JPH1045665A - Production of glyoxylic acid - Google Patents

Production of glyoxylic acid

Info

Publication number
JPH1045665A
JPH1045665A JP8204680A JP20468096A JPH1045665A JP H1045665 A JPH1045665 A JP H1045665A JP 8204680 A JP8204680 A JP 8204680A JP 20468096 A JP20468096 A JP 20468096A JP H1045665 A JPH1045665 A JP H1045665A
Authority
JP
Japan
Prior art keywords
acid
glycolic acid
catalyst
gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8204680A
Other languages
Japanese (ja)
Other versions
JP3800676B2 (en
Inventor
Mamoru So
衛 相
Kyoji Odan
恭二 大段
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP20468096A priority Critical patent/JP3800676B2/en
Publication of JPH1045665A publication Critical patent/JPH1045665A/en
Application granted granted Critical
Publication of JP3800676B2 publication Critical patent/JP3800676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable direct synthesis of glyoxylic acid which is useful as a raw material for synthesizing perfumes, medicines, agrochemicals and the like by bringing glycolic acid into contact with molecular oxygen in the presence of a specific catalyst in high selectivity and high yield from a readily available raw material. SOLUTION: In the presence of (A) a catalyst containing (A1 ) FePO4 or (A2 ) Fe3 (P2 O7 )2 perferably containing >=20wt.% of A1 or A2 in which the atomic ratio of P/Fe is 1/1-1.8-1), (B) glycolic acid is brought into contact with (C) molecular oxygen (for example, a gas in which oxygen is diluted with nitrogen in an oxygen concentration of 10-30vol.% or air). In a preferred embodiment, the reaction is carried out at 200-280 deg.C under normal pressure for a contact time of 0.2-7 seconds.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、グリコール酸から
グリオキシル酸を製造する方法、特にリン酸鉄系の触媒
の存在下でグリコール酸を酸化脱水素してグリオキシル
酸を製造する方法に関する。グリオキシル酸は、香料
(バニリン等)、医薬(血液凝固剤、鎮痛剤等)、農薬
(殺虫剤、植物生長調製剤等)及び有機薬品の合成原
料、ならびに高分子化合物の製造原料などとして有用な
化合物である。
The present invention relates to a method for producing glyoxylic acid from glycolic acid, and more particularly to a method for producing glyoxylic acid by oxidatively dehydrogenating glycolic acid in the presence of an iron phosphate-based catalyst. Glyoxylic acid is useful as a raw material for synthesizing fragrances (such as vanillin), pharmaceuticals (such as blood coagulants and analgesics), pesticides (such as insecticides and plant growth regulators) and organic chemicals, and as raw materials for producing high molecular compounds. Compound.

【0002】[0002]

【従来の技術】グリオキシル酸の製造方法としては、シ
ュウ酸を電解還元する方法(米国特許第4692226
号)、グリオキザールを硝酸酸化する方法(特開平3−
176456号公報)、グリコール酸を酸化酵素によっ
て酸化する方法(PCT Int.Appl.WO95
01444)などが知られていて、最近では特に酸化酵
素による方法ならびに電解還元による方法が注目されて
いる。しかしながら、これらの方法はいずれも生産性が
低く、操作も煩雑である。更に、グリコール酸を銅、又
は銅及びジルコニウムを含有する触媒の存在下で脱水素
する方法(特開平6−157399号公報)も知られて
いるが、グリオキシル酸の選択率及び收率が低い。
2. Description of the Related Art As a method for producing glyoxylic acid, a method for electrolytic reduction of oxalic acid (US Pat. No. 4,692,226) is known.
), A method of oxidizing glyoxal with nitric acid (Japanese Unexamined Patent Publication No.
176456), a method of oxidizing glycolic acid with an oxidase (PCT Int. Appl. WO95)
01444) and the like, and in particular, a method using an oxidase and a method using electrolytic reduction have recently attracted attention. However, all of these methods are low in productivity and complicated in operation. Further, a method of dehydrogenating glycolic acid in the presence of copper or a catalyst containing copper and zirconium is also known (JP-A-6-157399), but the selectivity and yield of glyoxylic acid are low.

