JPH1044219A - Production of intermediate and high density polyethylene resin formed body - Google Patents

Production of intermediate and high density polyethylene resin formed body

Info

Publication number
JPH1044219A
JPH1044219A JP8207138A JP20713896A JPH1044219A JP H1044219 A JPH1044219 A JP H1044219A JP 8207138 A JP8207138 A JP 8207138A JP 20713896 A JP20713896 A JP 20713896A JP H1044219 A JPH1044219 A JP H1044219A
Authority
JP
Japan
Prior art keywords
temperature
sample
polyethylene resin
cooling
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8207138A
Other languages
Japanese (ja)
Inventor
Koichi Kitao
幸市 北尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP8207138A priority Critical patent/JPH1044219A/en
Publication of JPH1044219A publication Critical patent/JPH1044219A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably improve the low temperature toughness, by cooling a formed body at a specified average cooling speed in the temperature range from the annealing temperature to a specified temperature, after the formed body has been annealed at a temperature low than the melting point. SOLUTION: An intermediate or high density polyethylene resin is melted and formed by a heat-press. After cooling and solidifying by water, it is cooled in the atmosphere to make a sheet. Then, the sheet is annealed at a lower temperature than the melting point and thereafter, it is cooled at an average cooling speed at most 10 deg.C/min in the range from the annealing temperature to 60 deg.C. In this case, the melting point is meant a melting peak temperature measured when a sample formed by cooling at the cooling speed of 25 deg.C/min in the range from 140 deg.C to 80 deg.C, has been subjected to a differential-thermal analysis, while heating it at the rate of 5 deg.C/min. In this way, when the cooling speed after annealing is set at most 10 deg.C/min, a non-ductile temperature lower than an unannealed sample can be obtained, and the lower temperature toughness is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ガス導管用ポ
リエチレン管などの中・高密度ポリエチレン樹脂成形体
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a medium / high-density polyethylene resin molded article such as a polyethylene pipe for city gas conduits.

【0002】[0002]

【従来の技術】最近、都市ガス用導管として、軽量で施
工性に優れ、可撓性があるため地震などにも強く、しか
も優れた耐食性を有する中・高密度ポリエチレン管が注
目を集めており、従来用いられていた鋼管に置き変わり
つつある。
2. Description of the Related Art Recently, medium and high-density polyethylene pipes, which are lightweight, excellent in workability, flexible and resistant to earthquakes, and have excellent corrosion resistance, have attracted attention as city gas conduits. It is replacing steel pipes that have been used in the past.

【0003】ポリエチレン管の低温靭性は、後述のND
T(Nil DuctilityTemperatur
e:無延性温度)で評価すると、中密度材のNDTは−
15℃前後、高密度材のNDTは−35℃前後である。
したがって、中密度材を−15℃より低温になる、また
高密度材を−35℃より低温になる寒冷地で使用すると
脆性破壊を引き起こす恐れがある。
[0003] The low-temperature toughness of a polyethylene pipe is determined by the following ND.
T (Nil DutyTemperature)
e: non-ductility temperature), the NDT of the medium density material is-
The NDT of the high-density material is around -35 ° C, around 15 ° C.
Therefore, if a medium-density material is used at a temperature lower than −15 ° C. or a high-density material is used at a temperature lower than −35 ° C., brittle fracture may occur.

【0004】ここで、NDTとは、先端にレーザにより
深さ0.5mmの切り込みを入れた深さ2mm、角度4
5°のVノッチを設けた長さ55mm、幅10mm、板
厚5mmの試験片を用いて、スパン40mm、衝撃速度
3.8m/secの条件でシャルピー試験を行い、測定
される吸収エネルギーが低温側から増加し始める温度で
ある。
[0004] Here, the NDT is a laser having a depth of 2 mm and an angle of 4 mm with a notch of 0.5 mm in depth at the tip.
A Charpy test was performed using a 55 mm long, 10 mm wide, and 5 mm thick test piece provided with a 5 ° V notch under the conditions of a span of 40 mm and an impact speed of 3.8 m / sec. It is the temperature that starts to increase from the side.

