駆動装置、6…搬送コントロー
ラ、7…電力供給源、8…マッチング回路、9…コンデン
サ、10,12…薄膜、11…遮蔽板、11a…スリット、B…タ
ーゲット電極の短辺の長さ、W…ターゲット電極の長辺
の長さ。
1 ... Vacuum container, 2,2a, 2b, 2c ... Target electrode, 3 ... Substrate holder, 4 ... Substrate, 5 ... Transport drive, 6 ... Transport controller, 7 ... Power supply source, 8 ... Matching circuit, 9 ... Capacitor , 10, 12: thin film, 11: shielding plate, 11a: slit, B: length of the short side of the target electrode, W: length of the long side of the target electrode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スパッタリング法による薄膜形成方法で
あって、平面形状が矩形状であるターゲット電極を用
い、基板を前記ターゲット電極に対向させてそのターゲ
ット電極の短辺と平行な方向に搬送しながら成膜する場
合、又は基板を前記ターゲット電極の前方空間に対して
そのターゲット電極の短辺と垂直な関係を有して対向さ
せ、そのターゲット電極の電極面に垂直な方向に搬送し
ながら成膜する場合において、前記基板の搬送方向の膜
厚分布が搬送方向と垂直な方向の膜厚分布と略一致する
ように前記基板の搬送速度を制御することを特徴とした
薄膜形成方法。
1. A method for forming a thin film by a sputtering method, wherein a target electrode having a rectangular planar shape is used, and a substrate is opposed to the target electrode while being conveyed in a direction parallel to a short side of the target electrode. When forming a film, or forming a film while facing the space in front of the target electrode in a direction perpendicular to the short side of the target electrode, and transporting the substrate in a direction perpendicular to the electrode surface of the target electrode. Wherein the transport speed of the substrate is controlled such that the film thickness distribution in the transport direction of the substrate substantially coincides with the film thickness distribution in the direction perpendicular to the transport direction.
【請求項2】 基板をターゲット電極に対向させてその
ターゲット電極の短辺と平行な方向に搬送しながら成膜
する場合にはそのターゲット電極と前記基板の間の空間
に、基板をターゲット電極の前方空間に対してそのター
ゲット電極の短辺と垂直な関係を有して対向させ、その
ターゲット電極の電極面に垂直な方向に搬送しながら成
膜する場合にはそのターゲット電極の前方空間と前記基
板の間に、それぞれ前記基板の搬送方向と垂直な方向に
スリットが形成されている遮蔽板を介装して薄膜を形成
させることとした請求項1の薄膜形成方法。
2. When forming a film while transporting a substrate in a direction parallel to a short side of the target electrode while facing the target electrode, the substrate is placed in a space between the target electrode and the substrate. When forming a film while transporting in a direction perpendicular to the electrode surface of the target electrode, facing the front space with a relationship perpendicular to the short side of the target electrode, 2. The thin film forming method according to claim 1, wherein a thin film is formed between the substrates by interposing shielding plates each having a slit formed in a direction perpendicular to the transport direction of the substrate.
JP26803296A 1996-07-31 1996-07-31 Formation of thin film Pending JPH1046342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26803296A JPH1046342A (en) 1996-07-31 1996-07-31 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26803296A JPH1046342A (en) 1996-07-31 1996-07-31 Formation of thin film

Publications (1)

Publication Number Publication Date
JPH1046342A true JPH1046342A (en) 1998-02-17

Family

ID=17452940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26803296A Pending JPH1046342A (en) 1996-07-31 1996-07-31 Formation of thin film

Country Status (1)

Country Link
JP (1) JPH1046342A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207798A (en) * 2006-01-31 2007-08-16 Mitsubishi Electric Corp Semiconductor device and method of manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207798A (en) * 2006-01-31 2007-08-16 Mitsubishi Electric Corp Semiconductor device and method of manufacturing same

Similar Documents

Publication Publication Date Title
JP2000144399A (en) Sputtering device
US20010037770A1 (en) Plasma processing apparatus and processing method
WO2014119580A1 (en) Thin substrate processing device
TWI695079B (en) Method and apparatus for depositing a material
KR102157824B1 (en) Large area VHF PECVD chamber for low-damage and high-throughput plasma processing
JP2015023168A (en) Plasma processing apparatus, and method of manufacturing stage
JP2017133065A (en) Film deposition method
JP6022373B2 (en) Thin substrate processing equipment
JP2001015495A (en) Device and method for plasma treatment
JP2011146690A (en) Ion beam generator and substrate processing apparatus and production method of electronic device using the ion beam generator
JPH1046342A (en) Formation of thin film
JPS63307268A (en) Bias sputtering method and its device
JP6022372B2 (en) Thin substrate processing equipment
JPH11149999A (en) Plasma treating device
JP5889746B2 (en) Substrate processing apparatus, solid electrolyte membrane forming apparatus, and solid electrolyte membrane forming method
JPH0649936B2 (en) Bias spattering device
JPS63263725A (en) Plasma treatment apparatus
JPH02185967A (en) Method and device for bias sputtering
JP2005175503A (en) Plasma processing device and plasma processing method
JPH11350123A (en) Thin film production apparatus and production of liquid crystal display substrate
JP2002373887A (en) Etching system for high dielectric
JP3038287B2 (en) Thin film production equipment
WO2023275958A1 (en) Method for regenerating inner wall member
JP2000226649A (en) High frequency sputtering device, gland ring on the substrate side and target side and formation of oxidized insulating film
JPS61210190A (en) Thin film forming device