【0003】その他、グリコール酸エステルを酸化して
得られるグリオキシル酸エステルを加水分解する方法も
知られているが、グリコール酸を原料とする場合は、グ
リコール酸のエステル化工程、グリコール酸エステルの
酸化工程、グリオキシル酸エステルの加水分解工程の3
工程が必要になって、プロセスが複雑になるという問題
がある。また、グリコール酸エステルの酸化は、例え
ば、リン酸第二鉄がα−アルミナに担持された触媒の存
在下でグリコール酸エステルを分子状酸素と接触させる
方法(特開平2−91046号公報)によって行われる
が、グリオキシル酸エステルの收率が余り高くなく、触
媒調製には煩雑な前処理が必要である。
[0003] In addition, a method of hydrolyzing a glyoxylate obtained by oxidizing a glycolate is also known. However, when glycolic acid is used as a raw material, a step of esterifying glycolic acid, an oxidation of glycolate, Step 3 of glyoxylate ester hydrolysis step
There is a problem that a process is required and the process becomes complicated. The glycolic acid ester is oxidized by, for example, contacting the glycolic acid ester with molecular oxygen in the presence of a catalyst in which ferric phosphate is supported on α-alumina (JP-A-2-91046). However, the yield of glyoxylate is not so high, and the preparation of the catalyst requires complicated pretreatment.

【0004】[0004]

【発明が解決しようとする課題】前記のような技術背景
に鑑みて、本発明は、工業的に容易に入手できるグリコ
ール酸を酸化して、グリオキシル酸を高選択率及び高收
率で直接に製造する方法を提供することを課題とする。
SUMMARY OF THE INVENTION In view of the above technical background, the present invention oxidizes glycolic acid, which is industrially easily available, to directly convert glyoxylic acid with high selectivity and high yield. It is an object to provide a manufacturing method.

【0005】[0005]

【課題を解決するための手段】本発明の課題は、FeP
4 又はFe3 (P2 7 2 を含有する触媒の存在下
で、グリコール酸を分子状酸素と接触させることを特徴
とするグリオキシル酸の製造方法によって達成される。
SUMMARY OF THE INVENTION The object of the present invention is to provide an FeP.
This is achieved by a method for producing glyoxylic acid, which comprises contacting glycolic acid with molecular oxygen in the presence of a catalyst containing O 4 or Fe 3 (P 2 O 7 ) 2 .

【0006】[0006]

【発明の実施の形態】以下に本発明を詳しく説明する。
本発明で原料として使用されるグリコール酸は、グリコ
ール酸を1重量%以上、特に3〜70重量%、更には5
〜50重量%含有するグリコール酸水溶液であることが
好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The glycolic acid used as a raw material in the present invention contains glycolic acid in an amount of 1% by weight or more, particularly 3 to 70% by weight, and more preferably 5% by weight.
It is preferably an aqueous solution of glycolic acid containing about 50% by weight.

【0007】本発明で使用される触媒はFePO4 (リ
ン酸第二鉄)又はFe3 (P2 72 を含有する触媒
である。FePO4 としては、トリデマイト型、石英型
などのFePO4 が挙げられ、Fe3 (P2 7 2
しては、α型(Y相)、β型(B相)などのFe3 (P
2 7 2 が挙げられる。これらの中では、α型、β型
のFe3 (P2 7 2が反応中に安定に存在し、しか
も高活性及び高選択性を示すので触媒として好適であ
る。
The catalyst used in the present invention is FePOFour(Re
Ferric acid) or FeThree(PTwoO7)TwoCatalyst containing
It is. FePOFourAs a tridemite type, quartz type
FePOFourAnd FeThree(PTwoO7)TwoWhen
For example, α-type (Y-phase) and β-type (B-phase) FeThree(P
TwoO7)TwoIs mentioned. Among these, α-type and β-type
FeThree(PTwoO7)TwoIs stably present during the reaction,
Are also suitable as catalysts because they show high activity and high selectivity.
You.