【0005】ポリエチレン管は、一般的には押出成形後
直ちに水冷固化され、固化後は空冷されて製造される
が、文献1〔Angew.Makromol.Che
m.,105,167(1982)〕には、こうして製
造されたポリエチレン樹脂成形体を融点直下の温度でア
ニールすると靭性の向上することが報告されている。
[0005] Polyethylene pipes are generally produced by water-cooling and solidification immediately after extrusion molding and then air-cooled after the solidification. Makromol. Che
m. , 105, 167 (1982)], it is reported that the toughness is improved by annealing the thus produced polyethylene resin molded article at a temperature just below the melting point.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、本発明
者等が追試したところ、アニールの条件によっては靭性
の向上が認められない場合があった。
However, when the present inventors conducted additional tests, there were cases where improvement in toughness was not recognized depending on the annealing conditions.

【0007】本発明はこのような課題を解決するために
なされたもので、安定して低温靭性の優れた中・高密度
ポリエチレン樹脂成形体を製造し得る方法を提供するこ
とを目的とする。
The present invention has been made in order to solve such problems, and an object of the present invention is to provide a method capable of stably producing a medium / high-density polyethylene molded article having excellent low-temperature toughness.

【0008】[0008]

【課題を解決するための手段】上記課題は、成形体を融
点より低い温度でアニールし、その後アニール温度から
60℃までの温度範囲を10℃/min以下の平均冷却
速度で冷却することを特徴とする中・高密度ポリエチレ
ン樹脂成形体の製造方法により解決される。
The object of the present invention is to anneal a compact at a temperature lower than the melting point, and then to cool the temperature range from the annealing temperature to 60 ° C. at an average cooling rate of 10 ° C./min or less. And a method for producing a medium / high density polyethylene resin molded article.

【0009】ここで、融点とは、140℃から80℃の
間を冷却速度25℃/minで冷却して作成した試料を
5℃/minで昇温しながら示差熱分析したときに測定
される融解ピーク温度のことである。
Here, the melting point is measured when a sample prepared by cooling at a cooling rate of 25 ° C./min between 140 ° C. and 80 ° C. is subjected to differential thermal analysis while increasing the temperature at 5 ° C./min. It is the melting peak temperature.

【0010】本発明者等は、ポリエチレン樹脂成形体の
低温靭性を向上させる目的で成形体のアニール条件の影
響を検討したところ、低温靭性がアニール後の冷却条件
により大きな影響を受けることを見出した。
The present inventors have studied the effects of the annealing conditions of the molded article for the purpose of improving the low-temperature toughness of the polyethylene resin molded article, and found that the low-temperature toughness is greatly affected by the cooling conditions after annealing. .

【0011】図1に、高密度ポリエチレン樹脂シートを
100℃で30minアニールしたときのNDTとアニ
ール後の冷却速度の関係を示す。
FIG. 1 shows the relationship between NDT when a high-density polyethylene resin sheet is annealed at 100 ° C. for 30 minutes and the cooling rate after the annealing.

【0012】アニール後の冷却速度を10℃/min以
下にすれば、未アニール試料より低いNDTが得られ、
低温靭性が向上することがわかる。
If the cooling rate after annealing is set to 10 ° C./min or less, an NDT lower than that of the unannealed sample can be obtained.
It can be seen that the low temperature toughness is improved.

【0013】この原因は必ずしも明確でないが、ポリマ
ーのエンタングルメント(絡み合い)が緩冷却により弱
められ、その結果クレージング(クラックの分散)が促
進したことによると考えられる。
Although the cause is not always clear, it is considered that the entanglement (entanglement) of the polymer is weakened by slow cooling, and as a result, crazing (dispersion of cracks) is promoted.

【0014】融点以上の温度でアニールするとこのよう
な効果は得られなかった。冷却速度の制御範囲は60℃
まで行えば充分で、それより低い温度範囲における冷却
速度は低温靭性に影響を与えなかった。
Such effects were not obtained when annealing was performed at a temperature higher than the melting point. Control range of cooling rate is 60 ℃
The cooling rate in the lower temperature range did not affect the low temperature toughness.

【0015】以上は、一度製造されたポリエチレン樹脂
成形体を再度加熱アニールし、アニール後の冷却速度を
制御する方法であるが、ポリエチレン樹脂を溶融成形後
冷却するに際し、融点から60℃までの温度範囲を10
℃/min以下の平均冷却速度で冷却しても同様な効果
が得られた。
The above is a method in which the polyethylene resin molded body once produced is heated and annealed again to control the cooling rate after the annealing. When the polyethylene resin is melt-molded and cooled, the temperature from the melting point to 60 ° C. Range 10
The same effect was obtained even when cooling was performed at an average cooling rate of not more than ° C / min.