【0008】前記の触媒は、FePO4 又はFe3 (P
2 7 2 から成るものであっても、これらが担体に担
持されているものであっても、またこれらが希釈剤と混
合されているものであってもよい。また、FePO4
Fe3 (P2 7 2 の混合物であってもよい。更に、
前記の触媒は、Fe2 2 7 (ピロリン酸第一鉄)が
反応中に酸化を受けてα型のFe3 (P2 7 2 に変
化することから、Fe 2 2 7 から成るもの、あるい
はFe2 2 7 を含有するものであっても差し支えな
い。触媒中のFePO4 又はFe3 (P2 7 2 の含
量は100重量%以下であって、10重量%以上、特に
20重量%以上であることが好ましい。また、触媒には
過剰のリン酸が含有されていても差し支えないが、リン
酸は、触媒に含有されるリンと鉄の原子比(P:Fe)
が1:1〜1.8:1の範囲であるように含有されるこ
とが好ましい。
The catalyst is FePOFourOr FeThree(P
TwoO7)TwoEven if they consist of
Even if they are present, they are also mixed with diluents.
They may be combined. In addition, FePOFourWhen
FeThree(PTwoO7)TwoMay be used. Furthermore,
The catalyst is FeTwoPTwoO7(Ferrous pyrophosphate)
Α-type FeThree(PTwoO7)TwoStrange
From Fe TwoPTwoO7Consisting of or
Is FeTwoPTwoO7May be contained.
No. FePO in catalystFourOr FeThree(PTwoO7)TwoIncluding
The amount is less than 100% by weight, more than 10% by weight, in particular
It is preferably at least 20% by weight. Also, the catalyst
Excess phosphoric acid may be contained, but phosphorus
The acid is the atomic ratio of phosphorus to iron contained in the catalyst (P: Fe)
Is contained in the range of 1: 1 to 1.8: 1.
Is preferred.

【0009】前記の触媒のうち、FePO4 を調製する
方法としては、例えば、鉄含有化合物とリン含有化合物
を水の存在下で混合(又は混錬)した後に、共沈物(又
は混錬物)を乾燥・焼成する方法が挙げられる。このと
き、鉄含有化合物としては、鉄の無機酸塩(硝酸鉄、炭
酸鉄、塩化鉄、リン酸第一鉄等)、鉄の有機酸塩(シュ
ウ酸鉄、酢酸鉄等)、鉄の酸化物(酸化鉄等)、鉄の水
酸化物(水酸化鉄等)などが使用され、リン含有化合物
としては、リン酸のアンモニウム塩(リン酸アンモニウ
ム等)、リン酸(オルトリン酸、メタリン酸等)、リン
の塩化物(五塩化リン等)などが使用される。
Among the above-mentioned catalysts, as a method for preparing FePO 4 , for example, after mixing (or kneading) an iron-containing compound and a phosphorus-containing compound in the presence of water, a coprecipitate (or kneaded material) is mixed. ) Is dried and calcined. At this time, as the iron-containing compound, inorganic salts of iron (iron nitrate, iron carbonate, iron chloride, ferrous phosphate, etc.), organic acid salts of iron (iron oxalate, iron acetate, etc.), oxidation of iron (Eg, iron oxide), iron hydroxide (eg, iron hydroxide) and the like. Examples of the phosphorus-containing compound include ammonium salts of phosphoric acid (eg, ammonium phosphate), phosphoric acid (eg, orthophosphoric acid, metaphosphoric acid, etc.). ), And phosphorus chlorides (such as phosphorus pentachloride).

【0010】前記の触媒調製において、乾燥は空気中で
50〜200℃の温度で行われ、焼成は空気中で300
℃以上、特に400〜800℃の温度で行われる。焼成
温度が300℃より低い場合、FePO4 が充分に生成
しないことがあり、また800℃より高い場合は得られ
る触媒の比表面積が非常に小さくなることがあるので好
ましくない。
In the above catalyst preparation, drying is performed in air at a temperature of 50 to 200 ° C., and calcination is performed in air at 300 to 200 ° C.
C. or higher, especially at a temperature of 400 to 800.degree. If the calcination temperature is lower than 300 ° C., FePO 4 may not be sufficiently generated, and if it is higher than 800 ° C., the specific surface area of the obtained catalyst may be extremely small, which is not preferable.

【0011】α型のFe3 (P2 7 2 は、FePO
4 を100〜600℃、特に160〜500℃で還元性
ガスと接触させてFe2 2 7 を生成させ(鉄原子を
完全に2価に還元し)、これを600℃以下、特に20
0〜550℃で再酸化する(分子状酸素と接触させる)
ことによって調製される。還元性ガスとしては、水素
(H2 )、アンモニア、一酸化炭素、炭化水素(メタ
ン、エタン等)あるいはその他の有機物(メタノール、
ホルムアルデヒド、グリコール酸等)などを含有するガ
スが使用される。これら還元性ガスは純ガスであって
も、混合ガスであっても、また不活性ガスで希釈された
ものであってもよい。また、β型のFe3 (P2 7
2 は、FePO4 を100〜600℃、特に160〜5
00℃で前記の還元性ガスと接触させる(鉄原子を部分
的に還元する)ことによって調製される。
The α-type Fe 3 (P 2 O 7 ) 2 is FePO
4 is brought into contact with a reducing gas at 100 to 600 ° C., especially 160 to 500 ° C., to form Fe 2 P 2 O 7 (completely divalent iron atoms are reduced).
Reoxidize at 0-550 ° C (contact with molecular oxygen)
It is prepared by Examples of the reducing gas include hydrogen (H 2 ), ammonia, carbon monoxide, hydrocarbons (methane, ethane, etc.) and other organic substances (methanol,
A gas containing formaldehyde, glycolic acid, etc.) is used. These reducing gases may be a pure gas, a mixed gas, or a gas diluted with an inert gas. Also, β-type Fe 3 (P 2 O 7 )
2 means that FePO 4 is heated to 100 to 600 ° C.,
It is prepared by contacting the above reducing gas at 00 ° C. (partially reducing iron atoms).

【0012】本発明で使用される分子状酸素は、分子状
酸素含有ガスとして反応系に供給される。分子状酸素含
有ガスとしては、酸素ガス、不活性ガス(窒素ガス等)
で希釈されたガス、及び空気などが用いられるが、中で
も窒素ガスで希釈されたガス(O2 濃度:10〜30容
量%)や空気が好適に使用される。なお、グリオキシル
酸を生成する反応において、分子状酸素はグリコール酸
1モルに対して0.3〜20モル、特に0.4〜5モル
供給されることが好ましい。
The molecular oxygen used in the present invention is supplied to the reaction system as a molecular oxygen-containing gas. As the molecular oxygen-containing gas, oxygen gas, inert gas (nitrogen gas, etc.)
Gas, air, etc., diluted with nitrogen gas are used, and among them, gas (O 2 concentration: 10 to 30% by volume) diluted with nitrogen gas and air are preferably used. In the reaction for producing glyoxylic acid, it is preferable that molecular oxygen is supplied in an amount of 0.3 to 20 mol, particularly 0.4 to 5 mol, per 1 mol of glycolic acid.