【0016】このことから、融点近傍からの冷却中に形
成されるポリマーのエンタングルメントの状態が低温靭
性の支配的要因であることが推察される。
This suggests that the state of entanglement of the polymer formed during cooling from the vicinity of the melting point is a dominant factor in low-temperature toughness.

【0017】なお、本発明の効果は、中・高密度ポリエ
チレン樹脂からなる成形体には認められたが、低密度ポ
リエチレン樹脂からなる成形体では確認できなかった。
The effect of the present invention was observed for a molded article made of a medium / high density polyethylene resin, but could not be confirmed for a molded article made of a low density polyethylene resin.

【0018】[0018]

【発明の実施の形態】本発明は、中・高密度ポリエチレ
ン樹脂であれば、どんなポリエチレン樹脂にも適用でき
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention can be applied to any polyethylene resin as long as it is a medium / high density polyethylene resin.

【0019】アニール後のアニール温度から、また溶融
成形後の融点から60℃までの温度範囲を10℃/mi
n以下の平均冷却速度で冷却するとき、一定速度で冷却
しても、また、冷却途中に加熱保持処理を施しても同様
な効果が得られる。
The temperature range from the annealing temperature after annealing and from the melting point after melt molding to 60 ° C. is 10 ° C./mi.
When cooling at an average cooling rate of n or less, the same effect can be obtained even if cooling is performed at a constant rate, or if a heat holding process is performed during cooling.

【0020】[0020]

【実施例】【Example】

(実施例1)日本ポリオレフィン社製の押出しグレード
高密度ポリエチレン樹脂を用い、従来法をシミュレート
した条件、すなわち熱プレスにて190℃で5minの
溶融成形を行い水冷固化後大気中で放冷する条件で、厚
さ5mmのシートを作成した。このシートを表1に示す
条件で赤外線イメージ炉を用いてアニールし、試料1〜
5を作成した。そして、上述した方法でNDTを測定し
た。
(Example 1) Using extrusion-grade high-density polyethylene resin manufactured by Nippon Polyolefin Co., Ltd., melt molding at 190 ° C. for 5 minutes using a hot press under conditions simulating the conventional method, solidify with water, and allow to cool in air. Under the conditions, a sheet having a thickness of 5 mm was prepared. This sheet was annealed using an infrared image furnace under the conditions shown in Table 1 and
5 was created. And NDT was measured by the method mentioned above.

【0021】なお、用いたポリエチレン樹脂のメルトフ
ローレートMFRを、JISK6760にしたがい温度
190℃、荷重2.16kgで測定したところ、0.3
dg/minであった。また、1000個の炭素当たり
の分岐度を、文献2〔Macromolecules,
19,2722(1986)〕にしたがい13CーNM
Rを用いて評価したところ、1.7個/1000Cであ
った。
The melt flow rate MFR of the polyethylene resin used was measured at a temperature of 190 ° C. under a load of 2.16 kg according to JIS K6760.
dg / min. In addition, the degree of branching per 1000 carbons was determined according to Reference 2 [Macromolecules,
19, 2722 (1986)] and 13C-NM
It was 1.7 pieces / 1000C when evaluated using R.

【0022】試料1は、80℃×60minのアニール
後、冷却速度10℃/minで60℃まで冷却後大気中
で放冷した本発明法による試料である。
Sample 1 is a sample according to the method of the present invention which was annealed at 80 ° C. × 60 min, cooled to 60 ° C. at a cooling rate of 10 ° C./min, and allowed to cool in the air.

【0023】試料2は、80℃×60minのアニール
後、冷却速度2℃/minで60℃まで冷却後大気中で
放冷した本発明法による試料である。
Sample 2 is a sample according to the method of the present invention which was annealed at 80 ° C. × 60 min, cooled to 60 ° C. at a cooling rate of 2 ° C./min, and allowed to cool in the air.

【0024】試料3は、120℃×30minのアニー
ル後、冷却速度10℃/minで60℃まで冷却後大気
中で放冷した本発明法による試料である。
Sample 3 is a sample according to the method of the present invention, which is annealed at 120 ° C. × 30 min, cooled to 60 ° C. at a cooling rate of 10 ° C./min, and allowed to cool in the air.