【0013】本発明の反応は、例えば、前記の触媒を充
填した反応器に、グリコール酸と分子状酸素を供給して
気相で行われる。このとき、反応温度は180〜300
℃、特に200〜280℃であることが好ましい。反応
圧力は、常圧、加圧あるいは減圧のいずれでもよいが、
一般には常圧が適当である。また、接触時間は、0.1
〜10秒、特に0.2〜7秒程度であることが好まし
い。また、本発明の反応は気相に限られるものではな
く、例えば液相懸濁系やトリクル方式でも行うことがで
きる。
The reaction of the present invention is carried out in the gas phase, for example, by supplying glycolic acid and molecular oxygen to a reactor filled with the above-mentioned catalyst. At this time, the reaction temperature is 180 to 300
C., particularly preferably from 200 to 280C. The reaction pressure may be normal pressure, pressurized or reduced pressure,
Generally, normal pressure is appropriate. The contact time is 0.1
It is preferably about 10 to 10 seconds, particularly about 0.2 to 7 seconds. Further, the reaction of the present invention is not limited to the gas phase, and may be carried out, for example, in a liquid phase suspension system or a trickle system.

【0014】本発明では、グリコール酸又は分子状酸素
と共に、水蒸気を反応器に供給して反応を行っても差し
支えない。水蒸気の供給量はグリコール酸に対して多い
方が目的物の選択率及び收率を向上させる傾向がある
が、余りに多すぎると経済性を低下させることになるの
で好ましくない。水蒸気はグリコール酸1モルに対して
2〜100モル、特に5〜80モル供給されることが好
ましい。水蒸気は、例えば、グリコール酸水溶液を加熱
・蒸発させて必要量を供給することもでき、また必要量
の水を別途蒸発させて供給することもできる。以上のよ
うにして生成したグリオキシル酸は、例えば反応器から
導出される反応ガスを凝縮させた後、減圧蒸留、薄膜蒸
留等の一般的な方法により分離精製される。
In the present invention, steam may be supplied to the reactor together with glycolic acid or molecular oxygen to carry out the reaction. A larger amount of water vapor supplied to glycolic acid tends to improve the selectivity and yield of the target product, but an excessively large amount of water vapor is not preferable because the economic efficiency is reduced. The water vapor is preferably supplied in an amount of 2 to 100 mol, particularly 5 to 80 mol, per 1 mol of glycolic acid. For example, the required amount of water vapor can be supplied by heating and evaporating a glycolic acid aqueous solution, or the required amount of water can be separately evaporated and supplied. The glyoxylic acid produced as described above is separated and purified by a general method such as distillation under reduced pressure or thin film after condensing a reaction gas derived from a reactor, for example.

【0015】[0015]

【実施例】次に、実施例及び比較例を挙げて本発明を具
体的に説明する。なお、グリコール酸の転化率、グリオ
キシル酸の選択率、グリオキシル酸の收率は次式により
求めた。
Next, the present invention will be described specifically with reference to examples and comparative examples. The conversion of glycolic acid, the selectivity of glyoxylic acid, and the yield of glyoxylic acid were determined by the following equations.

【0016】[0016]

【数1】 (Equation 1)

【0017】[0017]

【数2】 (Equation 2)

【0018】[0018]

【数3】 (Equation 3)

【0019】実施例1 水5000mlに硝酸第二鉄〔Fe(NO3 3 ・9H
2 O〕122gを溶解し、この溶液にアンモニアを加え
てpHを8.0に調整した。生成した沈殿を分離して8
5重量%リン酸41.5gを加えた後、その溶液を10
0℃で1時間加熱し、次いで蒸発乾固した。得られた乾
固物を、空気中、150℃で8時間乾燥した後、粉砕し
て4〜10メッシュに整粒し、空気中、480℃で5時
間焼成して焼成物49gを得た。得られた焼成物(粒子
径:1〜2mm)はX線回折スペクトルよりトリデマイ
ト型のFePO4 (リン酸第二鉄)であり、酸化還元滴
定によればその鉄原子の95%以上が3価の鉄であっ
た。
[0019] Example 1 Water 5000ml ferric nitrate [Fe (NO 3) 3 · 9H
2 O] was dissolved 122g, the pH was adjusted to 8.0 by adding ammonia to the solution. The generated precipitate is separated and 8
After adding 41.5 g of 5% by weight phosphoric acid, the solution was added to 10%.
Heated at 0 ° C. for 1 hour then evaporated to dryness. The obtained dried product was dried in air at 150 ° C. for 8 hours, pulverized and sized to 4 to 10 mesh, and fired in air at 480 ° C. for 5 hours to obtain 49 g of a fired product. The obtained calcined product (particle diameter: 1 to 2 mm) is a tridemite-type FePO 4 (ferric phosphate) from an X-ray diffraction spectrum, and according to redox titration, 95% or more of the iron atoms are trivalent. Was iron.