【0025】試料4は、120℃×30minのアニー
ル後、冷却速度1℃/minで60℃まで冷却後大気中
で放冷した本発明法による試料である。
Sample 4 is a sample according to the method of the present invention which was annealed at 120 ° C. × 30 min, cooled to 60 ° C. at a cooling rate of 1 ° C./min, and allowed to cool in air.

【0026】試料5は、アニールの行われてない試料で
ある。結果を表1に示す。
Sample 5 is a sample that has not been annealed. Table 1 shows the results.

【0027】本発明法の条件でアニールされた試料1〜
4のNDTは−42℃〜−45℃と、アニールの行われ
てない従来法で作成された試料5のNDT−35℃に比
べ大きく低下しており、本発明法により低温靭性が改善
されていることがわかる。
Samples 1 annealed under the conditions of the method of the present invention
The NDT of No. 4 is −42 ° C. to −45 ° C., which is significantly lower than that of the sample 5 prepared by the conventional method without annealing, and the low temperature toughness is improved by the method of the present invention. You can see that there is.

【0028】[0028]

【表1】 [Table 1]

【0029】(実施例2)実施例1で用いた高密度ポリ
エチレン樹脂を用い、表2に示す溶融成形条件(熱プレ
ス条件)およびその後の冷却条件により厚さ5mmのシ
ート状試料6〜9を作成した。冷却は、熱プレス後急冷
して一定温度に保持する冷プレスの条件を変えたり、赤
外線イメージ炉を用いて融点から60℃までの温度範囲
の冷却速度を制御して行った。そして、上述した方法で
NDTを測定した。
(Example 2) Using the high-density polyethylene resin used in Example 1, the sheet-shaped samples 6 to 9 having a thickness of 5 mm were prepared under the melt molding conditions (hot press conditions) and the subsequent cooling conditions shown in Table 2. Created. The cooling was performed by changing the conditions of the cold press for rapidly cooling and maintaining the temperature at a constant temperature after hot pressing, or controlling the cooling rate in the temperature range from the melting point to 60 ° C. using an infrared image furnace. And NDT was measured by the method mentioned above.

【0030】試料6は、熱プレスにて190℃で5mi
nの溶融成形を行い、冷プレスにて100℃で60mi
n保持後大気中で放冷した本発明法による試料である。
この試料の融点から60℃までの温度範囲における平均
冷却速度は1℃/minであった。
Sample 6 was heated at 190 ° C. for 5 mi with a hot press.
n at 60 ° C at 100 ° C with a cold press
This is a sample according to the method of the present invention which was allowed to cool in the air after holding n.
The average cooling rate in the temperature range from the melting point of the sample to 60 ° C. was 1 ° C./min.

【0031】試料7は、熱プレスにて190℃で5mi
nの溶融成形を行い、融点から60℃までの温度範囲を
3℃/minの平均冷却速度で冷却後大気中で放冷した
本発明法による試料である。
Sample 7 was heated at 190 ° C. for 5 mi with a hot press.
n is a sample according to the method of the present invention, which was subjected to melt molding, cooled in a temperature range from the melting point to 60 ° C. at an average cooling rate of 3 ° C./min, and then allowed to cool in the air.

【0032】試料8は、熱プレスにて190℃で5mi
nの溶融成形を行い、冷プレスにて20℃で5min保
持した本発明外の試料である。この試料の融点から60
℃までの温度範囲における平均冷却速度は35℃/mi
nであった。
Sample 8 was heated at 190 ° C. for 5 mi with a hot press.
n is a sample outside the present invention, which was subjected to melt molding of n and kept at 20 ° C. for 5 minutes in a cold press. From the melting point of this sample
Average cooling rate in the temperature range up to 35 ° C is 35 ° C / mi
n.

【0033】試料9は、熱プレスにて190℃で5mi
nの溶融成形を行い、水冷固化後大気中で放冷した従来
法をシミュレートした試料である。このときの融点から
60℃までの温度範囲における平均冷却速度は20℃/
minであった。
Sample 9 was heated at 190 ° C. for 5 mi with a hot press.
This is a sample that simulates the conventional method in which melt molding of n was performed, followed by solidification with water cooling and then cooling in air. At this time, the average cooling rate in the temperature range from the melting point to 60 ° C. is 20 ° C. /
min.

【0034】結果を表2に示す。本発明法で作成した試
料のNDTはいずれも−44℃〜−45℃と、従来法や
本発明法の条件外で作成した試料のNDT−35℃〜−
33℃に比べ大きく低下しており、本発明法により低温
靭性が改善されていることがわかる。
Table 2 shows the results. The NDT of the sample prepared by the method of the present invention was -44 ° C to -45 ° C, and the NDT of the sample prepared outside the conditions of the conventional method and the method of the present invention was -35 ° C to -45 ° C.
This is significantly lower than that at 33 ° C., indicating that the low-temperature toughness is improved by the method of the present invention.

【0035】(実施例3)日本ポリオレフィン社製の押
出しグレード中密度ポリエチレン樹脂を用い、表2に示
す溶融成形条件およびその後の冷却条件により厚さ5m
mのシート状試料10〜13を作成した。そして、上述
した方法でNDTを測定した。
Example 3 Using an extrusion grade medium density polyethylene resin manufactured by Nippon Polyolefin Co., Ltd., the thickness was 5 m under the melt molding conditions shown in Table 2 and the subsequent cooling conditions.
m sample sheets 10 to 13 were prepared. And NDT was measured by the method mentioned above.

【0036】なお、用いたポリエチレン樹脂のMFRと
1000個の炭素当たりの分岐度は、実施例1に示した
方法で測定したところ、それぞれ0.2dg/min、
8.8個/1000Cであった。
The MFR and the degree of branching per 1,000 carbons of the polyethylene resin used were 0.2 dg / min, respectively, as measured by the method shown in Example 1.
It was 8.8 / 1000C.

【0037】試料10は、熱プレスにて190℃で5m
inの溶融成形を行い、冷プレスにて80℃で30mi
n保持後大気中で放冷した本発明法による試料である。
この試料の融点から60℃までの温度範囲における平均
冷却速度は2℃/minであった。
The sample 10 was 5 m at 190 ° C. in a hot press.
in, and cold-pressed at 80 ° C for 30 mi
This is a sample according to the method of the present invention which was allowed to cool in the air after holding n.
The average cooling rate in the temperature range from the melting point of the sample to 60 ° C. was 2 ° C./min.

【0038】試料11は、熱プレスにて190℃で5m
inの溶融成形を行い、融点から60℃までの温度範囲
を3℃/minの平均冷却速度で冷却後大気中で放冷し
た本発明法による試料である。
Sample 11 was 5 m at 190 ° C. by hot pressing.
This is a sample according to the method of the present invention which was subjected to melt molding in, cooled in a temperature range from the melting point to 60 ° C. at an average cooling rate of 3 ° C./min, and then allowed to cool in the air.

【0039】試料12は、熱プレスにて190℃で5m
inの溶融成形を行い、冷プレスにて20℃で5min
保持した本発明外の試料である。この試料の融点から6
0℃までの温度範囲における平均冷却速度は35℃/m
inであった。
The sample 12 was 5 m at 190 ° C. in a hot press.
in, and 5 minutes at 20 ° C with a cold press
It is a sample outside the present invention retained. From the melting point of this sample, 6
The average cooling rate in the temperature range up to 0 ° C is 35 ° C / m
was in.

【0040】試料13は、熱プレスにて190℃で5m
inの溶融成形を行い、水冷固化後大気中で放冷した従
来法をシミュレートした試料である。この試料の融点か
ら60℃までの温度範囲における平均冷却速度は20℃
/minであった。
Sample 13 was 5 m at 190 ° C. in a hot press.
This is a sample that simulates a conventional method in which melt molding is performed in water, solidified by water cooling, and then cooled in the air. The average cooling rate in the temperature range from the melting point of this sample to 60 ° C. is 20 ° C.
/ Min.

【0041】結果を表2に示す。本発明法で作成した試
料のNDTはいずれも−23℃〜−24℃と、従来法や
本発明法の条件外で作成した試料のNDT−15℃に比
べ大きく低下しており、本発明法により低温靭性が改善
されていることがわかる。
Table 2 shows the results. The NDT of each of the samples prepared by the method of the present invention was −23 ° C. to −24 ° C., which was significantly lower than the NDT of −15 ° C. of the samples prepared outside the conditions of the conventional method and the method of the present invention. It can be seen that the low temperature toughness is improved by the method.

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【発明の効果】本発明は以上説明したように構成されて
いるので、安定して低温靭性の優れた中・高密度ポリエ
チレン樹脂成形体を製造し得る方法を提供できる。
As described above, the present invention is constructed as described above, so that it is possible to provide a method for stably producing a medium / high-density polyethylene resin molded article having excellent low-temperature toughness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高密度ポリエチレン樹脂シートを100℃で3
0minアニールしたときのNDTとアニール後の冷却
速度の関係を示す図である。
FIG. 1 shows a high-density polyethylene resin sheet at 100 ° C.
It is a figure which shows the relationship between NDT at the time of 0 minute annealing, and the cooling rate after annealing.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 成形体を融点より低い温度でアニール
し、その後アニール温度から60℃までの温度範囲を1
0℃/min以下の平均冷却速度で冷却することを特徴
とする中・高密度ポリエチレン樹脂成形体の製造方法。
1. A molded body is annealed at a temperature lower than its melting point, and then a temperature range from the annealing temperature to 60 ° C.
A method for producing a medium- / high-density polyethylene resin molded article, wherein the molded article is cooled at an average cooling rate of 0 ° C./min or less.
【請求項2】 ポリエチレン樹脂を溶融成形後冷却する
に際し、融点から60℃までの温度範囲を10℃/mi
n以下の平均冷却速度で冷却することを特徴とする中・
高密度ポリエチレン樹脂成形体の製造方法。
2. When cooling the polyethylene resin after melt molding, the temperature range from the melting point to 60 ° C. is 10 ° C./mi.
characterized by cooling at an average cooling rate of n or less
A method for producing a high-density polyethylene resin molded article.
JP8207138A 1996-08-06 1996-08-06 Production of intermediate and high density polyethylene resin formed body Pending JPH1044219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8207138A JPH1044219A (en) 1996-08-06 1996-08-06 Production of intermediate and high density polyethylene resin formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8207138A JPH1044219A (en) 1996-08-06 1996-08-06 Production of intermediate and high density polyethylene resin formed body

Publications (1)

Publication Number Publication Date
JPH1044219A true JPH1044219A (en) 1998-02-17

Family

ID=16534836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8207138A Pending JPH1044219A (en) 1996-08-06 1996-08-06 Production of intermediate and high density polyethylene resin formed body

Country Status (1)

Country Link
JP (1) JPH1044219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098700A1 (en) 2000-06-22 2001-12-27 Idemitsu Petrochemical Co., Ltd. Pipe made of ethylene polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098700A1 (en) 2000-06-22 2001-12-27 Idemitsu Petrochemical Co., Ltd. Pipe made of ethylene polymer

Similar Documents

Publication Publication Date Title
AU667607B2 (en) Method for producing thermoplastic resin sheet or film
Li et al. Mechanical properties and morphology of polyethylene–polypropylene blends with controlled thermal history
JPH0693395A (en) Production of amorphous alloy material
JPH07276066A (en) Liquid phase diffusion joined alloy foil for heat resistant material which is joinable in oxidizing atmosphere
JPH1044219A (en) Production of intermediate and high density polyethylene resin formed body
US4715905A (en) Method of producting thin sheet of high Si-Fe alloy
WO1998003585A3 (en) Polyolefin films having increased gas permeability and method for making
JPS5941862B2 (en) Manufacturing method for coated metal pipes
JP2003136629A (en) Multilayered material and method for manufacturing multilayered material
JP3237492B2 (en) Aluminum alloy sheet for cross fin and method of manufacturing the same
JP3355995B2 (en) Aluminum alloy sheet for cross fin excellent in drawless molding and composite moldability and method for producing the same
DE59203475D1 (en) METHOD FOR PRODUCING A TAPE-SHAPED SKI COATING MATERIAL FROM ULTRA HIGH-MOLECULAR POLYETHYLENE.
JPH0380092B2 (en)
Shih et al. Hot tack of metallocene catalyzed polyethylene and low‐density polyethylene blend
CN110523982B (en) Additive manufacturing method for composite material
Yeh et al. The structure of propylene-ethylene sequential copolymers
JPS58179582A (en) Production of aluminum coated steel plate
JPH0333773B2 (en)
Amelino et al. Effect of intra-chain double bonds on the crystallization of polyethylene from the melt
Li et al. Fusion bonding of supercooled poly (ethylene terephthalate) between Tg and Tm
CN109181133B (en) Preparation method of impact-resistant sound-insulation polystyrene board
JPH03229824A (en) Production of soft-magnetic fe-al alloy sheet excellent in magnetic property
JPS6351096B2 (en)
JPH02127041A (en) Film for twist wrapping
JPH0379715A (en) Method and apparatus for softening melt-cutting surface of steel material