【0020】実施例2 実施例1で得られた焼成物を内径18mmのステンレス
製反応管に充填した後、これにN2 :H2 (容量比)=
1:1の混合ガスを50ml/minで流しながら、3
00℃で5時間還元を行った。得られた還元物は、X線
回折スペクトルよりβ型のFe3 (P2 7 2 (B
相)であった。
Example 2 The fired product obtained in Example 1 was filled in a stainless steel reaction tube having an inner diameter of 18 mm, and then N 2 : H 2 (volume ratio) =
While flowing a 1: 1 mixed gas at 50 ml / min, 3
Reduction was performed at 00 ° C. for 5 hours. From the X-ray diffraction spectrum, the obtained reduced product was found to be β-type Fe 3 (P 2 O 7 ) 2 (B
Phase).

【0021】実施例3 実施例1で得られた焼成物を内径18mmのステンレス
製反応管に充填した後、これにN2 :H2 (容量比)=
1:1の混合ガスを50ml/minで流しながら、5
00℃で5時間還元を行って、Fe2 2 7 (ピロリ
ン酸第一鉄)を得た。次いで、空気:水蒸気(容量比)
=10:3の混合ガスを100ml/minで流しなが
ら、480℃で2時間酸化を行った。得られた酸化物
は、X線回折スペクトルよりα型のFe3 (P2 7
2 (Y相)であり、酸化還元滴定によればその鉄原子の
36%が2価の鉄であった。
Example 3 The fired product obtained in Example 1 was filled into a stainless steel reaction tube having an inner diameter of 18 mm, and then N 2 : H 2 (volume ratio) =
5: 1 while flowing a 1: 1 mixed gas at 50 ml / min.
Reduction was performed at 00 ° C. for 5 hours to obtain Fe 2 P 2 O 7 (ferrous pyrophosphate). Next, air: water vapor (volume ratio)
Oxidation was performed at 480 ° C. for 2 hours while flowing a mixed gas of 10: 3 at 100 ml / min. The obtained oxide was found to be α-type Fe 3 (P 2 O 7 ) from the X-ray diffraction spectrum.
2 (Y phase), and according to redox titration, 36% of the iron atoms were divalent iron.

【0022】実施例4〜8 触媒として実施例1で得られたトリデマイト型のFeP
4 20gを内径18mmのステンレス製反応管に充填
した後、常圧下、グリコール酸:酸素:窒素:水蒸気
〔流量(mmol/hr)比〕=12.3:3.8〜2
5:500:480で流しながら、表1記載の反応温
度、酸素濃度及び接触時間で3時間反応を行った。反応
ガスを冷却して、回収された生成物をガスクロマトグラ
フィーにより分析した。その結果を表1に示す。
Examples 4 to 8 Tridemite-type FeP obtained in Example 1 was used as a catalyst.
After filling 20 g of O 4 into a stainless steel reaction tube having an inner diameter of 18 mm, glycolic acid: oxygen: nitrogen: water vapor [flow (mmol / hr) ratio] = 12.3: 3.8 to 2 under normal pressure.
While flowing at a ratio of 5: 500: 480, the reaction was carried out for 3 hours at the reaction temperature, oxygen concentration and contact time shown in Table 1. The reaction gas was cooled and the recovered product was analyzed by gas chromatography. Table 1 shows the results.

【0023】実施例9〜11 触媒として実施例2で得られたβ型のFe3 (P
2 7 2 (B相)20gを用いたほかは、実施例4と
同様に反応と分析を行った。その結果を表1に示す。
Examples 9 to 11 The β-type Fe 3 (P
The reaction and analysis were carried out in the same manner as in Example 4 except that 20 g of 2 O 7 ) 2 (B phase) was used. Table 1 shows the results.

【0024】実施例12、13 触媒として実施例3で得られたα型のFe3 (P
2 7 2 (Y相)20gを用いたほかは、実施例4と
同様に反応と分析を行った。その結果を表1に示す。実
施例の結果を表1に示す。
Examples 12 and 13 The α-type Fe 3 (P) obtained in Example 3 was used as a catalyst.
The reaction and analysis were carried out in the same manner as in Example 4 except that 20 g of 2 O 7 ) 2 (Y phase) was used. Table 1 shows the results. Table 1 shows the results of the examples.

【0025】[0025]

【表1】 [Table 1]

【0026】比較例1 酸化脱水素反応の触媒として類似のV−P系及びヘテロ
ポリ酸系の触媒を本発明の反応に適用した例を比較例に
示す。V2 5 18.2gをベンジルアルコール−イソ
ブチルアルコール〔1:1(容量比)〕溶液中で2時間
還流して黒色の懸濁物を得た。これに98重量%リン酸
21.2gを加えて2時間還流した後、溶媒を除去して
固形物を得た。この固形物を、空気中、150℃で6時
間乾燥し、次いで空気中、300℃で6時間そして45
0℃で12時間焼成した。得られた酸化物は、X線回折
スペクトルより(VO)2 2 7 (リン酸バナジイ
ル;V/P=1/1.06)であった。触媒として上記
の(VO)2 2 7 20gを用いたほかは、実施例4
と同様に反応と分析を行った。その結果を表1に示す。
Comparative Example 1 A comparative example shows an example in which similar VP-based and heteropolyacid-based catalysts are applied to the reaction of the present invention as a catalyst for the oxidative dehydrogenation reaction. V 2 O 5 18.2 g of benzyl alcohol - isobutyl alcohol: to reflux for 2 hours to give a black suspension in [1 1 (volume ratio)] solution. After 21.2 g of 98% by weight phosphoric acid was added thereto and refluxed for 2 hours, the solvent was removed to obtain a solid. The solid is dried in air at 150 ° C for 6 hours, then in air at 300 ° C for 6 hours and 45 hours.
It was baked at 0 ° C. for 12 hours. The obtained oxide was (VO) 2 P 2 O 7 (vanadiyl phosphate; V / P = 1 / 1.06) from the X-ray diffraction spectrum. Example 4 except that 20 g of the above (VO) 2 P 2 O 7 was used as a catalyst.
The reaction and analysis were performed in the same manner as described above. Table 1 shows the results.

【0027】比較例2 触媒として、H3 Mo1240(リンモリブデン酸;関東
化学製)を空気中、370℃で6時間焼成したもの20
gを用いたほかは、実施例4と同様に反応と分析を行っ
た。その結果を表1に示す。
Comparative Example 2 As a catalyst, H 3 Mo 12 O 40 (phosphomolybdic acid; manufactured by Kanto Chemical Co.) was calcined in air at 370 ° C. for 6 hours.
The reaction and analysis were carried out in the same manner as in Example 4 except that g was used. Table 1 shows the results.

【0028】比較例3 触媒として、H5 PMo122 40(リンバナドモリブ
デン酸;関東化学製)を空気中、370℃で6時間焼成
したもの20gを用いたほかは、実施例4と同様に反応
と分析を行った。その結果を表1に示す。比較例の結果
を表2に示す。
Comparative Example 3 Example 4 was repeated except that 20 g of H 5 PMo 12 V 2 O 40 (phosphorus vanadomolybdic acid; manufactured by Kanto Chemical Co.) fired at 370 ° C. for 6 hours in air was used as a catalyst. Reaction and analysis were performed similarly. Table 1 shows the results. Table 2 shows the results of the comparative example.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】本発明により、工業的に容易に入手でき
るグリコール酸から、高選択率及び高收率でグリオキシ
ル酸を直接に製造することができる。
According to the present invention, glyoxylic acid can be directly produced with high selectivity and high yield from glycolic acid which is industrially easily available.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 FePO4 を含有する触媒の存在下で、
グリコール酸を分子状酸素と接触させることを特徴とす
るグリオキシル酸の製造方法。
1. In the presence of a catalyst containing FePO 4 ,
A method for producing glyoxylic acid, which comprises contacting glycolic acid with molecular oxygen.
【請求項2】 Fe3 (P2 7 2 を含有する触媒の
存在下で、グリコール酸を分子状酸素と接触させること
を特徴とするグリオキシル酸の製造方法。
2. A method for producing glyoxylic acid, which comprises contacting glycolic acid with molecular oxygen in the presence of a catalyst containing Fe 3 (P 2 O 7 ) 2 .
JP20468096A 1996-08-02 1996-08-02 Method for producing glyoxylic acid Expired - Fee Related JP3800676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20468096A JP3800676B2 (en) 1996-08-02 1996-08-02 Method for producing glyoxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20468096A JP3800676B2 (en) 1996-08-02 1996-08-02 Method for producing glyoxylic acid

Publications (2)

Publication Number Publication Date
JPH1045665A true JPH1045665A (en) 1998-02-17
JP3800676B2 JP3800676B2 (en) 2006-07-26

Family

ID=16494533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20468096A Expired - Fee Related JP3800676B2 (en) 1996-08-02 1996-08-02 Method for producing glyoxylic acid

Country Status (1)

Country Link
JP (1) JP3800676B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114516809A (en) * 2022-02-25 2022-05-20 西华师范大学 AIE fluorescent probe based on dibenzylidene acetone and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114516809A (en) * 2022-02-25 2022-05-20 西华师范大学 AIE fluorescent probe based on dibenzylidene acetone and preparation method and application thereof

Also Published As

Publication number Publication date
JP3800676B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JP4596377B2 (en) Catalyst for oxidation of ethane to acetic acid, method of formation and use thereof
US4000088A (en) Oxidation catalyst for the manufacture of methacrylic acid
US4273676A (en) Process for producing methacrylic acid and a catalyst
JPS5826329B2 (en) Seizouhou
US4172051A (en) Catalyst for producing methacrylic acid
JP2001114726A (en) Production process for methacrylic acid
US4146732A (en) Process for preparing unsaturated carboxylic acids by the catalytic oxidation in the gas phase of the corresponding aldehydes
JP3800676B2 (en) Method for producing glyoxylic acid
JPH1121114A (en) Production of new iron phosphate
JP3146486B2 (en) Method for producing catalyst for producing methacrylic acid
JPH0517392A (en) Production of acrylic acid
JPH10287610A (en) Production of methylglyoxal
JPH08183753A (en) Production of pyruvic acid
JP3989226B2 (en) Method for producing pyruvic acid
JP3555205B2 (en) Method for producing phosphorus-vanadium oxide catalyst precursor
JPS5936546A (en) Catalyst for gas phase oxidation of butane
JPH0686933A (en) Production of catalyst for producing methacrylic acid
JP3759847B2 (en) Method for activating vanadium-phosphorus catalyst
JPS5824419B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
US4055511A (en) Catalyst for preparation of 4-cyanothiazole
JPS582933B2 (en) Methacrylic Sanno Seizouhouhou
JP2000336055A (en) Production of methylglyoxal
Ai Formation of glyoxal by oxidative dehydrogenation of ethylene glycol
JP3500676B2 (en) Method for producing phosphorus-vanadium oxide catalyst precursor
Ai et al. Formation of Glyoxylic Acid by Oxidative Dehydrogenation of Glycolic Acid.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees