JPH1043710A - Method and device for treating waste containing metal oxide and material to be oxidized - Google Patents

Method and device for treating waste containing metal oxide and material to be oxidized

Info

Publication number
JPH1043710A
JPH1043710A JP8204468A JP20446896A JPH1043710A JP H1043710 A JPH1043710 A JP H1043710A JP 8204468 A JP8204468 A JP 8204468A JP 20446896 A JP20446896 A JP 20446896A JP H1043710 A JPH1043710 A JP H1043710A
Authority
JP
Japan
Prior art keywords
electrolytic
chamber
solution
nitric acid
catholyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8204468A
Other languages
Japanese (ja)
Inventor
Yasuo Hirose
保男 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8204468A priority Critical patent/JPH1043710A/en
Publication of JPH1043710A publication Critical patent/JPH1043710A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To reproduce nitric acid in a catholyte in an electrolytic oxidation means and to keep the concentration by removing water. SOLUTION: Nitric acid is reproduced by supplying a nitric acid solution of the catholyte containing a reduction product of nitric acid and silver ion to a 1st electrolyte section 10 of an electrolytic dialysis concentrating means composed of 4 sections divided respectively by an anode 9 and a cation exchange membrane 8, the cation exchange membrane 8 and an anion exchange membrane 11, the anion exchange membrane 11 and a cation exchange membrane 13, the anion exchange membrane 13 and a cathode 15 to form a chemical species of silver in 2-valent state and at the same time, water is transferred to a 2nd electrolyte section 12 to generate nitric acid to use to dissolve a metal oxide. A sodium nitrate aq. solution is supplied in a 3rd lectrolyte section and a sodium hydroxide aq. solution is generated in a 4rd electrolyte section. Then, the reproduction and the concentration of nitric acid are simultaneously executed without producing a waste gas and a waste water with small power consumption.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属酸化物および
被酸化性物質を含む廃棄物の処理方法およびその処理装
置に係り、特に核燃料物質,核分裂生成物,焼却灰等を
構成する金属酸化物質と有機物または炭素を構成する被
酸化性物質を同時に含む廃棄物の処理に好適な金属酸化
物および被酸化性物質を含む廃棄物の処理方法およびそ
の処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for treating waste containing metal oxides and oxidizable materials, and more particularly to a metal oxide material constituting nuclear fuel material, fission products, incinerated ash and the like. TECHNICAL FIELD The present invention relates to a metal oxide and a waste treatment method including a oxidizable substance, which are suitable for the treatment of a waste substance containing an organic substance or an oxidizable substance at the same time as carbon, and a treatment apparatus therefor.

【0002】[0002]

【従来の技術】特開昭58−176133号公報「二酸化プルト
ニウムおよび二酸化ネプツニウムの電解的溶解方法」
は、Ce,Ag,CoまたはAmの少なくとも1種から
なる硝酸水溶液に溶解する化合物からなる酸化剤を電解
的に再生しながら一定濃度で存在せしめ、PuO2 また
は原子燃料中に含まれたPuO2 /NpO2 を硝酸水溶
液中に溶解して回収する方法である。
2. Description of the Related Art JP-A-58-176133, "Method of Electrolytic Dissolution of Plutonium Dioxide and Neptunium Dioxide"
Is, Ce, Ag, allowed to exist at a certain concentration while playing electrolytically at least one oxidizing agent comprising a compound which is soluble in aqueous nitric acid solution consisting of Co or Am, PuO contained in PuO 2 or a nuclear fuel 2 / NpO 2 is dissolved in an aqueous nitric acid solution and recovered.

【0003】特公平5−45000号公報「固体廃棄物中のプ
ルトニウム回収方法」は、廃棄物を濃度が2−8Mで溶
解性のAg2+化合物を含む硝酸と接触させ、Ag2+はプ
ルトニウムを酸化して硝酸中に溶解させる。廃棄物と硝
酸の接触は、陽極と陰極からなる電解槽内で行われ、電
極には廃棄物に含まれるプルトニウムを酸化するための
Ag2+を連続的に生成させるための電位を加える。
[0003] KOKOKU 5-45000 discloses "plutonium recovery method of the solid waste" is contacted with nitric acid containing soluble Ag 2+ compound waste concentration at 2-8M, Ag 2+ Plutonium Is oxidized and dissolved in nitric acid. The contact between the waste and nitric acid is performed in an electrolytic cell including an anode and a cathode, and an electrode is applied with a potential for continuously generating Ag 2+ for oxidizing plutonium contained in the waste.

【0004】特公平5−45157号公報「酸化プルトニウム
および、または酸化ネプツニウムの溶解方法と溶解装
置」は、溶解すべきPuO2 /NpO2 を2−8Mの硝
酸溶液に入れ、AgOを添加してPuO2 /NpO2
酸化して溶解する。AgO/(PuO2またはNp
2 )比が3.5−4であること。装置を二つ以上の垂
直筒管で構成すること。第1筒管と第2筒管の間で固液
混合液を循環する二つの管を有することなどからなる。
[0004] KOKOKU 5-45157 discloses "plutonium oxide and or dissolution method and dissolving apparatus oxide neptunium" is put PuO 2 / NpO 2 to be dissolved in a nitric acid solution of 2-8M, by adding AgO PuO 2 / NpO 2 is oxidized and dissolved. AgO / (PuO 2 or Np
O 2 ) ratio is 3.5-4. The device shall consist of two or more vertical tubes. It has two tubes for circulating the solid-liquid mixture between the first tube and the second tube.

【0005】特開昭64−30689 号公報「廃棄物処理方法
及び装置」は、有機物に基礎を置く廃棄物の場合に特に
適用され、約50℃の硝酸水溶液中において第1次酸化
種であるAg2+を電気化学的に生成せしめ、第1次酸化
種と電解液の相互作用によって生成する第2酸化種によ
って廃棄物を分解する。廃棄物の分解に伴って生成され
るAg+ は電気化学的にAg2+に再生される。
Japanese Unexamined Patent Publication No. Sho 64-30689, "Waste Disposal Method and Apparatus" is particularly applicable to wastes based on organic matter, and is a primary oxidizing species in a nitric acid aqueous solution at about 50 ° C. Ag 2+ is electrochemically generated, and the waste is decomposed by the second oxidizing species generated by the interaction between the primary oxidizing species and the electrolytic solution. Ag + produced by the decomposition of waste is electrochemically regenerated to Ag 2+ .

【0006】引用文献(1)である、エム・フライシュ
マン,ディ・プレッチャ,エー・ラフィンスキー,ザ
カイネテイックス オブ ザ シルバー(I)/シルバ
ー(II)カップル アット ア プラチニウム エレク
トロード イン パークロリック アンド ナイトリッ
ク アシッズ、ジャーナル・オブ・アプライド・エレク
トロケミストリー誌,第1巻,1971年,1−7頁
(M.Fleischman, D.Pletcher, A.Rafinski, The kineti
cs of the silver(I)/silver(II)coupleat a plati
num electrode in perchloric and nitric acids, Jour
nal ofApplied Electrochemistry,1(1971)1−
7)には、硝酸銀の3M硝酸水溶液の白金電極による電
解酸化で二価の原子価状態にある銀化学種(Ag(II))
の生成と、電解槽内または外部の反応溶解内における電
解液中のAg(II)と無機及び有機物質との酸化反応に
ついて記述している。前述した電解によって酸化剤を再
生する従来例(各公報に記載)は、引用の有無に係わら
ず、公知例である引用文献(1)に基づいている。
M. Fleischmann, D. Precha, A. Raffinsky, The
Kinetics of the Silver (I) / Silver (II) Couple at a Platinum Electrode in Perchloric and Nitrick Acids, Journal of Applied Electrochemistry, Vol. 1, 1971, pp. 1-7 ( M. Fleischman, D. Pletcher, A. Rafinski, The kineti
cs of the silver (I) / silver (II) coupleat a plati
num electrode in perchloric and nitric acids, Jour
nal of Applied Electrochemistry, 1 (1971) 1-
7) is a silver species (Ag (II)) which is in a divalent state by electrolytic oxidation of a 3M aqueous solution of silver nitrate with a platinum electrode.
And the oxidation reaction between Ag (II) in the electrolytic solution and inorganic and organic substances in the electrolytic bath or in the external reaction solution. The conventional examples of regenerating the oxidizing agent by the above-described electrolysis (described in each gazette) are based on the cited document (1), which is a known example, regardless of whether or not cited.

【0007】特開昭64−30689 号公報に記載の発明のみ
は、電解槽の陽極室内で有機物に基礎を置く廃棄物を酸
化分解するために、電解により多量の酸化剤を再生する
必要があり、陰極室内で亜硝酸および窒素の酸化物を含
むことになり、硝酸の濃度が低下することになる陰極室
液の再生についての手段を提供している。このため、こ
の公報記載の発明は、水溶液の再生を目的として水溶液
を加熱して充填塔を流下させ、酸素を含む気体を吹き込
む構成を有する。亜硝酸および窒素の酸化物を含む硝酸
溶液と、この溶液を加熱して生成した蒸気および酸素を
含んだ気体とを充填塔内で接触させ、亜硝酸および窒素
の酸化物を硝酸に再生する。
[0007] Only the invention described in JP-A-64-30689 requires a large amount of oxidizing agent to be regenerated by electrolysis in order to oxidatively decompose organic-based waste in the anode chamber of the electrolytic cell. This provides a means for regenerating the catholyte solution, which will contain nitrous oxide and nitrogen oxides in the cathodic compartment and reduce the concentration of nitric acid. For this reason, the invention described in this publication has a configuration in which the aqueous solution is heated to regenerate the aqueous solution, is caused to flow down the packed tower, and a gas containing oxygen is blown. A nitric acid solution containing nitrous acid and an oxide of nitrogen and a gas containing steam and oxygen generated by heating the solution are brought into contact in a packed column to regenerate nitric acid and an oxide of nitrogen into nitric acid.

【0008】[0008]

【発明が解決しようとする課題】二価の酸化状態にある
銀の化学種を、電気化学的に再生しながら接触させて、
被酸化性物質を含む廃棄物を酸化分解する方法におい
て、廃棄物が有機物に基礎を置く場合に限らず、一般に
被酸化性の物質を含む場合には電解槽内で多量の二価の
酸化状態にある銀の化学種を再生する必要があり、その
ために以下のような式量電位を有する陽極反応が起こ
る。Ag+ 濃度が低く、陽極の電位が高いほど2段目の
反応が起こりやすい。
The silver species in a divalent oxidation state are brought into contact with each other while being electrochemically regenerated.
In the method of oxidatively decomposing waste containing oxidizable substances, not only when the waste is based on organic substances, but generally when oxidizable substances are contained, a large amount of divalent oxidation state in the electrolytic cell It is necessary to regenerate the silver species at which the anodic reaction has a formal potential as follows: The lower the Ag + concentration and the higher the potential of the anode, the more easily the second-stage reaction occurs.

【0009】 Ag+=Ag2++e 1.98V H2O=1/2O2+2H++2e 1.70V 陽極液内では、Ag2+と溶媒である硝酸水溶液との間に
引き続いて以下のような反応が起こり、最終的には陽極
液室における電気化学反応は水を酸素と水素イオンに分
解し、水素イオンを陰極室液室に移行する現象となる。
Ag + = Ag 2+ + e 1.98 V H 2 O = 1 / O 2 + 2H + + 2e 1.70 V In the anolyte, the following is performed between Ag 2+ and a nitric acid aqueous solution as a solvent. In the anolyte compartment, the electrochemical reaction decomposes water into oxygen and hydrogen ions, and transfers hydrogen ions to the catholyte compartment.

【0010】HNO3+Ag2+=AgNO3 ++H+ 2AgNO3 ++H2O=2Ag++1/2O2+2H++2
NO3~ このような陽極液内の反応に対応して、陰極液内では以
下のような反応が水素イオンの濃度と陰極電位に依存し
て、水素イオンの濃度が低く、陰極の電位が低いほど下
段の反応まで起こる。
HNO 3 + Ag 2+ = AgNO 3 + + H +2 AgNO 3 + + H 2 O = 2 Ag + + 1 / 2O 2 + 2H + +2
NO 3 ~ In response to the reaction in the anolyte, the following reaction in the catholyte depends on the concentration of hydrogen ions and the cathode potential, the concentration of hydrogen ions is low, and the potential of the cathode is low The lower reaction takes place.

【0011】 NO3~+5H++4e=1/2N2O+5/2H2O 1.11V NO2~+2H++e=NO+H2O 0.98V NO3~+4H++3e=NO+2H2O 0.96V NO3~+3H++2e=HNO2+H2O 0.93V NO3~+8H++6e=NH4 ++2H2O 0.86V 2NO3~+4H++2e=N24+2H2O 0.80V Ag++e=Ag 0.80V H++e=1/2H2 0.00V 特開昭64−30689 号公報における従来の方法は、亜硝酸
および窒素の酸化物を硝酸に再生するものである。この
時に起こる反応は、上記の陰極室液内反応の逆反応であ
るため、硝酸を再生すると同時に水を消費して濃度の高
い硝酸溶液を再生することが可能である。しかし、陰極
室液では、陽極から電荷を運搬する物質がH3+イオン
であれば、1ファラディの電荷が移動するために1分子
の水が増加しており、電荷が他の金属元素などの陽イオ
ンで運搬されればさらに多量の水が増加することが知ら
れている。特開昭64−30689 号公報における従来の方法
は、硝酸の再生に係わる水分子しか除去しないので、電
解槽の運転中に陰極室液中の水は増加して硝酸濃度が低
下する問題があった。
[0011] NO 3 ~ + 5H + + 4e = 1 / 2N 2 O + 5 / 2H 2 O 1.11V NO 2 ~ + 2H + + e = NO + H 2 O 0.98V NO 3 ~ + 4H + + 3e = NO + 2H 2 O 0.96V NO 3 ~ + 3H + + 2e = HNO 2 + H 2 O 0.93V NO 3 ~ + 8H + + 6e = NH 4 + + 2H 2 O 0.86V 2NO 3 ~ + 4H + + 2e = N 2 O 4 + 2H 2 O 0.80V Ag + + e = conventional methods in Ag 0.80V H + + e = 1 / 2H 2 0.00V Sho 64-30689 discloses is to play the oxide nitrite and nitrogen in nitric acid. Since the reaction occurring at this time is a reverse reaction of the above-described reaction in the cathode chamber liquid, it is possible to regenerate nitric acid and simultaneously consume water to regenerate a highly concentrated nitric acid solution. However, in the catholyte solution, if the substance that carries charges from the anode is H 3 O + ions, one molecule of water is increasing due to the transfer of one Faraday's charge, and the charge is changed to another metal element. It is known that a greater amount of water will increase if transported with cations. The conventional method disclosed in JP-A-64-30689 removes only water molecules involved in the regeneration of nitric acid. Therefore, there is a problem that water in the cathode compartment liquid increases and the nitric acid concentration decreases during operation of the electrolytic cell. Was.

【0012】本発明の目的は、二価の原子価状態の銀化
学種を生成し、再生するための電解酸化手段の陰極室液
である硝酸水溶液中の亜硝酸および窒素酸化物を硝酸に
再生すると同時に、陰極室液である硝酸水溶液中の水を
除去して陰極室液の硝酸濃度を高く保つことができる、
金属酸化物および被酸化性物質を含む廃棄物の処理方法
を提供することにある。
An object of the present invention is to regenerate nitric acid and nitrogen oxides in a nitric acid aqueous solution, which is a catholyte solution of an electrolytic oxidizing means, for generating and regenerating divalent silver species in a valence state. At the same time, the water in the nitric acid aqueous solution, which is the catholyte solution, can be removed to keep the nitric acid concentration in the catholyte solution high.
An object of the present invention is to provide a method for treating waste containing a metal oxide and an oxidizable substance.

【0013】本発明の他の目的は、前記電解酸化手段の
陽極室液中で被酸化性物質である金属酸化物を、硝酸を
酸化窒素に還元させずに硝酸塩とすることができる、金
属酸化物および被酸化性物質を含む廃棄物の処理方法を
提供することにある。
Another object of the present invention is to provide a method for converting a metal oxide, which is an oxidizable substance, into a nitrate without reducing nitric acid to nitric oxide in the anode chamber liquid of the electrolytic oxidizing means. It is an object of the present invention to provide a method for treating waste containing waste and oxidizable substances.

【0014】本発明の他の目的は、前記電解酸化手段の
陰極室液である硝酸水溶液から酸化窒素を気体として放
出させないで、殆ど大部分を硝酸に再生することができ
る、金属酸化物および被酸化性物質を含む廃棄物の処理
方法を提供することにある。本発明の他の目的は、前記
電解酸化手段の陰極室液を硝酸に再生し、濃縮する過程
で前記電解透析濃縮手段で生成する金属イオンを含んだ
硝酸水溶液を、前記電解酸化手段の陰極液室を経由して
陽極液室に供給し、前記陽極液室中で金属酸化物を硝酸
塩とするための硝酸を供給することができる、金属酸化
物および被酸化性物質を含む廃棄物の処理方法及びその
装置を提供することにある。
Another object of the present invention is to provide a metal oxide and a metal oxide which can be almost entirely regenerated to nitric acid without releasing nitric oxide as a gas from a nitric acid aqueous solution which is a catholyte solution of the electrolytic oxidizing means. An object of the present invention is to provide a method for treating waste containing an oxidizing substance. Another object of the present invention is to regenerate the catholyte solution of the electrolytic oxidizing means into nitric acid, and convert the catholyte solution containing metal ions generated by the electrolytic dialysis concentrating means in the course of concentration to a catholyte solution of the electrolytic oxidizing means. Wastewater containing a metal oxide and an oxidizable substance, which can be supplied to an anolyte chamber via a chamber and supply nitric acid for converting a metal oxide into a nitrate in the anolyte chamber. And an apparatus therefor.

【0015】本発明の他の目的は、前記電解透析濃縮手
段の第4電解液室で生成する水酸化ナトリウムを回収し
て、硝酸と混合して中和し、硝酸ナトリウム水溶液とし
て前記電解透析濃縮手段の第3電解液室に供給すること
ができる、金属酸化物および被酸化性物質を含む廃棄物
の処理方法およびその処理装置を提供することにある。
Another object of the present invention is to recover sodium hydroxide produced in the fourth electrolytic solution chamber of the electrolytic dialysis concentrating means, neutralize it by mixing it with nitric acid, and convert the electrolytic dialysis condensate into an aqueous sodium nitrate solution. It is an object of the present invention to provide a method and an apparatus for treating waste containing metal oxides and oxidizable substances, which can be supplied to a third electrolytic solution chamber.

【0016】本発明の他の目的は、前記電解透析濃縮手
段の第3電解液室内で希釈された硝酸ナトリウムを電気
透析脱塩手段で濃縮液と希釈液となし、濃縮液を前記第
3電解液室に還流し、希釈液を排出することにより、排
出する硝酸ナトリウムの量を著しく低減すると同時に前
記電解透析濃縮手段の電力消費量を少なくすることがで
きる、金属酸化物および被酸化性物質を含む廃棄物の処
理方法およびその処理装置を提供することにある。
Another object of the present invention is to provide an electrodialysis and desalting means, wherein sodium nitrate diluted in a third electrolytic solution chamber of the electrolytic dialysis concentrating means is converted into a concentrated liquid and a diluting liquid by an electrodialysis desalting means, and By refluxing into the liquid chamber and discharging the diluent, the amount of sodium nitrate to be discharged can be significantly reduced and at the same time the power consumption of the electrodialysis concentrating means can be reduced. It is an object of the present invention to provide a method and apparatus for treating waste containing waste.

【0017】本発明の他の目的は、可燃性の水素ガスの
発生がなく、エネルギー消費量が少ない、金属酸化物お
よび被酸化性物質を含む廃棄物の処理方法およびその処
理装置を提供することにある。
Another object of the present invention is to provide a method and apparatus for treating waste containing metal oxides and oxidizable substances, which does not generate flammable hydrogen gas and consumes little energy. It is in.

【0018】[0018]

【課題を解決するための手段】上記目的を達成する請求
項1の発明の特徴は、電解酸化手段の亜硝酸と窒素酸化
物ならびに銀あるいはその他の金属イオンを含み、水の
含有量が増加した硝酸水溶液である陰極室液を、電解透
析濃縮手段の陽極と第1陽イオン交換膜で区画される第
1電解液室に供給し、陽極の電位差によって、水を消費
しながら亜硝酸と窒素酸化物を酸化して硝酸を回収し、
さらに、第1陽イオン交換膜を通り、水素イオンに伴っ
て水が除去されるため、硝酸水溶液が濃縮されることに
ある。
The feature of the present invention, which achieves the above object, is that the electrolytic oxidizing means contains nitrous acid and nitrogen oxides and silver or other metal ions, and the content of water is increased. The catholyte solution, which is an aqueous nitric acid solution, is supplied to the anode of the electrolytic dialysis concentrating means and the first electrolyte solution compartment defined by the first cation exchange membrane. Oxidize the material to recover nitric acid,
Further, since water is removed along with the hydrogen ions through the first cation exchange membrane, the aqueous nitric acid solution is concentrated.

【0019】上記目的を達成する請求項2の発明の特徴
は、二価の原子価状態にある銀の化学種の存在下に、被
酸化性物質からなる金属酸化物の硝酸による酸化溶解を
行い、硝酸の還元生成物である酸化窒素の発生を防止す
ることにある。
A feature of the second aspect of the present invention that achieves the above object is to perform oxidative dissolution of a metal oxide composed of an oxidizable substance with nitric acid in the presence of a silver species in a divalent valence state. Another object of the present invention is to prevent the generation of nitric oxide, which is a reduction product of nitric acid.

【0020】上記目的を達成する請求項3の発明の特徴
は、前記電解酸化手段の陰極室液が流入する循環液槽か
ら前記電解透析濃縮手段の第1電解液室に硝酸の還元生
成物を含んだ硝酸水溶液が供給され、前記電解酸化手段
の陰極室から流出する陰極室液が循環槽内の硝酸水溶液
と混合することなく、直接に電解透析濃縮手段の第1電
解液室に供給され、前記電解酸化手段の陰極室内で硝酸
水溶液の還元に消費された電気量より多い電気量を、前
記電解透析濃縮手段の第1電解液室で与えることによ
り、前記電解透析濃縮手段の第1電解室液の流入する循
環液槽から、前記電解酸化手段の陰極液室に、硝酸が再
生され、水が除去された硝酸水溶液を供給することにあ
る。
In order to achieve the above object, a feature of the present invention is that the reduced product of nitric acid is transferred from the circulating liquid tank of the electrolytic oxidation means into which the catholyte solution flows into the first electrolytic solution chamber of the electrolytic dialysis concentrating means. The aqueous nitric acid solution is supplied, and the catholyte solution flowing out of the cathode chamber of the electrolytic oxidizing means is directly supplied to the first electrolytic solution chamber of the electrodialysis / concentrating means without mixing with the aqueous nitric acid solution in the circulation tank, By supplying a larger amount of electricity than the amount of electricity consumed in the reduction of the aqueous nitric acid solution in the cathode chamber of the electrolytic oxidizing means in the first electrolytic solution chamber of the electrolytic dialysis concentrating means, the first electrolytic chamber of the electrolytic dialytic concentrating means is provided. The purpose of the present invention is to supply an aqueous nitric acid solution from which nitric acid has been regenerated and water has been removed from the circulating liquid tank into which the liquid flows, into the catholyte chamber of the electrolytic oxidation means.

【0021】上記目的を達成する請求項4の発明の特徴
は、硝酸の還元生成物である酸化窒素の水に対する溶解
度に係わり、前記電解酸化手段の陰極室液の酸化窒素濃
度が溶解度の5分の1以下になるように電解電気量と陰
極室への供給液量を関連付けて制御することにより、酸
化窒素の硝酸への再生率を80%以上にし、硝酸の還元
生成物の硝酸への再生率を少なくとも80%以上にする
ことにある。
A feature of the invention according to claim 4 which achieves the above object relates to the solubility of nitric oxide, which is a reduction product of nitric acid, in water, wherein the concentration of nitrogen oxide in the catholyte of the electrolytic oxidizing means is 5 minutes of the solubility. By controlling the amount of electrolytic electricity and the amount of liquid supplied to the cathode chamber in association with each other so as to be 1 or less, the rate of regeneration of nitric oxide to nitric acid is increased to 80% or more, and the regeneration of nitric acid reduction products to nitric acid is performed. The rate is to be at least 80% or more.

【0022】上記目的を達成する請求項5の発明の特徴
は、前記電解透析濃縮手段の第1電解液室内で、二価の
原子価状態にある銀の化学種を生成し、その酸化力によ
って、電解液中の硝酸の還元生成物を電極との接触によ
る酸化反応のみでなく液相内でも起こさせ、前記電解透
析濃縮手段で消費する電気量を低減することにある。上
記目的を達成する請求項6の発明の特徴は、前記第1電
解液室の流出液を前記電解酸化手段の陰極液室に供給し
てから流出するまで二価の原子価状態にある銀の化学種
が存在するのに十分な量の二価の原子価状態にある銀の
化学種が前記電解透析濃縮手段の第1電解液室内で生成
することにより、前記電解酸化手段の陰極液室内で硝酸
の還元生成物を生成させないことにある。
A feature of the invention of claim 5 that achieves the above object is that, in the first electrolytic solution chamber of the electrolytic dialysis concentrating means, a silver species in a divalent valence state is generated, and the oxidizing power of the species is generated. Another object of the present invention is to reduce the amount of electricity consumed by the electrolytic dialysis concentrating means by causing a reduction product of nitric acid in an electrolytic solution to occur not only in an oxidation reaction due to contact with an electrode but also in a liquid phase. A feature of the invention of claim 6 that achieves the above object is that silver is in a divalent valence state from supplying the effluent of the first electrolyte chamber to the catholyte chamber of the electrolytic oxidizing means and flowing out. A sufficient amount of silver species in the divalent valence state for the presence of the species is generated in the first electrolyte chamber of the electrodialysis concentrating means, so that the silver species in the catholyte chamber of the electrolytic oxidation means are generated. The object is to prevent the generation of nitric acid reduction products.

【0023】上記目的を達成する請求項7の発明の特徴
は、前記電解透析濃縮手段の第2電解室液中の硝酸濃度
は10Mに達することができ、また、第1電解室液から
第1陽イオン交換膜を通過して、金属イオンが含まれて
いることに基づき、硝酸濃度10M以下に調節した前記
第2電解室液を前記電解酸化手段の陰極液循環槽を経由
して陽極液循環槽に供給して金属酸化物の溶解と金属の
硝酸塩溶液の生成に供することにある。
According to a seventh aspect of the present invention which achieves the above object, the concentration of nitric acid in the second electrolytic solution of the electrolytic dialysis concentrating means can reach 10M, and the concentration of the first nitric acid in the first electrolytic solution can be increased. The anolyte circulates through the cation exchange membrane through the catholyte circulation tank of the electrolytic oxidizing means, wherein the second electrolytic chamber solution adjusted to a nitric acid concentration of 10 M or less based on the presence of metal ions. It is to supply to a tank for dissolving a metal oxide and producing a nitrate solution of a metal.

【0024】上記目的を達成する請求項8の発明の特徴
は、前記電解透析濃縮手段の第4電解液室で生成する、
濃度が10M以下の水酸化ナトリウム水溶液を回収し
て、硝酸で中和して硝酸ナトリウム水溶液を生成し、前
記電解透析濃縮手段の第3電解液室に供給することにあ
る。
[0024] A feature of the invention of claim 8 that achieves the above object is that it is produced in a fourth electrolyte chamber of the electrolytic dialysis concentrating means.
An aqueous sodium hydroxide solution having a concentration of 10 M or less is collected, neutralized with nitric acid to generate an aqueous sodium nitrate solution, and supplied to the third electrolytic solution chamber of the electrodialysis / concentration means.

【0025】上記目的を達成する請求項9の発明の特徴
は、前記電解透析濃縮手段の第3電解液室の硝酸ナトリ
ウム濃度が低下した電解液を電気透析脱塩手段で処理
し、濃縮液を前記第3電解液室に還流し、希釈液を放出
することにある。
According to a ninth aspect of the present invention which achieves the above object, an electrolytic solution having a reduced sodium nitrate concentration in the third electrolytic solution chamber of the electrolytic dialysis concentrating means is treated by an electrodialysis desalting means, and the concentrated liquid is removed. Refluxing into the third electrolyte chamber and discharging the diluent.

【0026】上記目的を達成する請求項10および請求
項11の発明の特徴は、請求項1から請求項9の発明の
特徴を具体化する装置である。
The features of the present invention according to claims 10 and 11 for achieving the above object are apparatuses for embodying the features of the invention according to claims 1 to 9.

【0027】上記目的を達成する請求項12の発明の特
徴は、前記電解透析濃縮手段の第4電解液室において、
空気を透過させる電極を陰極とすることにより、電解に
伴い水素を発生しないようにすることにある。
A feature of the twelfth aspect of the present invention that achieves the above object is that the fourth electrolytic solution chamber of the electrolytic dialysis concentrating means comprises:
An object of the present invention is to prevent generation of hydrogen during electrolysis by using an electrode that transmits air as a cathode.

【0028】請求項1の発明は、電解酸化手段の陰極液
室で電気化学的に生成した硝酸の還元生成物である亜硝
酸,窒素酸化物ならびに水を電解透析濃縮手段の電解液
室の一つの中で電気化学的に酸化し、結合して、硝酸を
再生し、さらに、電気化学的作用によって水を除去する
作用効果を有するものである。
The first aspect of the present invention is to provide nitric acid, nitrogen oxide and water, which are reduction products of nitric acid electrochemically generated in the catholyte compartment of the electrolytic oxidizing means, in one of the electrolytic solution chambers of the electrolytic dialysis concentrating means. Among them, it has an effect of electrochemically oxidizing and bonding to regenerate nitric acid and further removing water by electrochemical action.

【0029】請求項1の発明の具体例を以下に説明す
る。
A specific example of the first aspect of the present invention will be described below.

【0030】電解酸化手段の陽極液室で白金を陽極とし
て起こる定常的な電気化学的反応は、二価の酸化状態に
ある銀の化学種の生成であり、硝酸の濃度や銀イオンの
濃度ならびに電流密度(陽極電位)に異存して、酸素の
生成が付随する。電解酸化手段の陰極液室で白金を陰極
として起こる電気化学的反応は、硝酸濃度と電流密度
(陰極電位)に異存して、生成物がより複雑である。し
かし、電解酸化手段の電解液硝酸濃度が4M乃至8Mで
ある場合に、電流密度が0.1A/cm2〜0.5A/cm2
であれば、還元される硝酸分子の70%は一酸化窒素
(NO)となることが経験的に知られている。残りが亜
硝酸(HNO2 )になるものとすれば、還元反応に伴っ
て1.7 グラム分子の水が生成することになる。この場
合に、1グラム分子の硝酸が還元するためには2.7フ
ァラディの電気量が必要である。2.7ファラディの電
気量が電極間を流れるためには2.7 グラム分子の水素
イオンが電荷を運搬する必要があり、2.7 グラム分子
の水が陽極液室から陰極液室に移動する。従って、陰極
液室では1グラム分子の硝酸(63g)が還元されて失
われると、合計して4.4グラム分子(79.2g)の水
が増加することになり、電解の進行に伴って急速に硝酸
濃度が低下することになる。硝酸濃度が低下すると、酸
化還元電位が低い反応が起こることになり、電解酸化手
段の電解電圧が上昇するとともに、陰極液室内でアンモ
ニア,水素など安全上で好ましくない物質が生成する。
The steady electrochemical reaction that takes place using platinum as the anode in the anolyte compartment of the electrolytic oxidizing means is the generation of silver species in a divalent oxidation state, the concentration of nitric acid, the concentration of silver ions, Dependent on the current density (anodic potential) is accompanied by the production of oxygen. The electrochemical reaction that takes place using platinum as the cathode in the catholyte compartment of the electrolytic oxidation means depends on the nitric acid concentration and the current density (cathode potential), and the product is more complicated. However, when the electrolytic nitric acid concentration of the electrolytic oxidizing means is 4 M to 8 M, the current density is 0.1 A / cm 2 to 0.5 A / cm 2.
It has been empirically known that 70% of the reduced nitric acid molecules would be nitric oxide (NO). If the remainder were to be nitrous acid (HNO 2 ), 1.7 grams of water would be produced with the reduction reaction. In this case, 2.7 Faraday of electricity is required for reducing 1 gram molecule of nitric acid. In order for 2.7 Faraday's quantity of electricity to flow between the electrodes, 2.7 grams of molecular hydrogen ions need to carry charge, and 2.7 grams of water move from the anolyte compartment to the catholyte compartment. . Therefore, if one gram molecule of nitric acid (63 g) is reduced and lost in the catholyte compartment, a total of 4.4 gram molecules (79.2 g) of water will increase, and as the electrolysis proceeds. The nitric acid concentration will decrease rapidly. When the concentration of nitric acid decreases, a reaction having a low oxidation-reduction potential occurs, so that the electrolytic voltage of the electrolytic oxidation means increases, and unsafe substances such as ammonia and hydrogen are generated in the catholyte compartment.

【0031】電解酸化手段の陰極室液を、陽極に一酸化
窒素の酸化還元電位(0.96V)以上の電位差が加えら
れている電解透析濃縮手段の第1電解液室に供給する
と、陽極上で一酸化窒素と亜硝酸は硝酸に酸化し、酸化
効率が理想的であれば、2.7ファラディの電気量毎に
1グラム分子(63g)の硝酸を生成し、1.7 グラム
分子の水(30.6g)を消費する。この電解透析に伴っ
て、第1電解液室から第2電解液室に2.7グラム分子
の水(48.6g)が移動するので、結果的に第1電解
液室では1グラム分子の硝酸を生成する毎に、4.4グ
ラム分子(79.2g)の水が失われ、硝酸水溶液は濃度
を高めることになる。
When the catholyte solution of the electrolytic oxidizing means is supplied to the first electrolytic solution chamber of the electrolytic dialysis concentrating means in which a potential difference equal to or higher than the oxidation-reduction potential of nitrogen monoxide (0.96 V) is applied to the anode, Then, nitric oxide and nitrous acid are oxidized to nitric acid, and if the oxidation efficiency is ideal, one gram molecule (63 g) of nitric acid is generated for every 2.7 Faraday electricity, and 1.7 gram molecule of water is generated. (30.6 g). As a result of the electrodialysis, 2.7 g molecules of water (48.6 g) move from the first electrolyte chamber to the second electrolyte chamber, and consequently, 1 g molecule of nitric acid in the first electrolyte chamber. Each time is produced, 4.4 grams of molecules (79.2 g) of water are lost and the aqueous nitric acid solution will increase in concentration.

【0032】請求項2の発明は、硝酸と化合して塩を生
成し、濃度を低下させるだけでなく、硝酸を還元して濃
度を低下させ、窒素酸化物を生成させる物質を含む廃棄
物の分解処理に係わり、二価の原子価状態にある銀の化
学種(Ag(II))を含む硝酸水溶液に廃棄物を添加
し、Ag(II)を電解によって再生しながら窒素酸化物
を生成させないで処理を行い、硝酸塩を含んだ処理液を
抜出す操作に基づく作用効果を有するものである。
According to the second aspect of the present invention, not only is the formation of a salt by combining with nitric acid to lower the concentration, but also the reduction of the concentration of nitric acid by reducing nitric acid to produce a nitrogen oxide. In connection with the decomposition treatment, waste is added to a nitric acid aqueous solution containing a silver species (Ag (II)) in a divalent valence state, and nitrogen oxides are not generated while regenerating Ag (II) by electrolysis. And has an operation effect based on the operation of extracting the treatment liquid containing nitrate.

【0033】請求項2の発明の具体例を以下に説明す
る。
A specific example of the second aspect of the present invention will be described below.

【0034】より高い原子価状態を持ち得る元素の化合
物は、硝酸によってより高い原子価状態の元素の化合物
に酸化され、硝酸はより低い原子価状態の窒素の化合物
に還元される傾向がある。この反応は硝酸濃度が高く、
温度が高いほど急速に進行する。一方、多くの金属の酸
化物は硝酸と化合して硝酸塩と水を生成し、水に溶解す
る。金属の酸化物を硝酸に溶解して廃棄物から分離して
処理する目的を達成するために、硝酸が還元され、酸化
窒素となって損失することは、硝酸の使用量が増加する
ばかりでなく、排気から酸化窒素を除去する必要があ
る。
Compounds of the element that can have higher valence states tend to be oxidized by nitric acid to compounds of higher valence state elements, and nitric acid tends to be reduced to lower valence state compounds of nitrogen. This reaction has a high nitric acid concentration,
The higher the temperature, the faster it progresses. On the other hand, many metal oxides combine with nitric acid to form nitrate and water, and dissolve in water. In order to achieve the purpose of dissolving metal oxides in nitric acid and separating them from waste to treat them, the reduction of nitric acid and the loss as nitric oxide not only increases the amount of nitric acid used but also It is necessary to remove nitric oxide from exhaust gas.

【0035】請求項2の発明は、電解酸化手段の陽極液
循環槽内で行われ、二価の原子価状態の銀の化学種を含
む硝酸水溶液に被酸化性の物質を含む廃棄物を添加し
て、被酸化性物質の酸化は二価の原子価状態にある銀の
化学種によって行い、硝酸は硝酸塩の生成にのみ消費さ
れる。本発明の態様は、金属酸化物と被酸化性物質を含
む廃棄物の供給が回分的であり、二価の原子価状態にあ
る銀の化学種の電解による再生と、硝酸銀および他の金
属硝酸塩を含んだ硝酸水溶液の抜出しと、抜出しに見合
う硝酸銀を含んだ硝酸水溶液の補給は連続的に行われる
ことが好適である。
According to a second aspect of the present invention, waste containing an oxidizable substance is added to an aqueous nitric acid solution containing silver species in a divalent state, which is carried out in an anolyte circulation tank of electrolytic oxidation means. Then, oxidation of the oxidizable substance is performed by silver species in a divalent valence state, and nitric acid is consumed only for nitrate generation. An embodiment of the present invention provides a batch feed of waste containing metal oxides and oxidizable materials, regeneration by electrolysis of silver species in a divalent state, and silver nitrate and other metal nitrates. It is preferable that the extraction of the aqueous nitric acid solution containing and the replenishment of the aqueous nitric acid solution containing silver nitrate commensurate with the extraction are performed continuously.

【0036】請求項3の発明は、電解酸化手段の陰極液
室で生成する硝酸の還元生成物を陰極液内に蓄積させな
いことにより、陰極液を電解透析濃縮手段の第1電解液
室に供給するまでに、硝酸の還元生成物のうち酸化窒素
が気相に移行することを防止する作用効果を有するもの
である。
According to a third aspect of the present invention, the catholyte is supplied to the first electrolytic solution chamber of the electrodialyzing and concentrating means by preventing the reduction product of nitric acid generated in the catholyte chamber of the electrolytic oxidation means from accumulating in the catholyte. By this time, it has the effect of preventing the transfer of nitric oxide among the reduction products of nitric acid to the gas phase.

【0037】請求項3の発明の具体例を以下に説明す
る。
A specific example of the third aspect of the present invention will be described below.

【0038】前述のように、硝酸の電解還元生成物は7
0%が一酸化窒素であり、30%が亜硝酸であると考え
られる。一酸化窒素は1気圧において、室温の水に約5
0ml/l(2.2mM)溶解する。大気圧下で、一酸化窒
素の水中濃度が50ml/l(2.2mM)であれば、気
相に放出することになる。亜硝酸は濃度が高くなると不
均一化反応によって一酸化窒素と二酸化窒素に分解し、
二酸化窒素は再び水に溶解して硝酸と亜硝酸を生成する
が、一酸化窒素は気相に放出することになる。一酸化窒
素を含む硝酸水溶液が電解透析濃縮手段の第1電解液室
に供給されて、硝酸水溶液に溶解している一酸化窒素が
硝酸に酸化して、一酸化窒素の濃度が低下すれば、気相
に出ている一酸化窒素は部分的溶解して酸化反応に寄与
できるが、気相に残っている一酸化窒素は電気化学的に
酸化することはできない。
As described above, the electrolytic reduction product of nitric acid is 7%.
It is believed that 0% is nitric oxide and 30% is nitrous acid. Nitric oxide can be added at room temperature to about 5
Dissolve 0 ml / l (2.2 mM). At atmospheric pressure, if the concentration of nitric oxide in water is 50 ml / l (2.2 mM), it will be released into the gas phase. Nitrite decomposes into nitric oxide and nitrogen dioxide by a heterogeneous reaction when the concentration increases,
Nitrogen dioxide is dissolved again in water to produce nitric acid and nitrous acid, but nitric oxide is released into the gas phase. When a nitric acid aqueous solution containing nitric oxide is supplied to the first electrolytic solution chamber of the electrolytic dialysis concentrating means, and nitric oxide dissolved in the nitric acid aqueous solution is oxidized to nitric acid, and the concentration of nitric oxide decreases, Nitric oxide in the gas phase can partially dissolve and contribute to the oxidation reaction, but nitric oxide remaining in the gas phase cannot be oxidized electrochemically.

【0039】請求項3の発明は、電解酸化手段の陰極液
室から流出した一酸化窒素と亜硝酸を含んだ硝酸水溶液
を、陰極液循環槽に戻すのではなく、電解透析濃縮手段
の第1電解液循環槽に供給し、電解透析濃縮手段の第1
電解液室から流出した一酸化窒素と亜硝酸の濃度が低下
した硝酸水溶液を、陰極液循環槽に供給することによっ
てなされる。さらに、電解酸化手段の陰極液室で硝酸を
還元するために消費された電気量より、電解透析濃縮手
段の第1電解液室で負荷される電気量が十分に大きく、
電解酸化手段の陰極液室に供給される硝酸水溶液に硝酸
の還元生成物が含まれていないため、酸化できない一酸
化窒素の量を低減することができる。
According to a third aspect of the present invention, the nitric acid aqueous solution containing nitric oxide and nitrous acid which has flowed out of the catholyte compartment of the electrolytic oxidizing means is not returned to the catholyte circulation tank, but the first electrolytic dialysis concentrating means is used. It is supplied to the electrolyte circulation tank,
This is achieved by supplying a nitric acid aqueous solution having a reduced concentration of nitric oxide and nitrous acid flowing out of the electrolytic solution chamber to the catholyte circulation tank. Furthermore, the amount of electricity loaded in the first electrolytic solution chamber of the electrolytic dialysis concentrating means is sufficiently larger than the amount of electricity consumed to reduce nitric acid in the catholyte compartment of the electrolytic oxidation means,
Since the aqueous nitric acid solution supplied to the catholyte compartment of the electrolytic oxidizing means contains no reduction product of nitric acid, the amount of nitric oxide that cannot be oxidized can be reduced.

【0040】請求項4の発明は、電解酸化手段の陰極液
室を流出して電解透析濃縮手段の第1電解液室に供給さ
れる硝酸水溶液中に溶解する一酸化窒素の濃度を低く保
つことにより、一酸化窒素を気相に逃がすことなく、で
きるだけ酸化して硝酸に再生できるようにする作用効果
を有するものである。
According to a fourth aspect of the present invention, the concentration of nitric oxide dissolved in the aqueous nitric acid solution flowing out of the catholyte compartment of the electrolytic oxidizing means and supplied to the first electrolytic compartment of the electrolytic dialysis concentrating means is kept low. Thus, it has an effect of oxidizing as much as possible without regenerating nitric oxide into the gaseous phase and regenerating it into nitric acid.

【0041】請求項4の発明の具体例を以下に説明す
る。
A specific example of the fourth aspect of the present invention will be described below.

【0042】1気圧の一酸化窒素は室温の水1に約50
ml/l(2.2mM )溶解する。大気圧下で、一酸化
窒素の水中濃度が50ml/l(0.22mM )であれ
ば、生成した一酸化窒素の50%が平衡状態で水中に残
存し、50%することになる。前述の通り、2.7 ファ
ラディの電気量を消費して1グラム分子の硝酸を還元
し、0.7 グラム分子の一酸化窒素を生成するので、
0.045 ミリグラム分子の一酸化窒素を生成するため
には、0.00017 ファラディの電気量が消費され、
4.65mAh/l に相当する。従って、電解酸化手段
に1Aの電流が流れている場合に、陰極液室の液出口に
おいて、一酸化窒素の濃度が0.045mM以下となる
ためには、陰極液の流出量は215l/h(3.6l/m
in)以上が必要である。この場合に、亜硝酸の濃度は
0.019mM である。
One atmosphere of nitric oxide is added to water 1 at room temperature by approximately 50
Dissolve ml / l (2.2 mM). At atmospheric pressure, if the concentration of nitric oxide in water is 50 ml / l (0.22 mM), 50% of the generated nitric oxide will remain in water in an equilibrium state and become 50%. As mentioned above, it consumes 2.7 Faraday's electricity and reduces 1 gram molecule of nitric acid to produce 0.7 gram molecule of nitric oxide.
In order to produce 0.045 milligrams of nitric oxide, 0.0017 Faraday of electricity is consumed,
It corresponds to 4.65 mAh / l. Therefore, when a current of 1 A flows through the electrolytic oxidizing means, in order for the concentration of nitric oxide to be 0.045 mM or less at the liquid outlet of the catholyte chamber, the catholyte outflow amount is 215 l / h ( 3.6 l / m
in) or more is required. In this case, the concentration of nitrous acid is 0.019 mM.

【0043】同様に、大気圧下で、一酸化窒素の水中濃
度が10ml/l(0.45mM)であれば、生成した一
酸化窒素の80%が平衡状態で水中に残存することにな
る。電解酸化手段に1Aの電流が流れている場合に、陰
極液室の液出口において、一酸化窒素の濃度が0.45
m M以下となるためには、陰極液の流出量は21.5l
/h(0.36l/min)以上が必要である。この場合
に、亜硝酸の濃度は0.19mMである。
Similarly, if the concentration of nitric oxide in water at atmospheric pressure is 10 ml / l (0.45 mM), 80% of the produced nitric oxide will remain in water in an equilibrium state. When a current of 1 A flows through the electrolytic oxidation means, the concentration of nitric oxide is 0.45 at the liquid outlet of the catholyte compartment.
mM, the outflow of catholyte is 21.5 l
/ H (0.36 l / min) or more is required. In this case, the concentration of nitrous acid is 0.19 mM.

【0044】請求項5の発明は、電解透析濃縮手段にお
いて、硝酸の還元生成物の酸化反応の効率を高める方法
に係わり、電解酸化手段の陽極液中に添加されている銀
イオンが電解に伴い陰極液室に移行して、銀イオンが陰
極液に含まれる現象に基づいて作用効果を有するもので
ある。
The invention of claim 5 relates to a method for increasing the efficiency of the oxidation reaction of the reduction product of nitric acid in the electrolytic dialysis concentrating means, wherein silver ions added to the anolyte of the electrolytic oxidizing means accompany electrolysis. The liquid has a function and an effect based on a phenomenon in which silver ions are contained in the catholyte by moving to the catholyte compartment.

【0045】請求項5の発明の具体例を以下に説明す
る。
A specific example of the fifth aspect of the present invention will be described below.

【0046】電解酸化手段の陽極液中の銀イオン濃度が
0.1M に保たれていた場合に、1ファラディの電気量
による電解酸化によって陽極液から陰極液へ1.5 ミリ
グラム分子の銀イオンが移動した。陽極液中に銀以外の
金属イオン濃度が0.5M である場合に、1ファラディ
の電気量によって陽極液から陰極液へ7.5 ミリグラム
分子の金属イオンが移動した。この場合に、陽極液から
陰極液に移動する水は経験的に1ファラディの電気量あ
たりに2.6グラム分子(46.8g)であった。従って、
陽極液から陰極液へ移行する水の中の銀イオン濃度は3
0mMとなり、電解酸化手段の運転を続けると陰極液中
の銀イオン濃度は増加するが、30mM以上にはならな
い。電解透析濃縮手段を運転すると、第1電解液室中で
硝酸水溶液から、電解酸化手段の陰極液室で増加する水
より多量の水が除去されるが、除去された水は第2電解
液に含まれて陰極液に戻されるためである。電解酸化手
段の陽極液に含まれる銀以外の金属イオンも陰極液に移
動し、陽極液中の濃度に依存して増加する。
When the silver ion concentration in the anolyte of the electrolytic oxidizing means was kept at 0.1 M, 1.5 milligrams of silver ions were converted from the anolyte to the catholyte by electrolytic oxidation using 1 Faraday of electricity. moved. When the concentration of metal ions other than silver in the anolyte was 0.5 M, 7.5 milligrams of metal ions were transferred from the anolyte to the catholyte by an amount of electricity of 1 Faraday. In this case, empirically, the amount of water transferred from the anolyte to the catholyte was 2.6 g molecule (46.8 g) per 1 Faraday quantity of electricity. Therefore,
The silver ion concentration in the water that migrates from the anolyte to the catholyte is 3
When the operation of the electrolytic oxidizing means is continued, the silver ion concentration in the catholyte increases, but does not exceed 30 mM. When the electrodialysis / concentration means is operated, a larger amount of water is removed from the aqueous nitric acid solution in the first electrolytic solution chamber than the water that increases in the catholyte compartment of the electrolytic oxidation means, but the removed water is converted into the second electrolytic solution. This is because it is included and returned to the catholyte. Metal ions other than silver contained in the anolyte of the electrolytic oxidizing means also move to the catholyte and increase depending on the concentration in the anolyte.

【0047】電解透析濃縮手段の第1電解液室に供給さ
れる硝酸水溶液に亜硝酸,窒素酸化物などに伴って銀イ
オンが含まれており、銀イオンの濃度が硝酸の還元生成
物の濃度より高く、陽極の電位が十分に高ければ銀イオ
ンは陽極上で二価の原子価状態にある銀の化学種(Ag
(II))に酸化される。電極から離れて拡散したAg
(II)は、硝酸の還元生成物と急速に反応して硝酸を再
生し、Ag+ に戻る。銀イオンが触媒的に作用して電極
上に限らず電解液中で進行するため、硝酸の還元生成物
の酸化による硝酸の再生効率は著しく高くなり、硝酸水
溶液中の一酸化窒素濃度は低下して、気相中の一酸化窒
素は硝酸水溶液中に溶解して、酸化されずに放出される
酸化窒素の量は減少する。
The nitric acid aqueous solution supplied to the first electrolytic solution chamber of the electrolytic dialysis concentrating means contains silver ions along with nitrous acid, nitrogen oxides, etc., and the concentration of silver ions is reduced to the concentration of nitric acid reduction products. Higher, and if the potential of the anode is sufficiently high, the silver ions will be in a divalent valence state on the anode (Ag
(II)). Ag diffused away from the electrode
(II) reacts rapidly with the reduction product of nitric acid to regenerate nitric acid and return to Ag + . Since silver ions act catalytically and proceed not only on the electrode but also in the electrolytic solution, the regeneration efficiency of nitric acid by oxidation of reduction products of nitric acid is significantly increased, and the concentration of nitric oxide in the aqueous nitric acid solution is reduced. Thus, nitric oxide in the gas phase dissolves in the aqueous nitric acid solution, and the amount of nitric oxide released without being oxidized decreases.

【0048】請求項6の発明は、電解酸化手段の陰極液
室において、硝酸の還元生成物の発生を抑制し、より効
果的に硝酸を再生する方法に係わり、第1電解液が電解
酸化手段の陰極液室に供給されて流出するまでAg(I
I)が残っているように、電解透析濃縮手段の第1電解
液室で生成するAg(II)の量を増やすことに基づいて
いる。
The invention of claim 6 relates to a method for suppressing the generation of nitric acid reduction products in the catholyte compartment of the electrolytic oxidizing means and for regenerating nitric acid more effectively. Ag (I)
It is based on increasing the amount of Ag (II) generated in the first electrolytic solution chamber of the electrodialysis concentrating means so that I) remains.

【0049】請求項6の発明の具体例を以下に説明す
る。
A specific example of the invention according to claim 6 will be described below.

【0050】Ag(II)は硝酸水溶液中で被酸化性の物
質が存在しなくても水と反応してAg+ に還元される
が、反応速度はAg(II)濃度の2乗に比例し、Ag+
濃度と水素イオン濃度の2乗に反比例することが知られ
ている。従って、硝酸水溶液中に存在するAg+ をすべ
てAg(II)に転換することは不可能であって、参考文
献(1)によれば硝酸が3Mであり、Ag+ 濃度が0.
01M である場合に電解酸化電解手段で現実的な電流
効率(60%)で生成できるAg(II)濃度の限界はA
+ 濃度の約40%である。
Although Ag (II) reacts with water and is reduced to Ag + in an aqueous nitric acid solution even when no oxidizable substance is present, the reaction rate is proportional to the square of the Ag (II) concentration. , Ag +
It is known that the concentration is inversely proportional to the square of the hydrogen ion concentration. Therefore, it is impossible to convert all Ag + present in the nitric acid aqueous solution to Ag (II). According to Reference (1), nitric acid is 3M and the Ag + concentration is 0.1%.
The limit of the Ag (II) concentration that can be generated with a realistic current efficiency (60%) by electrolytic oxidation
About 40% of the g + concentration.

【0051】電解酸化手段の陰極液室内でAg(II)が
存在しない場合に生成する硝酸の還元生成物と当量のA
g(II)に加えて、電解透析濃縮手段の第1電解液室か
ら、循環液槽を経由して、電解酸化手段の陰極液室に至
り、陰極液室から流出するまでに硝酸水溶液と反応して
消失する量より少なくとも過剰にAg(II)量を生成す
れば、陰極液室から流出する硝酸水溶液にAg(II)を
含むことになる。
In the catholyte compartment of the electrolytic oxidizing means, an equivalent amount of A is equivalent to the reduction product of nitric acid generated when Ag (II) is not present.
In addition to g (II), it reacts with the aqueous nitric acid solution from the first electrolytic solution chamber of the electrolytic dialysis concentrating means to the catholyte chamber of the electrolytic oxidizing means via the circulating liquid tank and flows out of the catholyte chamber. If the amount of Ag (II) is generated at least in excess of the amount that disappears, Ag (II) will be contained in the aqueous nitric acid solution flowing out of the catholyte compartment.

【0052】電解酸化手段の陰極液室に供給されたAg
(II)の一部は陰極と電子交換して電荷の流れに寄与
し、硝酸の還元反応を抑制してAg+ に還元され、一部
は陰極液内に部分的に生成する硝酸の還元生成物と直接
反応して酸化し、硝酸を再生してAg+ に還元される。
Ag(II)による亜硝酸および酸化窒素の水溶液中にお
ける酸化反応速度は非常に大きく、Ag(II)が残って
いる限りは亜硝酸および酸化窒素の濃度は無視できるほ
ど小さくなる。
Ag supplied to the catholyte compartment of the electrolytic oxidation means
Part of (II) exchanges electrons with the cathode and contributes to the flow of electric charge, suppresses the reduction reaction of nitric acid, and is reduced to Ag + , and part of the reduction of nitric acid partially generated in the catholyte It reacts directly with the substance and oxidizes, regenerating nitric acid and reducing it to Ag + .
The oxidation reaction rate of nitrous acid and nitric oxide in aqueous solution by Ag (II) is very high, and the concentration of nitrous acid and nitric oxide becomes negligibly small as long as Ag (II) remains.

【0053】電解酸化手段の陰極に流れる電流の1アン
ペア分当たりに0.36 リットルの電解液を流した場合
に、陰極液室で生成する一酸化窒素の濃度は0.56m
M であり、亜硝酸は0.19mMであったから、Ag
(II)の当量濃度は2.1mMである。電解酸化手段の
陰極液室に供給される硝酸水溶液に含まれるAg(II)
の濃度が2.1mM 以上であれば、電解酸化手段の陰極
液室内で亜硝酸は勿論、一酸化窒素も生成しないことに
なる。Ag(II)の濃度をより高くできれば、陰極液の
流量を低下することが可能である。
When 0.36 liter of the electrolytic solution flows per ampere of the current flowing through the cathode of the electrolytic oxidizing means, the concentration of nitric oxide generated in the catholyte compartment is 0.56 m
M and nitrite was 0.19 mM, so Ag
The equivalent concentration of (II) is 2.1 mM. Ag (II) contained in the aqueous nitric acid solution supplied to the catholyte compartment of the electrolytic oxidation means
If the concentration of is not less than 2.1 mM, not only nitrous acid but also nitric oxide will not be produced in the catholyte compartment of the electrolytic oxidation means. If the concentration of Ag (II) can be increased, the flow rate of the catholyte can be reduced.

【0054】Ag+ がAg(II)に電極上で電気化学的
に酸化する場合の限界電流密度はAg+ 濃度に比例す
る。限界電流密度を超えた電流密度で電解すると酸素発
生に消費される電気量が増加して電流効率が低下する。
一定の電流効率でAg(II)を生成するために、Ag+
濃度が低ければ、低い電流密度で、電極面積を増やして
電解酸化する必要がある。電解透析濃縮手段の陽極面積
を現実的な範囲に収めるためには、第1電解液中のAg
+ 濃度は20mMより高くしておくことが望ましい。
[0054] limiting current density when Ag + is electrochemically oxidized on the electrode Ag (II) is proportional to the Ag + concentration. When electrolysis is performed at a current density exceeding the limit current density, the amount of electricity consumed for oxygen generation increases and current efficiency decreases.
To generate Ag (II) with a constant current efficiency, Ag +
If the concentration is low, it is necessary to increase the electrode area and electrolytic oxidation at a low current density. In order to keep the anode area of the electrolytic dialysis concentrating means within a practical range, the Ag in the first electrolytic solution is required.
It is desirable that the + concentration be higher than 20 mM.

【0055】請求項7の発明は、電解透析濃縮手段の第
2電解液室に生成する硝酸水溶液に係わるもので、第3
電解液から陰イオン交換膜を通して第2電解液に移行す
る硝酸イオンならびに第1電解液から第1陽イオン交換
膜を通して第2電解液に移行する金属イオンが存在する
ことに基づくものである。
The invention of claim 7 relates to the nitric acid aqueous solution generated in the second electrolytic solution chamber of the electrolytic dialysis concentrating means.
This is based on the presence of nitrate ions that migrate from the electrolyte through the anion exchange membrane to the second electrolyte and metal ions that migrate from the first electrolyte through the first cation exchange membrane to the second electrolyte.

【0056】請求項7の発明の具体例を以下に説明す
る。
A specific example of the seventh aspect of the present invention will be described below.

【0057】電解透析濃縮手段の第3電解液室内の硝酸
ナトリウム水溶液の濃度が1Mである場合に、第3電解
液室から陰イオン交換膜を通して第2電解液室に移行す
る1グラム分子の硝酸イオンに伴って1.5 グラム分子
の水が移行し、金属イオンがなければ第1電解液室から
2.2 グラム分子の水が第2電解液室に移行することが
知られている。第1電解液室に供給される、電解酸化手
段の陰極液に0.18Mの金属イオンが含まれていれば、第
3電解液室から陰イオン交換膜を通して第2電解液室に
移行する1グラム分子の硝酸イオンに伴って第1電解液
室から3.0 ミリグラム分子の金属イオンと3.1グラ
ム分子の水(55.8g)が第2電解液室に移行した。
結局、第2電解液室に生成する硝酸水溶液は1グラム分
子(63.0g)の硝酸と、4.6グラム分子の水(82.
8g)を含み、容積が115.2mlで、濃度が8.6M
に相当する43.2%であった。金属イオン濃度は54
mMであった。第2電解液室における硝酸水溶液の生成
は、電解酸化手段で消費される電気量の1ファラディ当
たりに少なくとも0.45 グラム分子の硝酸を含み、容
積が51.8mlである。
When the concentration of the aqueous solution of sodium nitrate in the third electrolytic solution chamber of the electrodialyzing / concentrating means is 1M, 1 gram molecule of nitric acid migrates from the third electrolytic solution chamber through the anion exchange membrane to the second electrolytic solution chamber. It is known that 1.5 grams of water migrates with the ions, and 2.2 grams of water migrates from the first electrolyte chamber to the second electrolyte chamber without metal ions. If 0.18M metal ions are contained in the catholyte of the electrolytic oxidizing means supplied to the first electrolytic solution chamber, 1 gram is transferred from the third electrolytic solution chamber to the second electrolytic solution chamber through an anion exchange membrane. 3.0 milligram molecules of metal ions and 3.1 grams of water (55.8 g) migrated from the first electrolyte chamber to the second electrolyte chamber along with the molecular nitrate ions.
As a result, the aqueous nitric acid solution generated in the second electrolyte chamber contains 1 gram molecule (63.0 g) of nitric acid and 4.6 gram molecule of water (82.
8g), with a volume of 115.2 ml and a concentration of 8.6 M
Was 43.2%, which corresponds to Metal ion concentration is 54
mM. The production of the aqueous nitric acid solution in the second electrolytic solution chamber contains at least 0.45 gram molecule of nitric acid per Faraday of electricity consumed by the electrolytic oxidizing means, and has a volume of 51.8 ml.

【0058】廃棄物に、1グラム分子の電子交換に相当
する被酸化性物質と、1グラム分子の硝酸イオンと塩を
生成する金属酸化物が存在するものとすれば、電解酸化
手段で被酸化性物質を酸化するために1ファラディの電
気量が必要である場合に、金属酸化物を硝酸塩とするた
めに1グラム分子の硝酸が新たに必要である。
Assuming that the waste contains an oxidizable substance corresponding to one gram molecule of electron exchange and a metal oxide which forms a salt with one gram molecule of nitrate ion, the oxidizable substance is oxidized by electrolytic oxidation means. If one Faraday of electricity is required to oxidize the toxic material, one gram molecule of nitric acid is additionally required to convert the metal oxide to nitrate.

【0059】請求項3の発明において、電解酸化手段で
必要な電気量の1ファラディに対して、電解透析濃縮手
段で必要な電気量は少なくとも2ファラディであり、請
求項5および請求項6の発明においては、少なくとも
1.7 ファラディである。請求項7の発明に係わる電解
透析濃縮手段においては、1ファラディの電気量で新た
に生成される硝酸の量は0.45 グラム分子である。従
って、電解酸化手段で1ファラディの電気量が消費され
る場合に、電解透析濃縮手段で新たに生成する硝酸の量
は少なくとも0.8乃至0.9グラム分子である。
According to the third aspect of the present invention, the amount of electricity required by the electrolytic dialysis concentrating means is at least 2 Faraday for one Faraday of the amount of electricity required by the electrolytic oxidizing means. Is at least 1.7 Faraday. In the electrodialysis / concentration means according to the invention of claim 7, the amount of nitric acid newly generated per 1 Faraday of electricity is 0.45 g molecule. Thus, when one Faraday of electricity is consumed by the electrolytic oxidation means, the amount of nitric acid newly generated by the electrolytic dialysis concentration means is at least 0.8 to 0.9 gram molecules.

【0060】請求項7の発明において、電解透析濃縮手
段の第2電解液室内に新たに生成する硝酸水溶液は電解
酸化手段の陰極液循環槽に供給され、陰極液循環槽の溢
流液は、必要に応じて特定の濃度の特定の量の硝酸水溶
液と混合され、陽極液循環槽に供給され、陽極液循環槽
の溢流液は特定の処理工程へ払い出される。この操作に
よって、金属酸化物質および被酸化性物質を含む廃棄物
の処理を継続して行っても、電解酸化手段の陽極液およ
び陰極液中の硝酸濃度と金属イオン濃度は一定の、必要
にして十分なレベルに保持される。
In the invention of claim 7, the aqueous nitric acid solution newly generated in the second electrolytic solution chamber of the electrolytic dialysis concentrating means is supplied to the catholyte circulation tank of the electrolytic oxidation means, and the overflow of the catholyte circulation tank is: If necessary, it is mixed with a specific amount of a nitric acid aqueous solution having a specific concentration and supplied to an anolyte circulation tank, and the overflow liquid in the anolyte circulation tank is discharged to a specific treatment step. By this operation, even if the treatment of the waste containing the metal oxidizing substance and the oxidizable substance is continuously performed, the nitric acid concentration and the metal ion concentration in the anolyte and the catholyte of the electrolytic oxidizing means are constant and required. Maintained at a sufficient level.

【0061】請求項8の発明は、電解透析濃縮手段の第
3電解液室と第4電解液室の特徴的な運転管理方法に関
する。
[0061] The invention of claim 8 relates to a characteristic operation management method of the third electrolyte chamber and the fourth electrolyte chamber of the electrodialysis concentrating means.

【0062】請求項8の発明の具体例を以下に説明す
る。
A specific example of the eighth aspect of the present invention will be described below.

【0063】電解透析濃縮手段の第3電解液室と第4電
解液室を区画する陽イオン交換膜をNaイオンに伴って
通過する水分子の数は第3電解液室中の硝酸ナトリウム
の濃度に異存して変化する。第3電解液室中の硝酸ナト
リウムの濃度が0.5 乃至1.0M に保たれていると、
Naイオン1グラム分子当たりに5グラム分子の水が第
4電解液室に増加し、従って、第4電解液は濃度が10
Mに相当する30.8%の水酸化ナトリウム水溶液となる。
この水酸化ナトリウム水溶液は硝酸で中和して硝酸ナト
リウム水溶液とし、電解透析濃縮手段の第3電解液室に
供給することができる。電解透析濃縮手段の第3電解液
室に供給する硝酸ナトリウムの濃度が高いほど、第3電
解液の循環槽から溢流する硝酸ナトリウム水溶液量は少
なくなり、放出される硝酸ナトリウム量は少なくなるの
で物質収支的に望ましい。電解透析濃縮手段の第4電解
液である濃度が10Mの水酸化ナトリウム水溶液を中和
するための硝酸の濃度が6.0M 以上であれば、硝酸ナ
トリウム水溶液の濃度は3.5M以上となり好適であ
る。
The number of water molecules passing through the cation exchange membrane, which separates the third electrolytic solution chamber and the fourth electrolytic solution chamber of the electrolytic dialysis concentrating means, along with Na ions, depends on the concentration of sodium nitrate in the third electrolytic solution chamber. Change in a different way. If the concentration of sodium nitrate in the third electrolyte chamber is maintained at 0.5 to 1.0M,
For every gram molecule of Na ion, 5 gram molecules of water increase in the fourth electrolyte chamber, so that the fourth electrolyte has a concentration of 10
It becomes 30.8% sodium hydroxide aqueous solution corresponding to M.
This aqueous sodium hydroxide solution can be neutralized with nitric acid to obtain an aqueous sodium nitrate solution, which can be supplied to the third electrolytic solution chamber of the electrodialysis and concentration means. The higher the concentration of sodium nitrate supplied to the third electrolytic solution chamber of the electrodialyzing / concentrating means, the smaller the amount of sodium nitrate aqueous solution overflowing from the circulating tank for the third electrolytic solution and the smaller the amount of sodium nitrate released, Desirable for mass balance. If the concentration of nitric acid for neutralizing a 10 M aqueous sodium hydroxide solution, which is the fourth electrolytic solution of the electrodialysis / concentration means, is 6.0 M or more, the concentration of the aqueous sodium nitrate solution becomes 3.5 M or more. is there.

【0064】電解透析濃縮手段の第3電解液の硝酸ナト
リウム濃度が低いほど放出される硝酸ナトリウム量は減
少することになるが、第3電解液室の電気抵抗は硝酸ナ
トリウム濃度に比例し、硝酸ナトリウム濃度が1Mにお
いても電解透析濃縮手段全体の抵抗の15%程度を占
め、濃度が0.5M になると全体の電気抵抗が15%増
加するため、さらに濃度を低下することは電解透析濃縮
手段の運転に係わり消費される電力を低減する観点から
望ましくない。
The lower the concentration of sodium nitrate in the third electrolytic solution of the electrodialyzing / concentrating means, the lower the amount of sodium nitrate released. However, the electric resistance of the third electrolytic solution chamber is proportional to the concentration of sodium nitrate. Even when the sodium concentration is 1M, it occupies about 15% of the entire resistance of the electrodialysis / concentration means, and when the concentration becomes 0.5M, the total electric resistance increases by 15%. It is not desirable from the viewpoint of reducing the power consumed for driving.

【0065】請求項9の発明は、電解透析濃縮手段の第
3電解液室から排出される硝酸ナトリウムを回収して第
3電解液室に還流し、外部に排出される硝酸ナトリウム
量を低減するものであり、既知の電気透析手段を用いて
行われる。
According to a ninth aspect of the present invention, sodium nitrate discharged from the third electrolytic solution chamber of the electrolytic dialysis concentrating means is recovered and refluxed to the third electrolytic solution chamber to reduce the amount of sodium nitrate discharged to the outside. And using known electrodialysis means.

【0066】請求項9の発明の具体例を以下に説明す
る。
A specific example of the ninth aspect of the present invention will be described below.

【0067】複数の陽イオン交換膜と複数の陰イオン交
換膜を交互に配置することによって希釈液室と濃縮液室
が交互に配置された既知の電気透析手段を使用し、希釈
液室に濃度が1Mの硝酸ナトリウム水溶液を供給して電
気透析を行い、希釈液の硝酸ナトリウム濃度を0.1M
に保持し、濃縮液の硝酸ナトリウム濃度を少なくとも
3.5Mにすることは、80%以上の電流効率において
可能である。
By alternately arranging a plurality of cation exchange membranes and a plurality of anion exchange membranes, a known electrodialysis means in which a diluent chamber and a concentrate chamber are alternately arranged is used. Supplied a 1 M aqueous solution of sodium nitrate, performed electrodialysis, and adjusted the concentration of sodium nitrate in the diluent to 0.1 M.
And making the concentration of sodium nitrate in the concentrate at least 3.5 M is possible at a current efficiency of 80% or more.

【0068】電解透析濃縮手段の第3電解液の硝酸ナト
リウム濃度を0.1M にまで低下すると電解透析濃縮手
段の電力消費量は229%に増加する。一方、電解透析
濃縮手段の第3電解液の硝酸ナトリウム濃度を1Mに保
持して、電気透析手段で排出水の硝酸ナトリウム濃度を
0.1M にまで低下させるために必要な電力量は電解透
析濃縮手段の電力消費量の10%に過ぎない。
When the concentration of sodium nitrate in the third electrolytic solution of the electrodialysis / concentration means is reduced to 0.1 M, the power consumption of the electrodialysis / concentration means increases to 229%. On the other hand, while the sodium nitrate concentration of the third electrolytic solution of the electrodialysis / concentration means is maintained at 1M and the sodium nitrate concentration of the discharged water is reduced to 0.1M by the electrodialysis means, the electric energy required for the electrodialysis / concentration is Only 10% of the power consumption of the vehicle.

【0069】請求項10の発明は、請求項1,請求項
2,請求項3,請求項4,請求項5,請求項7,請求項
8,請求項9の発明を具体化する金属酸化物と被酸化性
物質を含んだ廃棄物の処理装置である。
A tenth aspect of the present invention is a metal oxide which embodies the first, second, third, fourth, fifth, seventh, eighth, and ninth aspects of the present invention. And a waste treatment device containing oxidizable substances.

【0070】請求項11の発明は、請求項1,請求項
2,請求項6,請求項7,請求項9の発明を具体化する
金属酸化物と被酸化性物質を含んだ廃棄物の処理装置で
ある。請求項12の発明は、前記電解透析濃縮手段の前
記陰極をガス拡散性電極とし、空気を供給することにあ
る。請求項11の発明の作用効果は、請求項1から請求
項10の作用効果を有すると共に、水酸化ナトリウム水
溶液である第4電解液中で水素を発生させないため、危
険性が低減すると同時に電解透析濃縮手段の消費エネル
ギーが低減する。
According to the eleventh aspect of the present invention, there is provided a method for treating a waste containing a metal oxide and an oxidizable substance according to the first, second, sixth, seventh and ninth aspects of the present invention. Device. A twelfth aspect of the present invention is to supply air by using the cathode of the electrolytic dialysis concentrating means as a gas diffusible electrode. The effects of the invention of claim 11 have the effects of claims 1 to 10 and do not generate hydrogen in the fourth electrolytic solution which is an aqueous sodium hydroxide solution, so that the risk is reduced and at the same time the electrodialysis is performed. The energy consumption of the concentration means is reduced.

【0071】具体的には、白金などの板状陰極の替わり
に、多孔性炭素繊維材に白金を付着させた電極材を銀あ
るいはニッケルなどの金網からなる電極保持材と接着し
て電極となし、負電解が負荷される電極の一面を電解液
に接触させ、他面を空気または酸素に接触させることに
より、電極内を酸素が拡散して電解液との接触面におい
て水素と結合して水を生成させて水素ガスを発生させな
いものである。白金からなる陰極から水素を発生させる
ための消費エネルギーが軽減するために負荷電流密度に
依存する電解槽の電極間電位差が低下する。
Specifically, instead of a plate-like cathode such as platinum, an electrode material in which platinum is adhered to a porous carbon fiber material is bonded to an electrode holding material made of a wire mesh such as silver or nickel to form an electrode. By bringing one surface of the electrode to which negative electrolysis is loaded into contact with the electrolytic solution and the other surface into contact with air or oxygen, oxygen diffuses inside the electrode and combines with hydrogen at the contact surface with the electrolytic solution to form water. And does not generate hydrogen gas. Since the energy consumption for generating hydrogen from the platinum cathode is reduced, the potential difference between the electrodes of the electrolytic cell, which depends on the load current density, is reduced.

【0072】[0072]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)本発明の好適な一実施例である金属酸化物
および被酸化性物質を含んだ廃棄物の処理装置を図1を
用い以下に説明する。
(Embodiment 1) An apparatus for treating waste containing a metal oxide and an oxidizable substance according to a preferred embodiment of the present invention will be described below with reference to FIG.

【0073】本実施例は、電解酸化手段1及び電解透析
濃縮手段2を有する。電解酸化手段1は、隔膜3で隔離
された陽極液室4及び陰極液室5を有する。陽極液室4
内に設置される陽極6は、白金鍍金したチタンで製作さ
れる。陰極液室5内に設けられる陰極7は、白金鍍金し
たチタンで製作されている。
This embodiment has an electrolytic oxidation means 1 and an electrolytic dialysis concentration means 2. The electrolytic oxidation means 1 has an anolyte compartment 4 and a catholyte compartment 5 separated by a diaphragm 3. Anolyte compartment 4
The anode 6 installed inside is made of platinum-plated titanium. The cathode 7 provided in the catholyte compartment 5 is made of platinum-plated titanium.

【0074】電解透析濃縮手段2は、白金鍍金したチタ
ンで製作される陽極8と第1陽イオン交換膜9で区画さ
れる第1電解液室10,第1陽イオン交換膜9と陰イオ
ン交換膜11で区画される第2電解液室12,陰イオン
交換膜11と第2陽イオン交換膜13で区画される第3
電解液室14,第2陽イオン交換膜13と白金鍍金した
チタンで製作される陰極15で区画される第4電解液室
16を有する。第1陽イオン交換膜9はパーフロロスル
フォン酸系の強酸性型であり、陰イオン交換膜11は水
素イオン低拡散性の強塩基性型であり、第2陽イオン交
換膜13は第1陽イオン交換膜と同一の材質である。
The electrolytic dialysis concentrating means 2 comprises a first electrolytic solution chamber 10 partitioned by an anode 8 made of platinum-plated titanium and a first cation exchange membrane 9, and an anion exchange membrane. The second electrolyte chamber 12 divided by the membrane 11, the third electrolyte chamber 12 divided by the anion exchange membrane 11 and the second cation exchange membrane 13
It has an electrolyte solution chamber 14, a second cation exchange membrane 13, and a fourth electrolyte solution chamber 16 defined by a cathode 15 made of platinum-plated titanium. The first cation exchange membrane 9 is a perfluorosulfonate-based strongly acidic type, the anion exchange membrane 11 is a strongly basic type with low hydrogen ion diffusion, and the second cation exchange membrane 13 is a first cation exchange membrane 13. It is the same material as the ion exchange membrane.

【0075】本実施例において、陰極液循環槽17から
配管18によって陰極液室5に供給される陰極液は陰極
液循環槽17に戻らず、配管19によって第1電解液循
環槽20に移送され、配管21によって第1電解液室2
0に供給され、配管22を経由して陰極液循環槽17に
一定流量で循環する。従って、陰極液室5を流出した陰
極液はすべて第1電解液室10を通過して、配管22を
経由して陰極液循環槽17に循環することになる。第1
電解液室20には、溢流液排出管23が接続され、溢流
液は陰極液循環槽17に供給される。陰極液循環槽17
には酸素排出管24が接続され、第1電解液循環槽20
には酸化窒素排出管25が接続される。陰極液循環槽1
7には溢流液抜出し管26が接続され、溢流液は硝酸水
溶液供給管27から供給される硝酸水溶液と混合して陽
極液循環槽28に供給される。陽極液は、陽極液循環槽
28,配管29,陽極液室4,配管30を一定の流量で
循環する。陽極液循環槽28には酸素排出管31と溢流
液抜出し管32が接続される。
In this embodiment, the catholyte supplied from the catholyte circulation tank 17 to the catholyte chamber 5 by the pipe 18 does not return to the catholyte circulation tank 17 but is transferred to the first electrolyte circulation tank 20 by the pipe 19. The first electrolyte chamber 2 by the pipe 21
And circulates at a constant flow rate to the catholyte circulation tank 17 via the pipe 22. Therefore, all the catholyte flowing out of the catholyte compartment 5 passes through the first electrolyte compartment 10 and is circulated to the catholyte circulation tank 17 via the pipe 22. First
An overflow solution discharge pipe 23 is connected to the electrolyte solution chamber 20, and the overflow solution is supplied to the catholyte circulation tank 17. Catholyte circulation tank 17
Is connected to an oxygen discharge pipe 24, and the first electrolyte circulation tank 20
Is connected to a nitric oxide discharge pipe 25. Catholyte circulation tank 1
An overflow liquid extraction pipe 26 is connected to 7, and the overflow liquid is mixed with a nitric acid aqueous solution supplied from a nitric acid aqueous solution supply pipe 27 and supplied to an anolyte circulation tank 28. The anolyte circulates through the anolyte circulation tank 28, the pipe 29, the anolyte chamber 4, and the pipe 30 at a constant flow rate. An oxygen discharge pipe 31 and an overflow liquid discharge pipe 32 are connected to the anolyte circulation tank 28.

【0076】硝酸水溶液である第2電解液は、第2電解
液循環槽33,配管34,第2電解液室12および配管
35を一定の流量で循環する。第2電解液循環槽33に
は溢流液抜出し管36が接続され、溢流液は陰極液循環
槽17に供給される。第3電解液室14と第3電解液循
環槽37は配管38と配管39で接続される。硝酸ナト
リウム水溶液である第3電解液は、第3電解液循環槽3
7,配管38,第3電解液室14および配管39を一定
の流量で循環する。第3電解液循環槽37には硝酸ナト
リウム水溶液供給管40と溢流液抜出し管41が接続さ
れる。第4電解液室16と第4電解液循環槽42は、配
管43および配管44で連絡される。水酸化ナトリウム
水溶液である第4電解液は、第4電解液循環槽42,配
管43,第4電解液室16および配管44を一定の流量
で循環する。第4電解液循環槽42に、溢流液抜出し管
45および水素排出管46が接続される。
The second electrolytic solution, which is an aqueous solution of nitric acid, circulates through the second electrolytic solution circulating tank 33, the pipe 34, the second electrolytic solution chamber 12, and the pipe 35 at a constant flow rate. An overflow discharge pipe 36 is connected to the second electrolyte circulation tank 33, and the overflow is supplied to the catholyte circulation tank 17. The third electrolyte chamber 14 and the third electrolyte circulation tank 37 are connected by a pipe 38 and a pipe 39. The third electrolyte, which is an aqueous solution of sodium nitrate, is supplied to the third electrolyte circulation tank 3
7, circulate the pipe 38, the third electrolyte chamber 14, and the pipe 39 at a constant flow rate. A sodium nitrate aqueous solution supply pipe 40 and an overflow liquid extraction pipe 41 are connected to the third electrolyte circulation tank 37. The fourth electrolyte chamber 16 and the fourth electrolyte circulation tank 42 are connected by a pipe 43 and a pipe 44. The fourth electrolyte, which is an aqueous solution of sodium hydroxide, circulates through the fourth electrolyte circulation tank 42, the pipe 43, the fourth electrolyte chamber 16, and the pipe 44 at a constant flow rate. An overflow liquid extraction pipe 45 and a hydrogen discharge pipe 46 are connected to the fourth electrolyte circulation tank 42.

【0077】すでに濃度が0.5Mの硝酸ウラニルと0.
1Mの硝酸銀を含む硝酸水溶液を電解酸化手段1の陽極
液循環槽26と陽極液室4の間で循環して電解を行い、
陽極液中で二価の原子価状態にある銀の化学種(Ag
(II))を生成せしめ、陽極液循環槽26に304gの
二酸化ウランを含む廃棄物を装荷した。二酸化ウラン
は、金属酸化物であり、硝酸に溶解して硝酸ウラニルを
生成すると同時に被酸化性物質であり、1グラム分子当
たりに2グラム分子の電子交換が酸化に関与する。二酸
化ウランは、2.7 ファラディの電気量で電解を行った
後に完全に溶解した。本実施例において、陰極液に銀を
含まず、全金属濃度は0.06M であった。電解透析濃
縮手段の第3電解液室14には濃度が4Mの硝酸ナトリ
ウム水溶液を供給して電解を行い、硝酸ナトリウム濃度
が0.5M に保たれるようにした。電解酸化手段1の陽
極液中では403gの二酸化ウランが硝酸ウラニルを生
成するために2.25 グラム分子の硝酸(141.8
g)が消費され、20.3gの水が生成した。陽極液室
では2.7 ファラディの消費電気量のうち電子交換反応
に消費された2.25ファラディ以外の過剰電気量であ
る0.45ファラディは陽極上での直接あるいはAg(I
I)を経由して間接的に酸素の発生に係わり、水が4g
消費されている。また、電解酸化の過程で陰極液に移動
する水素イオンおよび金属イオンに伴われて135gの
水が陰極液に移動していた。従って、電解酸化中に陽極
液室4で減少した水の量は118.7g であった。
The uranyl nitrate having a concentration of 0.5M and 0.5%
A nitric acid aqueous solution containing 1 M silver nitrate is circulated between the anolyte circulation tank 26 of the electrolytic oxidizing means 1 and the anolyte chamber 4 to perform electrolysis.
Silver species in a divalent state (Ag
(II)) was produced, and waste containing 304 g of uranium dioxide was loaded into the anolyte circulation tank 26. Uranium dioxide is a metal oxide that dissolves in nitric acid to produce uranyl nitrate and is also an oxidizable substance, and electron exchange of 2 gram molecules per gram molecule participates in oxidation. Uranium dioxide was completely dissolved after electrolysis with an electric quantity of 2.7 Faraday. In this example, the catholyte contained no silver and the total metal concentration was 0.06M. A 4 M aqueous solution of sodium nitrate was supplied to the third electrolytic solution chamber 14 of the electrodialysis / concentration means to perform electrolysis so that the sodium nitrate concentration was maintained at 0.5 M. In the anolyte of electrolytic oxidizing means 1, 403 g of uranium dioxide produce 2.25 grams of molecular nitric acid (141.8 g) to produce uranyl nitrate.
g) was consumed, producing 20.3 g of water. In the anolyte compartment, 0.45 Faraday, which is an excess amount of the 2.7 Faraday consumed electricity other than the 2.25 Faraday consumed in the electron exchange reaction, is directly or Ag (I) on the anode.
Involved in the generation of oxygen indirectly via I), 4 g of water
Has been consumed. In addition, 135 g of water was moved to the catholyte along with hydrogen ions and metal ions moving to the catholyte in the course of electrolytic oxidation. Therefore, the amount of water reduced in the anolyte compartment 4 during electrolytic oxidation was 118.7 g.

【0078】電解酸化手段で2.7 ファラディの電気量
により電解が行われている間に、陰極液中では1グラム
分子の硝酸が還元されて0.7 グラム分子の一酸化窒素
と0.3グラム分子の亜硝酸および1.7グラム分子の水
(30.6g)となっている。従って、電解酸化中に陰極
液室5で増加した水の量は165.6g であった。電解
酸化手段で2.7 ファラディの電気量により電解が行わ
れている間に、陰極液室5を流出した陰極液は電解透析
濃縮手段2の第1電解液循環槽20を経由して第1電解
液室10に供給され、5.4 ファラディの電気量で電解
が行われた。電解中に陰極液の循環流量は電解酸化手段
の電解電流の1アンペア分当たりに0.36 リットルの
一定に保たれ、積算循環量は1563リットルであっ
た。電解透析濃縮手段2の第1電解液室10において
は、二価の原子価状態にある銀の化学種(Ag(II))
は存在せず、第1電解液循環槽20の酸化窒素放出管2
5からは0.2 グラム分子に相当する酸化窒素(NO
x)を見い出した。陰極液が電解透析濃縮手段2の第1
電解液室10を通過する間に、0.3 グラム分子の亜硝
酸、0.5グラム分子に一酸化窒素および1.3グラム分
子の水(23.4g)から0.8 グラム分子の硝酸が再生
したことになり、陰極液循環槽17の酸素放出管24か
らは1.6 グラム分子の酸素を見い出した。電解酸化手
段の陰極液が電解透析濃縮手段の第1電解液室を通過し
ている間に第2電解液室へ6.1 グラム分子の水(10
9.8g)が移動するので、陰極液循環槽に戻った時点
では水の量が32.4g増加していた。
In the catholyte, 1 gram molecule of nitric acid is reduced to 0.7 gram molecule of nitric oxide and 0.3 gram molecule of nitric oxide while the electrolysis is performed by 2.7 Faraday electricity by the electrolytic oxidation means. Gram molecules of nitrous acid and 1.7 grams of water
(30.6 g). Therefore, the amount of water increased in the catholyte compartment 5 during electrolytic oxidation was 165.6 g. The catholyte that has flowed out of the catholyte compartment 5 while the electrolysis is being carried out by the electrolytic oxidation means with the amount of 2.7 Faraday electricity passes through the first electrolytic solution circulating tank 20 of the electrodialysis / concentration means 2 to the first electrolyte solution. Electrolyte was supplied to the electrolyte solution chamber 10 and electrolysis was performed at an electric quantity of 5.4 Faraday. During the electrolysis, the circulating flow rate of the catholyte was kept constant at 0.36 liters per ampere of the electrolytic current of the electrolytic oxidizing means, and the integrated circulation amount was 1,563 liters. In the first electrolytic solution chamber 10 of the electrodialyzing / concentrating means 2, a silver species (Ag (II)) in a divalent valence state
Does not exist, and the nitrogen oxide discharge pipe 2 of the first electrolyte circulation tank 20
From 5 the nitric oxide (NO
x) was found. The catholyte is the first of the electrodialysis concentration means 2
While passing through the electrolyte chamber 10, 0.3 grams of nitrous acid, 0.5 grams of nitric oxide and 1.3 grams of water (23.4g) from 0.8 grams of nitric acid were added. As a result, 1.6 g of molecular oxygen was found from the oxygen discharge tube 24 of the catholyte circulation tank 17. While the catholyte of the electrolytic oxidation means is passing through the first electrolyte chamber of the electrodialysis concentrating means, 6.1 grams of molecular water (10
9.8 g) moved, and when returning to the catholyte circulation tank, the amount of water had increased by 32.4 g.

【0079】電解透析濃縮手段の第2電解液室12では
2.43グラム分子の硝酸(153.1g)と9.7グラム分子
の水(175.4g)を含む、濃度が46.6%(9.5
M)の硝酸水溶液を生成し、第2電解液循環槽33の溢
流液として陰極液循環槽17に供給され、陰極液循環槽
17の溢流液が697.6gの硝酸と1677.3gの水
および38.3gの硝酸銀を含む濃度が29.4%(5.5
M)の新しい硝酸水溶液と混合して、陽極液循環槽28
に供給される結果、陽極液循環槽28の溢流液は38.
3gの硝酸銀、443.6g の硝酸ウラニル、708.
8gの硝酸および1734.0gの水を含む陽極循環槽
26の溢流液の2.25リットルが溢流液抜出し管32
から排出された。溶解物質の濃度は硝酸銀が0.1M 、
硝酸ウラニルが0.5M、硝酸が5.0M であった。
The second electrolytic solution chamber 12 of the electrodialysis / concentration means contains 2.43 g molecule of nitric acid (153.1 g) and 9.7 g molecule of water (175.4 g) and has a concentration of 46.6% (95.4 g). .5
M) nitric acid aqueous solution is generated and supplied to the catholyte circulation tank 17 as an overflow of the second electrolyte circulation tank 33, and the overflow of the catholyte circulation tank 17 is 697.6 g of nitric acid and 1677.3 g of nitric acid A concentration of 29.4% (5.5) containing water and 38.3 g of silver nitrate.
M) with a new nitric acid aqueous solution,
As a result, the overflow liquid in the anolyte circulation tank 28 is 38.
3 g silver nitrate, 443.6 g uranyl nitrate, 708.
2.25 liters of the effluent of the anode circulation tank 26 containing 8 g of nitric acid and 1734.0 g of water were filled in the effluent discharge pipe 32.
Was discharged from. The concentration of the dissolved substance was 0.1 M for silver nitrate,
Uranyl nitrate was 0.5M and nitric acid was 5.0M.

【0080】電解透析濃縮手段2の第3電解液室14に
おいて、219.8g の硝酸ナトリウムと573.7g
の水を含む、濃度が4.0Mの硝酸ナトリウムを供給
し、5.4ファラディの電気量が与えられて、2.43g分
子の硝酸ナトリウム(206.6g)が失われ、同時に15.
8グラム分子の水(284.3g)が失われ、13.2g
の硝酸ナトリウムと289.4gの水を含む、濃度が0.
6Mの硝酸ナトリウム水溶液が溢流液抜出し管45から
排出された。硝酸ナトリウムの利用率は93.6%であ
った。
In the third electrolytic solution chamber 14 of the electrodialyzing / concentrating means 2, 219.8 g of sodium nitrate and 573.7 g of sodium nitrate were used.
Of water, containing 4.0 M of sodium nitrate, giving 5.4 Faraday of electricity and losing 2.43 g of molecules of sodium nitrate (206.6 g), at the same time 15.
8 grams of molecular water (284.3 g) is lost, 13.2 g
Sodium nitrate and 289.4 g of water, at a concentration of 0.3.
A 6 M aqueous solution of sodium nitrate was discharged from the overflow drain pipe 45. The utilization of sodium nitrate was 93.6%.

【0081】電解透析濃縮手段2の第4電解液室16に
おいて、5.4 ファラディの電気量が与えられて、2.
43グラム分子の水酸化ナトリウム(97.2g)と1
2.15グラム分子の水(218.7g)を含む、濃度が
30.8%(10.2M)を生成して溢流液抜出し管45
から排出され、2.7 グラム分子の水素ガスが水素排出
管46から発生した。
In the fourth electrolytic solution chamber 16 of the electrodialyzing / concentrating means 2, an electric quantity of 5.4 Faraday is given, and
43 grams of molecular sodium hydroxide (97.2 g) and 1
2.15 grams of molecular water (218.7 g), containing 30.8% (10.2 M) in concentration, yielding an overflow drain 45
And 2.7 grams of molecular hydrogen gas evolved from the hydrogen exhaust tube 46.

【0082】本実施例によれば、以下の効果を得ること
ができる。
According to the present embodiment, the following effects can be obtained.

【0083】(1)電解酸化手段の陽極液中にAg(I
I)を生成させてから被酸化性の金属酸化物を含んだ廃
棄物を装荷しているため、陽極液から窒素酸化物を発生
せず、排ガスの処理を行う必要がない。
(1) Ag (I) is contained in the anolyte of the electrolytic oxidation means.
Since the waste containing the oxidizable metal oxide is loaded after the generation of I), no nitrogen oxide is generated from the anolyte, and there is no need to treat the exhaust gas.

【0084】(2)電解酸化手段の陰極液に含まれる硝
酸の還元生成物である亜硝酸および酸化窒素ならびに水
を80%まで硝酸に再生し、被酸化性物質の酸化に利用
できた。
(2) Nitric acid, nitric oxide and water, which are reduction products of nitric acid contained in the catholyte of the electrolytic oxidizing means, were regenerated to 80% nitric acid and could be used for oxidizing oxidizable substances.

【0085】(3)電解酸化手段の陰極液から放出され
る酸化窒素が20%に低減して、オフガスの洗浄処理が
容易になった。
(3) Nitrogen oxide released from the catholyte of the electrolytic oxidizing means was reduced to 20%, which facilitated off-gas cleaning.

【0086】(4)電解酸化手段の陽極室から電解に伴
って移行して陰極室内で増加した水を電解透析濃縮手段
の第1電解液室内で除去して、硝酸濃度が低下しないよ
うにし、陰極室で水素やアンモニアの発生を防止でき
た。
(4) The water which has migrated from the anode chamber of the electrolytic oxidation means and increased in the cathode chamber due to electrolysis is removed in the first electrolytic solution chamber of the electrodialysis / concentration means so that the nitric acid concentration does not decrease. The generation of hydrogen and ammonia was prevented in the cathode compartment.

【0087】(5)電解透析濃縮手段の第1電解液室内
から除去した水で第2電解液室内に硝酸を生成して回収
し、金属酸化物の溶解に利用できた。
(5) Nitric acid was generated and recovered in the second electrolytic solution chamber with the water removed from the first electrolytic solution chamber of the electrodialysis concentrating means, and could be used for dissolving the metal oxide.

【0088】(6)廃棄物に含まれる金属で汚染した副
生廃液を発生することがなく、廃棄物処理廃液は1種類
に限定される。
(6) By-product waste liquid contaminated with metal contained in waste is not generated, and waste treatment waste liquid is limited to one type.

【0089】(7)電解透析濃縮手段から排出される硝
酸ナトリウムは、廃棄物に含まれる金属元素で汚染する
ことなく、希釈された濃度で排出され、損失率は6%で
あった。
(7) The sodium nitrate discharged from the electrodialysis concentrating means was discharged at a diluted concentration without being contaminated by the metal element contained in the waste, and the loss rate was 6%.

【0090】(実施例2)本発明の他の実施例である金
属酸化物および被酸化性物質を含んだ廃棄物の処理装置
を図2を用い以下に説明する。
(Embodiment 2) An apparatus for treating waste containing a metal oxide and an oxidizable substance according to another embodiment of the present invention will be described below with reference to FIG.

【0091】本実施例の装置構成は実施例1を構成する
電解酸化手段1,電解透析濃縮手段2に加えて、電気透
析脱塩手段47を備えたものである。
The apparatus of this embodiment is provided with an electrodialysis desalting means 47 in addition to the electrolytic oxidation means 1 and the electrodialysis concentration means 2 of the first embodiment.

【0092】電気透析脱塩手段47は、陽極48と陰極
49の間に複数の陽イオン交換膜50および複数の陰イ
オン交換膜51を交互に配置し、陽イオン交換膜50の
陽極側と陰イオン交換膜51の陰極側との間に形成され
る希釈液室52および陽イオン交換膜50の陰極側と陰
イオン交換膜51の陽極側との間で形成される濃縮液室
53を有する。イオン交換膜は強酸性陽イオン交換膜お
よび強塩基性陰イオン交換膜でいずれも電気透析用の標
準膜である。希釈液室52と濃縮液室53は交互に配置
される。各希釈液室52は、配管54および55にて希
釈液循環槽56に接続される。希釈液は、希釈液循環槽
56,配管54,希釈液室52および配管55を一定の
流速で循環する。各濃縮液室53は、配管57および5
8で濃縮液循環槽59に接続される。第3電解液循環槽
37の溢流液排出管41は希釈液供給管60に接続され
る。濃縮溢流液排出管61が濃縮液循環槽59に接続さ
れる。濃縮溢流液排出管61は電解透析濃縮手段2の第
3電解液供給管40に接続される。希釈溢流液排出管6
2が希釈液循環槽56に接続され、希釈液を外部に放出
する。
In the electrodialysis desalting means 47, a plurality of cation exchange membranes 50 and a plurality of anion exchange membranes 51 are alternately arranged between an anode 48 and a cathode 49. It has a diluent chamber 52 formed between the cathode side of the ion exchange membrane 51 and a concentrated chamber 53 formed between the cathode side of the cation exchange membrane 50 and the anode side of the anion exchange membrane 51. The ion exchange membrane is a strong acid cation exchange membrane and a strongly basic anion exchange membrane, both of which are standard membranes for electrodialysis. The diluent chamber 52 and the concentrate chamber 53 are arranged alternately. Each of the diluent chambers 52 is connected to a diluent circulation tank 56 via piping 54 and 55. The diluent circulates at a constant flow rate through the diluent circulation tank 56, the pipe 54, the diluent chamber 52, and the pipe 55. Each of the concentrate chambers 53 is provided with a pipe 57 and 5
At 8, it is connected to the concentrate circulation tank 59. The overflow discharge pipe 41 of the third electrolyte circulation tank 37 is connected to the diluent supply pipe 60. The concentrated overflow liquid discharge pipe 61 is connected to the concentrated liquid circulation tank 59. The concentrated overflow drain pipe 61 is connected to the third electrolyte supply pipe 40 of the electrodialysis / concentration means 2. Dilution overflow liquid discharge pipe 6
2 is connected to the diluent circulation tank 56 to discharge the diluent to the outside.

【0093】すでに濃度が0.5Mの硝酸ウラニルと0.
1Mの硝酸銀を含む硝酸水溶液を電解酸化手段1の陽極
液循環槽17と陽極液室4の間で循環して電解を行い、
陽極液中で二価の原子価状態にある銀の化学種(Ag
(II))を生成せしめ、陽極液循環槽28に304gの
二酸化ウランを含む廃棄物を装荷した。二酸化ウラン
は、金属酸化物であり、硝酸に溶解して硝酸ウラニルを
生成すると同時に被酸化性物質であり、1グラム分子当
たりに2グラム分子の電子交換が酸化に関与する。二酸
化ウランは、2.7 ファラディの電気量で電解を行った
後に完全に溶解した。本実施例において、陰極液の銀濃
度は0.01Mであり、全金属濃度は0.06Mであっ
た。電解透析濃縮手段2の第3電解液室14には濃度が
4Mの硝酸ナトリウム水溶液を供給して電解を行い、硝
酸ナトリウム濃度が1.0M に保たれるようにした。電
解酸化手段1の陽極液中では403gの二酸化ウランが
硝酸ウラニルを生成するために2.25グラム分子の硝
酸(141.8g)が消費され、20.3gの水が生成し
た。陽極液室では2.7ファラディの消費電気量のうち
電子交換反応に消費された2.25ファラディ以外の過
剰電気量である0.45ファラディは陽極上での直接あ
るいはAg(II)を経由して間接的に酸素の発生に係わ
り、水が4g消費されている。また、電解酸化の過程で
陰極液に移動する水素イオンおよび金属イオンに伴われ
て135gの水が陰極液に移動していた。従って、電解
酸化中に陽極液室4で減少した水の量は118.7g で
あった。
Uranyl nitrate having a concentration of 0.5M and 0.5%
A nitric acid aqueous solution containing 1 M silver nitrate is circulated between the anolyte circulation tank 17 of the electrolytic oxidizing means 1 and the anolyte chamber 4 to perform electrolysis.
Silver species in a divalent state (Ag
(II)) was produced, and waste containing 304 g of uranium dioxide was loaded into the anolyte circulation tank 28. Uranium dioxide is a metal oxide that dissolves in nitric acid to produce uranyl nitrate and is also an oxidizable substance, and electron exchange of 2 gram molecules per gram molecule participates in oxidation. Uranium dioxide was completely dissolved after electrolysis with an electric quantity of 2.7 Faraday. In this example, the silver concentration of the catholyte was 0.01M and the total metal concentration was 0.06M. A 4 M aqueous solution of sodium nitrate was supplied to the third electrolytic solution chamber 14 of the electrodialysis / concentration means 2 to perform electrolysis so that the sodium nitrate concentration was maintained at 1.0 M. In the anolyte of the electrolytic oxidation means 1, 403 g of uranium dioxide consumed 2.25 g molecule of nitric acid (141.8 g) to produce uranyl nitrate, and 20.3 g of water was produced. In the anolyte compartment, of the 2.7 Faraday consumed electricity, the excess electricity consumption of 0.45 Faraday other than 2.25 Faraday consumed in the electron exchange reaction was directly on the anode or via Ag (II). 4 g of water is consumed indirectly in connection with the generation of oxygen. In addition, 135 g of water was moved to the catholyte along with hydrogen ions and metal ions moving to the catholyte in the course of electrolytic oxidation. Therefore, the amount of water reduced in the anolyte compartment 4 during electrolytic oxidation was 118.7 g.

【0094】電解酸化手段で2.7 ファラディの電気量
により電解が行われている間に、陰極液中では1グラム
分子の硝酸が還元されて0.7 グラム分子の一酸化窒素
と0.3 グラム分子の亜硝酸および1.7グラム分子の
水(30.6g)となっている。従って、電解酸化中に
陰極液室5で増加した水の量は165.6g であった。
[0094] While electrolysis is being carried out with 2.7 Faraday's electricity by means of electrolytic oxidation, 1 gram molecule of nitric acid is reduced in the catholyte to 0.7 gram molecule of nitric oxide and 0.3 gram molecule of nitric oxide. Gram molecule of nitrous acid and 1.7 gram molecule of water (30.6 g). Therefore, the amount of water increased in the catholyte compartment 5 during electrolytic oxidation was 165.6 g.

【0095】電解酸化手段で2.7 ファラディの電気量
により電解が行われている間に、陰極液室17を流出し
た陰極液は電解透析濃縮手段2の第1電解液循環槽20
を経由して第1電解液室10に供給され、5.0 ファラ
ディの電気量で電解が行われた。電解中に陰極液の循環
流量は電解酸化手段の電解電流の1アンペア分当たりに
0.36 リットルの一定に保たれ、積算循環量は156
3リットルであった。電解酸化手段1の陰極液室17の
流出液中には僅かにAg(II)の着色が認められ、陰極
液循環槽17内では高濃度のAg(II)が存在した。第
1電解液循環槽20の酸化窒素放出管25から酸化窒素
(NOx)が存在しなかった。陰極液が電解透析濃縮手
段の第1電解液室を通過する間に、0.3 グラム分子の
亜硝酸、0.7 グラム分子に一酸化窒素および1.7グ
ラム分子の水(30.6g)から1.0 グラム分子の硝
酸が再生したことになり、陰極液循環槽17の酸素放出
管24からは1.1 グラム分子の酸素を見い出した。電
解酸化手段の陰極液が電解透析濃縮手段の第1電解液室
を通過している間に第2電解液室へ5.7 グラム分子の
水(101.7g)が移動するので、陰極液循環槽に戻っ
た時点では水の量が33.3g増加していた。
While the electrolysis is being performed with 2.7 Faraday electricity by the electrolytic oxidizing means, the catholyte flowing out of the catholyte chamber 17 is supplied to the first electrolytic solution circulating tank 20 of the electrodialyzing / concentrating means 2.
, And supplied to the first electrolytic solution chamber 10 to perform electrolysis with an electric quantity of 5.0 Faraday. During the electrolysis, the circulating flow rate of the catholyte is kept constant at 0.36 liters per ampere of the electrolytic current of the electrolytic oxidizing means, and the integrated circulation amount is 156.
It was 3 liters. Ag (II) was slightly colored in the effluent of the catholyte compartment 17 of the electrolytic oxidation means 1, and high concentration of Ag (II) was present in the catholyte circulation tank 17. Nitrogen oxide (NOx) did not exist from the nitrogen oxide discharge pipe 25 of the first electrolytic solution circulation tank 20. While the catholyte passes through the first electrolyte compartment of the electrodialysis concentrating means, 0.3 grams of nitrous acid, 0.7 grams of nitric oxide and 1.7 grams of water (30.6 g) are added. Thus, 1.0 g molecule of nitric acid was regenerated, and 1.1 g molecule oxygen was found from the oxygen discharge tube 24 of the catholyte circulation tank 17. While the catholyte of the electrolytic oxidizing means is passing through the first electrolytic solution chamber of the electrolytic dialysis concentrating means, 5.7 gram molecules of water (101.7 g) move to the second electrolytic solution chamber. Upon returning to the tank, the amount of water had increased by 33.3 g.

【0096】電解透析濃縮手段2の第2電解液室33で
は2.25グラム分子の硝酸(141.8g)と9.1グラム
分子の水(163.4g)を含む濃度が46.5%(9.
6M)の硝酸水溶液を生成し、第2電解液循環槽33の
溢流液として陰極液循環槽17に供給され、陰極液循環
槽17の溢流液が708.9gの硝酸と1689.3gの
水および38.3gの硝酸銀を含む濃度が29.6%(5.
4M)の新しい硝酸水溶液と混合されて陽極液循環槽2
8に供給される結果、陽極液循環槽の溢流液は38.3
g の硝酸銀、443.6gの硝酸ウラニル、708.8
gの硝酸および1734.0g の水を含む陽極循環槽2
8の溢流液の2.25 リットルが排出された。溶解物質
の濃度は硝酸銀が0.1M 、硝酸ウラニルが0.5M 、
硝酸が5.0M であった。
In the second electrolytic solution chamber 33 of the electrodialyzing / concentrating means 2, the concentration containing 2.25 g molecule of nitric acid (141.8 g) and 9.1 g molecule of water (163.4 g) is 46.5% (9 .
6M) nitric acid aqueous solution is generated and supplied to the catholyte circulation tank 17 as an overflow of the second electrolyte circulation tank 33. The overflow of the catholyte circulation tank 17 contains 708.9 g of nitric acid and 1689.3 g of nitric acid. The concentration containing water and 38.3 g of silver nitrate is 29.6% (5.
4M) with an aqueous nitric acid solution
As a result, the overflow liquid in the anolyte circulation tank is 38.3.
g of silver nitrate, 443.6 g of uranyl nitrate, 708.8
g of nitric acid and 1734.0 g of water
2.25 liters of the effluent of No. 8 were discharged. The concentrations of the dissolved substances were 0.1M for silver nitrate, 0.5M for uranyl nitrate,
Nitric acid was 5.0M.

【0097】電解透析濃縮手段2の第3電解液室14に
おいて、217.4g の硝酸ナトリウムと563.5g
の水を含む、濃度が4.0M の硝酸ナトリウムを供給
し、5.0ファラディの電気量が与えられて、2.25グ
ラム分子の硝酸ナトリウム(191.3g)が失われ、
同時に14.6グラム分子の水(263.3g)が失わ
れ、26.1g の硝酸ナトリウムと300.2gの水を
含む、濃度が1.0Mの硝酸ナトリウム水溶液が第3電
解液循環槽37から溢流液排出管41を通して排出され
て、電気透析脱塩手段2の硝酸ナトリウム濃度が0.1
1M に保持されている希釈液循環槽56に供給され
た。
In the third electrolytic solution chamber 14 of the electrodialyzing / concentrating means 2, 217.4 g of sodium nitrate and 563.5 g of sodium nitrate were added.
A concentration of 4.0 M sodium nitrate, containing 5.0 Faraday of electricity, losing 2.25 grams of molecular nitrate (191.3 g);
At the same time, 14.6 g of molecular water (263.3 g) was lost, and a 1.0 M aqueous sodium nitrate solution containing 26.1 g of sodium nitrate and 300.2 g of water was discharged from the third electrolyte circulation tank 37. After being discharged through the overflow liquid discharge pipe 41, the sodium nitrate concentration of the electrodialysis desalting means 2 is set to 0.1.
It was supplied to a diluent circulation tank 56 maintained at 1M.

【0098】電解酸化手段が2.7 ファラディの電気量
で運転されている間に、電気透析脱塩手段2に供給され
る26.1gの硝酸ナトリウムの92%に相当する24.
1gの硝酸ナトリウムと62.9gの水を含む、濃度が
4.0Mの硝酸ナトリウム水溶液が濃縮液室53に生成
し、濃縮液循環槽59から溢流液排出管61を経由して
第3電解液循環槽37に供給された。希釈液は2gの硝
酸ナトリウムと237.3gの水を含む、濃度が0.1M の
硝酸ナトリウム水溶液が希釈溢流液排出管62から排出
された。第3電解液室37に供給された硝酸ナトリウム
の利用率は99%であった。
While the electrolytic oxidizing means is operating at 2.7 Faraday's electricity, it corresponds to 92% of 26.1 g of sodium nitrate supplied to the electrodialysis desalting means 2.
An aqueous solution of sodium nitrate having a concentration of 4.0 M containing 1 g of sodium nitrate and 62.9 g of water is generated in the concentrated solution chamber 53, and is discharged from the concentrated solution circulating tank 59 via the overflow solution discharge pipe 61 to the third electrolytic cell. The liquid was supplied to the liquid circulation tank 37. A 0.1 M aqueous sodium nitrate solution containing 2 g of sodium nitrate and 237.3 g of water was discharged from the dilute overflow discharge pipe 62. The utilization rate of sodium nitrate supplied to the third electrolytic solution chamber 37 was 99%.

【0099】電解透析濃縮手段2の第4電解液室16で
は、90.0g の水酸化ナトリウムと202.5gの水
を含む、濃度が30.8%(10.2M)の水酸化ナトリ
ウム水溶液が生成し、水素排出管46から2.5 グラム
分子の水素ガスを発生した。この水酸化ナトリウム水溶
液を141.8gの硝酸と276.3gの水を含む、濃度
が33.9%(6.5M)の硝酸水溶液と混合して中和
し、191.3g の硝酸ナトリウムと499.1g の水
を含む、濃度が27.7%(4.0M)の硝酸ナトリウム
水溶液を調製し、硝酸ナトリウム2gを添加して、第3
電解液を回収した。本実施例によれば、実施例1で得ら
れる(1)〜(6)の効果を生じると共に、更に以下の
効果を生じる。
In the fourth electrolytic solution chamber 16 of the electrodialyzing / concentrating means 2, an aqueous solution of sodium hydroxide having a concentration of 30.8% (10.2M) containing 90.0 g of sodium hydroxide and 202.5 g of water is provided. This produced 2.5 grams of molecular hydrogen gas from the hydrogen discharge tube 46. This aqueous sodium hydroxide solution was neutralized by mixing with a 33.9% (6.5 M) aqueous nitric acid solution containing 141.8 g of nitric acid and 276.3 g of water, and 191.3 g of sodium nitrate and 499 g of water. An aqueous sodium nitrate solution having a concentration of 27.7% (4.0 M) containing 0.1 g of water was prepared, and 2 g of sodium nitrate was added thereto.
The electrolyte was recovered. According to this embodiment, the effects (1) to (6) obtained in the first embodiment and the following effects are further obtained.

【0100】(1)電解酸化手段の陰極液中で硝酸の還
元によって生成する亜硝酸と窒素酸化物を殆ど消費して
硝酸に再生できる。
(1) Nitrite and nitrogen oxides generated by reduction of nitric acid in the catholyte of the electrolytic oxidation means can be mostly consumed to regenerate nitric acid.

【0101】(2)電解透析濃縮手段において硝酸の再
生に係わる電流消費が低減される。
(2) The current consumption associated with the regeneration of nitric acid is reduced in the electrodialysis concentration means.

【0102】(3)電解透析濃縮手段の第1電解液循環
槽から窒素酸化物を発生せず、排ガス処理の必要がな
い。
(3) Nitrogen oxides are not generated from the first electrolytic solution circulation tank of the electrodialysis concentrating means, and there is no need for exhaust gas treatment.

【0103】(4)電気透析脱塩手段を組み合わせるこ
とにより、電解透析濃縮手段の消費電力を低減でき、第
3電解液室に供給した硝酸ナトリウムの損失を1%以下
に低減することができた。
(4) By combining the electrodialysis desalting means, the power consumption of the electrodialysis concentrating means could be reduced, and the loss of sodium nitrate supplied to the third electrolyte chamber could be reduced to 1% or less. .

【0104】(5)電気透析濃縮手段の第4電解液室か
ら濃縮された水酸化ナトリウム水溶液が回収され、硝酸
と混合して中和することにより第3電解液室に供給すべ
き硝酸ナトリウム水溶液を調製することができた。
(5) A concentrated aqueous sodium hydroxide solution is recovered from the fourth electrolytic solution chamber of the electrodialyzing / concentrating means, and mixed with nitric acid to neutralize the aqueous solution to be supplied to the third electrolytic solution chamber. Could be prepared.

【0105】(実施例3)本発明の他の実施例である金
属酸化物および被酸化性物質を含んだ廃棄物の処理装置
を図3を用い以下に説明する。
(Embodiment 3) An apparatus for treating waste containing a metal oxide and an oxidizable substance according to another embodiment of the present invention will be described below with reference to FIG.

【0106】本実施例の図3の処理装置は、図2の処理
装置における電解透析濃縮装置2の陰極63が多孔性炭
素繊維剤に白金を付着させた電極材を銀あるいはニッケ
ルなどの金網からなる電極保持材と接着してなり、負電
荷が負荷される電極の一面を電解液に接触させ、他面を
空気または酸素に接触させることにより、電極内を酸素
が拡散して電解液との接触面において水素と結合して水
を生成させる作用がある、空気拡散陰極63であり、空
気供給管64および空気排出管65が接続される。
In the processing apparatus shown in FIG. 3 of the present embodiment, the cathode 63 of the electrolytic dialysis concentrator 2 in the processing apparatus shown in FIG. 2 uses an electrode material obtained by attaching platinum to a porous carbon fiber material from a metal mesh such as silver or nickel. By contacting one surface of the electrode, which is negatively charged, with the electrolyte, and contacting the other surface with air or oxygen, oxygen diffuses inside the electrode to form a contact with the electrolyte. An air diffusion cathode 63 which has an action of generating water by combining with hydrogen at the contact surface, to which an air supply pipe 64 and an air discharge pipe 65 are connected.

【0107】本実施例の図3の処理装置は、図2の処理
装置の第1電解液循環槽20が削除され、配管21は陰
極液循環槽17と第1電解液室10を接続している。さ
らに、図2の処理装置の電気透析脱塩手段47の濃縮液
循環槽59が削除され、配管57は配管67に置き換え
られ、第3電解液循環槽37に接続され、配管58は配
管66に置き換えられ、第3電解液循環槽37に接続さ
れる。
In the processing apparatus shown in FIG. 3 of this embodiment, the first electrolytic solution circulating tank 20 of the processing apparatus shown in FIG. 2 is omitted, and the pipe 21 connects the catholyte circulating tank 17 and the first electrolytic solution chamber 10. I have. Further, the concentrate circulation tank 59 of the electrodialysis desalting means 47 of the processing apparatus of FIG. 2 is deleted, the pipe 57 is replaced with a pipe 67, connected to the third electrolyte circulation tank 37, and the pipe 58 is connected to the pipe 66. It is replaced and connected to the third electrolyte circulation tank 37.

【0108】本実施例は、実施例2と同じく、すでに濃
度が0.5Mの硝酸ウラニルと0.1Mの硝酸銀を含む硝酸
水溶液を電解酸化手段1の陽極液循環槽28と陽極液室
4の間で循環して電解を行い、陽極液中で二価の原子価
状態にある銀の化学種(Ag(II))を生成せしめ、陽極
液循環槽28に304gの二酸化ウランを含む廃棄物を
装荷した。二酸化ウランは、金属酸化物であり、硝酸に
溶解して硝酸ウラニルを生成すると同時に被酸化性物質
であり、1グラム分子当たりに2グラム分子の電子交換
が酸化に関与する。二酸化ウランは、2.7 ファラディ
の電気量で電解を行った後に完全に溶解した。本実施例
において、陰極液の銀濃度は0.03Mであり、全金属
濃度は0.18M であった。電解透析濃縮手段2の第
3電解液室14には濃度が4Mの硝酸ナトリウム水溶液
を供給して電解を行い、硝酸ナトリウム濃度が1.0M
に保たれるようにした。電解酸化手段1の陽極液中では
403gの二酸化ウランが硝酸ウラニルを生成するために
2.25g分子の硝酸(141.8g)が消費され、20.3g
の水が生成した。陽極液室では2.7ファラディの消費
電気量のうち電子交換反応に消費された2.25 ファラ
ディ以外の過剰電気量である0.45 ファラディは陽極
上での直接あるいはAg(II)を経由して間接的に酸素
の発生に係わり、水が4g消費されている。また、電解
酸化の過程で陰極液に移動する水素イオンおよび金属イ
オンに伴われて135gの水が陰極液に移動していた。
従って、電解酸化中に陽極液室4で減少した水の量は1
18.7g であった。
In this embodiment, an aqueous nitric acid solution containing uranyl nitrate having a concentration of 0.5 M and silver nitrate having a concentration of 0.1 M is applied between the anolyte circulation tank 28 and the anolyte chamber 4 of the electrolytic oxidizing means 1 as in the second embodiment. And electrolysis is performed to generate silver species (Ag (II)) in a divalent valence state in the anolyte, and the anolyte circulation tank 28 is loaded with 304 g of waste containing uranium dioxide. did. Uranium dioxide is a metal oxide that dissolves in nitric acid to produce uranyl nitrate and is also an oxidizable substance, and electron exchange of 2 gram molecules per gram molecule participates in oxidation. Uranium dioxide was completely dissolved after electrolysis with an electric quantity of 2.7 Faraday. In this example, the silver concentration of the catholyte was 0.03M and the total metal concentration was 0.18M. A 4 M aqueous sodium nitrate solution is supplied to the third electrolytic solution chamber 14 of the electrodialysis / concentration means 2 to perform electrolysis, and the sodium nitrate concentration becomes 1.0 M.
To be kept. In the anolyte of electrolytic oxidation means 1
403 g of uranium dioxide consumes 2.25 g molecule of nitric acid (141.8 g) to produce uranyl nitrate, and 20.3 g
Of water formed. In the anolyte compartment, of the 2.7 Faraday electricity consumed, 0.45 Faraday, which is the excess electricity consumed in addition to the 2.25 Faraday consumed in the electron exchange reaction, either directly on the anode or via Ag (II). 4 g of water is consumed indirectly in connection with the generation of oxygen. In addition, 135 g of water was moved to the catholyte along with hydrogen ions and metal ions moving to the catholyte in the course of electrolytic oxidation.
Therefore, the amount of water reduced in the anolyte compartment 4 during electrolytic oxidation is 1
The weight was 18.7 g.

【0109】電解酸化手段で2.7 ファラディの電気量
により電解が行われている間に、陰極液中では1グラム
分子の硝酸が還元されて0.7 グラム分子の一酸化窒素
と0.3グラム分子の亜硝酸および1.7グラム分子の水
(30.6g)となっている。従って、電解酸化中に陰極
液室5で増加した水の量は165.6gであった。電解
酸化手段で2.7 ファラディの電気量により電解が行わ
れている間に、陰極液室17を流出した陰極液は電解透
析濃縮手段2の第1電解液循環槽10を経由して陰極液
循環槽17に還流され、4.6 ファラディの電気量で電
解が行われた。電解中に陰極液の循環流量は電解酸化手
段の電解電流の1アンペア分当たりに0.2 リットルの
一定に保たれ、積算循環量は868リットルであった。
電解酸化手段1の陰極液室5の流出液中には僅かにAg
(II)の着色が認められ、陰極液循環槽17内では高濃
度のAg(II)が存在した。陰極液が電解透析濃縮手段
の第1電解液室を通過する間に、0.3グラム分子の亜
硝酸、0.7グラム分子に一酸化窒素および1.7グラム
分子の水(30.6g)から1.0 グラム分子の硝酸が
再生したことになり、陰極液循環槽17の酸素放出管2
4からは0.95グラム分子の酸素を見い出した。電解
酸化手段1の陰極液が電解透析濃縮手段2の第1電解液
室10を通過している間に第2電解液室へ6.4 グラム
分子の水(115.1g)が移動するので、陰極液循環槽
17に戻った時点では水の量が19.9g 増加してい
た。
During electrolysis with 2.7 Faraday's electricity by the electrolytic oxidation means, 1 gram molecule of nitric acid is reduced in the catholyte to 0.7 gram molecule of nitric oxide and 0.3 gram molecule of nitric oxide. Gram molecules of nitrous acid and 1.7 grams of water
(30.6 g). Therefore, the amount of water increased in the catholyte compartment 5 during electrolytic oxidation was 165.6 g. The catholyte which flowed out of the catholyte compartment 17 while the electrolysis was being carried out by 2.7 Faraday electricity by the electrolytic oxidizing means was passed through the first electrolytic solution circulating tank 10 of the electrolytic dialysis concentrating means 2 and the catholyte was discharged. The mixture was returned to the circulation tank 17 and electrolysis was performed with an amount of 4.6 Faraday electricity. During the electrolysis, the circulating flow rate of the catholyte was kept constant at 0.2 liters per ampere of the electrolytic current of the electrolytic oxidizing means, and the integrated circulation amount was 868 liters.
Ag in the effluent of the catholyte compartment 5 of the electrolytic oxidation means 1 is slightly
Coloring of (II) was observed, and high concentration of Ag (II) was present in the catholyte circulation tank 17. While the catholyte passes through the first electrolyte compartment of the electrodialysis concentrating means, 0.3 grams of nitrous acid, 0.7 grams of nitric oxide and 1.7 grams of water (30.6 g) are added. From the nitric acid of the catholyte circulation tank 17 was regenerated to 1.0 g molecule of nitric acid.
From No. 4, 0.95 gram molecules of oxygen were found. While the catholyte of the electrolytic oxidizing means 1 passes through the first electrolytic solution chamber 10 of the electrolytic dialysis concentrating means 2, 6.4 gram molecules of water (115.1 g) move to the second electrolytic solution chamber. When returning to the catholyte circulation tank 17, the amount of water had increased by 19.9 g.

【0110】電解透析濃縮手段2の第2電解液室12で
は2.07グラム分子の硝酸(130.4g)と9.5グラム
分子の水(171.1g)を含む濃度が43.3%(8.
7M)の硝酸水溶液を生成し、第2電解液循環槽33の
溢流液として陰極液循環槽17に供給され、陰極液循環
槽17の溢流液が硝酸水溶液供給管27から供給され
る、720.2gの硝酸と1681.6gの水を含む濃度
が30.0%(5.6M)の新しい硝酸水溶液と混合して
陽極液循環槽28に供給される結果、陽極液循環槽28
の溢流液は38.3g の硝酸銀、443.6gの硝酸ウ
ラニル、708.8gの硝酸および1734.0gの水を
含む2.25リットルが排出された。溶解物質の濃度は
硝酸銀が0.1M、硝酸ウラニルが0.5M、硝酸が5.
0M であった。電解透析濃縮手段2の第3電解液室1
4において、200.0g の硝酸ナトリウムと522.
1g の水を含む、濃度が4.0M の硝酸ナトリウムを
供給し、4.6ファラディの電気量が与えられて、2.0
7グラム分子の硝酸ナトリウム(176.0g)が失わ
れ、同時に13.5グラム分子の水(242.2g)が失
われ、24.0gの硝酸ナトリウムと279.9gの水を
含む、濃度が1.0M の硝酸ナトリウム水溶液が第3電
解液循環槽37から溢流液排出管41を通して排出され
て、電気透析脱塩手段47の硝酸ナトリウム濃度が0.
1M に保持されている希釈液循環槽56に供給され
た。
In the second electrolytic solution chamber 12 of the electrodialyzing / concentrating means 2, the concentration containing 2.07 g molecule of nitric acid (130.4 g) and 9.5 g molecule of water (171.1 g) is 43.3% (83.3%). .
7M), is supplied to the catholyte circulation tank 17 as an overflow of the second electrolyte circulation tank 33, and the overflow of the catholyte circulation tank 17 is supplied from the nitric acid aqueous supply pipe 27. As a result of mixing with a fresh nitric acid aqueous solution having a concentration of 30.0% (5.6 M) containing 720.2 g of nitric acid and 1681.6 g of water and supplying the mixed solution to the anolyte circulation tank 28, the anolyte circulation tank 28 was produced.
2.25 liters containing 38.3 g of silver nitrate, 443.6 g of uranyl nitrate, 708.8 g of nitric acid and 1734.0 g of water were discharged. The concentrations of the dissolved substances were 0.1 M for silver nitrate, 0.5 M for uranyl nitrate, and 5.5 M for nitric acid.
OM. Third electrolyte chamber 1 of electrodialysis concentration means 2
In step 4, 200.0 g of sodium nitrate and 522.
A supply of 4.0 M sodium nitrate containing 1 g of water was provided, giving a charge of 4.6 Faraday and 2.0
Seven grams of molecules of sodium nitrate (176.0 g) are lost, while at the same time 13.5 grams of water (242.2 g) are lost, containing 24.0 g of sodium nitrate and 279.9 g of water. A 0.0M aqueous solution of sodium nitrate is discharged from the third electrolyte circulation tank 37 through the overflow discharge pipe 41, and the sodium nitrate concentration of the electrodialysis and desalting means 47 is reduced to 0.0.
It was supplied to a diluent circulation tank 56 maintained at 1M.

【0111】電解酸化手段1が2.7 ファラディの電気
量で運転されている間に、電気透析脱塩手段47に供給
される24.0gの硝酸ナトリウムの92%に相当する2
2.1gの硝酸ナトリウムと57.9g の水が、第3電解
液循環槽37から配管67,濃縮液室53,配管66を
一定の流量で循環する硝酸ナトリウム水溶液に移行し
た。希釈液は2gの硝酸ナトリウムと222.0gの水
を含む、濃度が0.1Mの硝酸ナトリウム水溶液が排出
された。第3電解液室に供給された硝酸ナトリウムの利
用率は99%であった。
While the electrolytic oxidizing means 1 is operated at an electric quantity of 2.7 Faraday, it corresponds to 92% of 24.0 g of sodium nitrate supplied to the electrodialysis desalting means 47.
2.1 g of sodium nitrate and 57.9 g of water were transferred from the third electrolytic solution circulating tank 37 to an aqueous solution of sodium nitrate circulating at a constant flow rate through the pipe 67, the concentrate chamber 53, and the pipe 66. The diluent was a 0.1 M aqueous sodium nitrate solution containing 2 g of sodium nitrate and 222.0 g of water. The utilization rate of sodium nitrate supplied to the third electrolytic solution chamber was 99%.

【0112】電解透析濃縮手段2の第4電解液室16で
は、82.8g の水酸化ナトリウムと227.7gの水
を含む、濃度が26.7%(8.6M)の水酸化ナトリウ
ム水溶液が生成し、第4電解液室42において水素ガス
が発生しなかった。この水酸化ナトリウム水溶液を13
0.4g の硝酸と194.3gの水を含む、濃度が40.2
%(8.0M)の硝酸水溶液と混合して中和し、176.
0gの硝酸ナトリウムと459.3gの水を含む、濃度
が27.7%(4.0M)の硝酸ナトリウム水溶液を調製
し、硝酸ナトリウム2gを添加して、第3電解液を回収
した。
In the fourth electrolytic solution chamber 16 of the electrodialyzing / concentrating means 2, an aqueous solution of sodium hydroxide having a concentration of 26.7% (8.6M) containing 82.8 g of sodium hydroxide and 227.7 g of water is contained. As a result, no hydrogen gas was generated in the fourth electrolytic solution chamber 42. This aqueous sodium hydroxide solution was added to 13
Contains 0.4 g nitric acid and 194.3 g water, at a concentration of 40.2
% (8.0 M) aqueous nitric acid and neutralized.
An aqueous solution of sodium nitrate having a concentration of 27.7% (4.0 M) containing 0 g of sodium nitrate and 459.3 g of water was prepared, and 2 g of sodium nitrate was added to collect a third electrolytic solution.

【0113】本実施例は、実施例1(1)〜(6)およ
び実施例2(1)〜(5)で生じる効果を得ることがで
きるとともに、更に以下に示す効果を生じる。
In this embodiment, the effects obtained in the first embodiment (1) to (6) and the second embodiment (1) to (5) can be obtained, and further, the following effects can be obtained.

【0114】(1)電解酸化手段の陰極液に含まれる銀
濃度を高め、電解透析濃縮手段の第1電解液室で生成す
るAg(II)量を増やし、陰極液室内にAg(II)を存
在させたことにより、陰極液室で陰極液の流量を低下し
ても一酸化窒素が気体として発生せず、硝酸の還元生成
物の酸化に係わる電流効率が高くなる。
(1) The concentration of silver contained in the catholyte of the electrolytic oxidizing means is increased, the amount of Ag (II) generated in the first electrolytic solution chamber of the electrolytic dialysis / concentration means is increased, and Ag (II) is introduced into the catholyte chamber. Due to the presence, even if the flow rate of the catholyte is reduced in the catholyte compartment, nitric oxide is not generated as a gas, and the current efficiency related to the oxidation of the reduction product of nitric acid is increased.

【0115】(2)電解透析濃縮手段の第4電解液室で
水素を発生せず、排気を処理する必要がない。
(2) No hydrogen is generated in the fourth electrolytic solution chamber of the electrodialyzing / concentrating means, and there is no need to treat exhaust gas.

【0116】(3)電解透析濃縮手段の第4電解液室で
陰極が酸素で分極され、水素発生電極と比較して電位が
高くなるので、電解透析濃縮手段の電極電圧が低くてす
み、消費電力が低減する。
(3) Since the cathode is polarized by oxygen in the fourth electrolytic solution chamber of the electrodialyzing / concentrating means and the potential becomes higher than that of the hydrogen generating electrode, the electrode voltage of the electrodialyzing / concentrating means can be low, and the consumption is reduced. Power is reduced.

【0117】(4)電解酸化手段の陰極液循環槽から発
生する酸素ガスを導入して利用できるので、排ガス処理
の必要がなくなった。
(4) Since oxygen gas generated from the catholyte circulation tank of the electrolytic oxidizing means can be introduced and used, there is no need for exhaust gas treatment.

【0118】(5)第1電解液循環槽および濃縮液循環
槽と関連する配管類を削除することが可能になり、装置
が簡単になる。
(5) The piping related to the first electrolytic solution circulating tank and the concentrated solution circulating tank can be eliminated, and the apparatus can be simplified.

【0119】[0119]

【発明の効果】請求項1の発明によれば、電解酸化手段
の陰極液に含まれる硝酸の還元生成物である亜硝酸,酸
化窒素および水を高い収率で硝酸に再生して被酸化性物
質の酸化に利用できると同時に、電解酸化手段で陽極液
から陰極液に移動する水を陰極液から除去して硝酸濃度
を高く保ち、陰極液中で水素やアンモニアの発生などの
好ましくない副反応を効果的に防止することができた。
According to the first aspect of the present invention, nitric acid, nitric oxide, and water, which are reduction products of nitric acid, contained in the catholyte of the electrolytic oxidizing means are regenerated into nitric acid at a high yield to obtain oxidizable substances. At the same time that it can be used to oxidize substances, water that moves from the anolyte to the catholyte is removed from the catholyte by electrolytic oxidation means to keep the nitric acid concentration high, and undesired side reactions such as the generation of hydrogen and ammonia in the catholyte Was effectively prevented.

【0120】請求項2の発明によれば、請求項1の発明
の効果を生じると共に、電解酸化手段の陽極液中で被酸
化性の金属酸化物を溶解処理する際に窒素酸化物を生成
せず、排ガスを処理する必要がない。
According to the second aspect of the present invention, the effects of the first aspect of the present invention are obtained, and nitrogen oxides are produced when the oxidizable metal oxide is dissolved in the anolyte of the electrolytic oxidizing means. No need to treat exhaust gas.

【0121】請求項3の発明によれば、請求項1の発明
の効果を生じると共に、電解酸化手段の陰極液中で硝酸
の還元生成物が蓄積せず、硝酸の還元生成物を高い収率
で硝酸に再生できる。
According to the third aspect of the present invention, the effect of the first aspect of the present invention is produced, and the reduction product of nitric acid does not accumulate in the catholyte of the electrolytic oxidizing means. Can be regenerated to nitric acid.

【0122】請求項4の発明によれば、請求項1の発明
の効果を生じると共に、電解酸化手段の陰極液に含まれ
る硝酸の還元生成物のうち気相に移行する酸化窒素量を
低減することができる。
According to the fourth aspect of the present invention, the effect of the first aspect of the present invention is produced, and the amount of nitric oxide which is transferred to the gas phase among the reduction products of nitric acid contained in the catholyte of the electrolytic oxidation means is reduced. be able to.

【0123】請求項5の発明によれば、請求項1の発明
の効果を生じると共に、電解酸化手段の陰極液に含まれ
る硝酸の還元生成物のうち気相に移行する酸化窒素量を
さらに低減することができ、硝酸の再生に必要な電流消
費量が低減する。
According to the fifth aspect of the present invention, the effect of the first aspect of the present invention is produced, and the amount of nitric oxide which is transferred to the gas phase among the reduction products of nitric acid contained in the catholyte of the electrolytic oxidation means is further reduced. And the current consumption required for nitric acid regeneration is reduced.

【0124】請求項6の発明によれば、電解酸化手段の
陰極液に含まれる硝酸の還元生成物のうち酸化窒素量の
発生を抑制することができ、陰極液の流量を低下するこ
とが可能で、硝酸の再生に必要な電流消費量がさらに低
減する。
According to the invention of claim 6, it is possible to suppress the generation of the amount of nitric oxide among the reduction products of nitric acid contained in the catholyte of the electrolytic oxidation means, and it is possible to reduce the flow rate of the catholyte. Thus, the current consumption required for the regeneration of nitric acid is further reduced.

【0125】請求項7の発明によれば、請求項1の発明
の効果を生じると共に、廃棄物に含まれた金属イオンを
含んだ硝酸水溶液を、電解酸化手段の陰極液室および陽
極液室に供給することにより、金属酸化物を硝酸塩とす
るために添加することが必要な硝酸を補充できる。
According to the seventh aspect of the present invention, the effects of the first aspect of the present invention are obtained, and an aqueous nitric acid solution containing metal ions contained in the waste is supplied to the catholyte chamber and the anolyte chamber of the electrolytic oxidation means. By supplying, it is possible to replenish nitric acid which needs to be added to convert the metal oxide into nitrate.

【0126】請求項8の発明によれば、請求項1の発明
の効果を生じると共に、電気透析濃縮手段の第4電解液
室から濃縮された水酸化ナトリウム水溶液が回収され、
硝酸と混合して中和することにより第3電解液室に供給
すべき硝酸ナトリウム水溶液を調製することができた。
According to the invention of claim 8, the effect of the invention of claim 1 is produced, and the concentrated aqueous solution of sodium hydroxide is recovered from the fourth electrolytic solution chamber of the electrodialyzing / concentrating means.
By mixing and neutralizing with nitric acid, an aqueous solution of sodium nitrate to be supplied to the third electrolytic solution chamber could be prepared.

【0127】請求項9の発明によれば、請求項1の発明
の効果を生じると共に、電気透析脱塩手段を組み合わせ
ることにより、電解透析濃縮手段の消費電力を低減で
き、第3電解液室に供給した硝酸ナトリウムの損失を低
減することができた。
According to the ninth aspect of the present invention, the effect of the first aspect of the present invention is obtained, and the power consumption of the electrodialysis concentrating means can be reduced by combining the electrodialysis desalting means. The loss of the supplied sodium nitrate could be reduced.

【0128】請求項10の発明によれば、請求項1,請
求項2,請求項3,請求項4,請求項7,請求項8また
は請求項9の発明の効果を生じると共に、特に請求項5
の発明の効果を具体化することができる。
According to the tenth aspect, the effects of the first, second, third, fourth, seventh, eighth, and ninth aspects of the invention are produced, and particularly, the effects of the tenth aspect are achieved. 5
The effect of the invention of the present invention can be embodied.

【0129】請求項11の発明によれば、請求項1,請
求項2,請求項7,請求項8または請求項9の発明の効
果を生じると共に、特に請求項6の発明の効果を具体化
することができ、装置の構成をより簡単にできる。
According to the eleventh aspect, the effects of the first, second, seventh, eighth, or ninth aspects are produced, and in particular, the effect of the sixth aspect is realized. And the configuration of the apparatus can be simplified.

【0130】請求項12の発明によれば、請求項1の発
明の効果を生じると共に、電解透析濃縮手段の第4電解
液室で水素を発生せず、排気を処理する必要がなくな
り、さらに、電解透析濃縮手段の第4電解液室で陰極が
酸素で分極され、水素発生電極と比較して電位が高くな
るので、電解透析濃縮手段の電極電圧が低くてすみ、消
費電力が低減する。
According to the twelfth aspect of the present invention, the effect of the first aspect of the present invention is obtained, and no hydrogen is generated in the fourth electrolytic solution chamber of the electrolytic dialysis concentrating means, so that it is not necessary to treat the exhaust gas. Since the cathode is polarized with oxygen in the fourth electrolytic solution chamber of the electrodialyzing / concentrating means and has a higher potential than that of the hydrogen generating electrode, the electrode voltage of the electrodialyzing / concentrating means can be low, and the power consumption is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の好適な一実施例である金属酸化物およ
び被酸化性物質を含む廃棄物の処理装置の構成図であ
る。
FIG. 1 is a configuration diagram of an apparatus for treating waste containing a metal oxide and an oxidizable substance according to a preferred embodiment of the present invention.

【図2】本発明の他の実施例である金属酸化物および被
酸化性物質を含む廃棄物の処理装置の構成図である。
FIG. 2 is a configuration diagram of a waste treatment apparatus including a metal oxide and an oxidizable substance according to another embodiment of the present invention.

【図3】本発明の他の実施例である金属酸化物および被
酸化性物質を含む廃棄物の処理装置の構成図である。
FIG. 3 is a configuration diagram of an apparatus for treating waste containing a metal oxide and an oxidizable substance according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…電解酸化手段、2…電解透析濃縮手段、4…陽極液
室、5…陰極液室、6…陽極、9…第1陽イオン交換
膜、10…第1電解液室、11…陰イオン交換膜、12
…第2電解液室、13…第2陽イオン交換膜、14…第
3電解液室、15…陰極、16…第4電解液室、47…
電気透析脱塩手段、52…希釈液室、53…濃縮液室。
DESCRIPTION OF SYMBOLS 1 ... electrolytic oxidation means, 2 ... electrolytic dialysis concentrating means, 4 ... anolyte chamber, 5 ... catholyte chamber, 6 ... anode, 9 ... 1st cation exchange membrane, 10 ... 1st electrolyte chamber, 11 ... anion Exchange membrane, 12
... second electrolyte chamber, 13 ... second cation exchange membrane, 14 ... third electrolyte chamber, 15 ... cathode, 16 ... fourth electrolyte chamber, 47 ...
Electrodialysis desalting means, 52: diluent chamber, 53: concentrate chamber.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】硝酸を含む陽極液と被酸化性物質を含む廃
棄物を接触させて、二価の原子価状態にある銀の化学種
を媒体として酸化して処理し、電解液中で還元によって
生成した一価の原子価状態にある銀イオンは電解酸化手
段の陽極液中において二価の原子価状態にある銀の化学
種に再生する廃棄物の処理方法の一つにおいて、 亜硝酸と窒素酸化物ならびに陽極液中に存在する銀およ
びその他の金属イオンの一部を含み、水の含有量が増加
した硝酸水溶液である前記電解酸化手段の陰極室液を、
陽極と第1陽イオン交換膜で区画される第1電解液室,
前記第1陽イオン交換膜と陰イオン交換膜で区画される
第2電解液室,前記陰イオン交換膜と第2陽イオン交換
膜で区画される第3電解液室,前記第2陽イオン交換膜
と陰極で区画される第4電解液室でそれぞれ構成される
電解透析濃縮手段の前記第1電解液室に供給し、前記第
3電解液室に硝酸ナトリウム水溶液を供給し、前記第2
電解液室に硝酸水溶液を循環し、前記第4電解液室に水
酸化ナトリウム水溶液を循環して電解透析を行い、 第1電解液室に供給される硝酸水溶液中に溶解している
亜硝酸と窒素酸化物を陽極上の電位差によって酸化して
硝酸を再生し、第1電解液室から第2電解液室に電荷を
運搬する水素イオンおよび金属イオンに伴って水を第1
陽イオン交換膜を通して除去することによって硝酸水溶
液中の硝酸濃度を高めて、前記電解酸化手段の前記陰極
室に還流することを特徴とする金属酸化物および被酸化
性物質を含む廃棄物の処理方法。
An anolyte containing nitric acid and a waste containing an oxidizable substance are brought into contact with each other, oxidized and treated using silver species in a divalent valence state as a medium, and reduced in an electrolyte. The silver ions in the monovalent valence state generated by the method are one of the waste treatment methods for regenerating silver species in the divalent valence state in the anolyte of the electrolytic oxidation means. Cathode compartment liquid of the electrolytic oxidation means, which is a nitric acid aqueous solution containing nitrogen oxides and a part of silver and other metal ions present in the anolyte, and having an increased water content,
A first electrolyte compartment partitioned by an anode and a first cation exchange membrane,
A second electrolyte compartment partitioned by the first cation exchange membrane and the anion exchange membrane, a third electrolyte compartment partitioned by the anion exchange membrane and the second cation exchange membrane, and the second cation exchange The first electrolytic solution is supplied to the first electrolytic solution chamber of the electrolytic dialysis / concentration means, which is composed of a fourth electrolytic solution chamber defined by a membrane and a cathode, and an aqueous sodium nitrate solution is supplied to the third electrolytic solution chamber.
An aqueous nitric acid solution is circulated in the electrolytic solution chamber, an aqueous sodium hydroxide solution is circulated in the fourth electrolytic solution chamber to perform electrodialysis, and nitrous acid dissolved in the aqueous nitric acid solution supplied to the first electrolytic solution chamber is used. Nitrogen oxide is oxidized by a potential difference on the anode to regenerate nitric acid, and water is removed from the first electrolytic solution chamber along with hydrogen ions and metal ions that carry charges from the first electrolytic solution chamber to the second electrolytic solution chamber.
A method for treating waste containing a metal oxide and an oxidizable substance, wherein the nitric acid concentration in an aqueous nitric acid solution is increased by removing through a cation exchange membrane and refluxed to the cathode chamber of the electrolytic oxidizing means. .
【請求項2】二価の原子価状態にある銀の化学種が含ま
れる硝酸水溶液が供給される前記電解酸化手段の陽極液
循環槽に、金属酸化物と被酸化性物質を含む廃棄物を添
加し、電解で再生される二価の原子価状態にある銀の化
学種の作用で被酸化性物質を酸化し、可溶性金属酸化物
を硝酸塩として処理することを特徴とする請求項1の金
属酸化物および被酸化性物質を含む廃棄物の処理方法。
2. A waste material containing a metal oxide and an oxidizable substance is supplied to an anolyte circulating tank of the electrolytic oxidizing means to which a nitric acid aqueous solution containing a silver species in a divalent valence state is supplied. 2. The metal according to claim 1, wherein the oxidizable substance is oxidized by the action of silver species in a divalent state regenerated by electrolysis and the soluble metal oxide is treated as a nitrate. A method for treating waste containing oxides and oxidizable substances.
【請求項3】前記電解酸化手段の前記陰極室液の供給は
前記電解透析濃縮手段の前記第1電解液室の流出液が流
入する循環槽からなされ、前記電解透析濃縮手段の前記
第1電解液の供給は前記電解酸化手段の前記陰極室液が
流入する循環槽からなされ、前記電解透析濃縮手段の前
記第1電解液に加えられる電気量が前記電解酸化手段の
前記陰極室液に加えられる電気量よりも大きいことを特
徴とする請求項1の金属酸化物および被酸化性物質を含
む廃棄物の処理方法。
3. The electrolytic oxidizing means is supplied with a liquid from the cathode chamber through a circulating tank into which an effluent from the first electrolytic solution chamber of the electrolytic dialysis / concentrating means flows. The supply of the solution is made from a circulating tank into which the catholyte solution of the electrolytic oxidizing means flows, and the amount of electricity added to the first electrolytic solution of the electrolytic dialysis concentrating means is added to the catholyte solution of the electrolytic oxidizing means. The method for treating waste containing a metal oxide and an oxidizable substance according to claim 1, wherein the amount is larger than an amount of electricity.
【請求項4】前記電解酸化手段の前記陰極室液室に供給
され、あるいは、循環される電解液の流量が、前記電解
酸化手段に流れる電流の1アンペア当たりに少なくとも
0.36l/min であることを特徴とする請求項3の金属酸
化物および被酸化性物質を含む廃棄物の処理方法。
4. A flow rate of an electrolytic solution supplied to or circulated to the cathode chamber liquid chamber of the electrolytic oxidizing means is at least per one ampere of a current flowing through the electrolytic oxidizing means.
4. The method for treating waste containing a metal oxide and an oxidizable substance according to claim 3, wherein the rate is 0.36 l / min.
【請求項5】前記電解酸化手段の前記陰極室液室から前
記電解透析濃縮手段の前記第1電解液室に供給される電
解液が少なくとも0.01M 以上の濃度で銀イオンを含
有しており、前記電気透析脱塩手段の陽極には水素標準
電極と比較して少なくとも2.0V の電位が加えられ、
前記第1電解液中で二価の原子価状態にある銀の化学種
を生成するように過剰の電気量を加えて電解透析されて
いることを特徴とする請求項4の金属酸化物および被酸
化性物質を含む廃棄物の処理方法。
5. The electrolytic solution supplied from the catholyte chamber of the electrolytic oxidizing means to the first electrolytic chamber of the electrolytic dialysis concentrating means contains silver ions at a concentration of at least 0.01 M or more. A potential of at least 2.0 V is applied to the anode of the electrodialysis desalting means as compared with the hydrogen standard electrode,
5. The metal oxide according to claim 4, wherein the dialysate is electrodialyzed by applying an excessive amount of electricity so as to generate a silver species in a divalent state in the first electrolytic solution. A method for treating waste containing oxidizing substances.
【請求項6】前記電解酸化手段の前記陰極室液室から前
記電解透析濃縮手段の前記第1電解液室に供給される電
解液が少なくとも0.02M 以上の濃度で銀イオンを含
有しており、前記電気透析脱塩手段の陽極には水素標準
電極と比較して少なくとも2.0V の電位が加えられ、
前記第1電解液が前記電解酸化手段の陰極液室に供給さ
れ、陰極液室から流出するまで、二価の原子価状態にあ
る銀の化学種が残っているように過剰の電気量を加えて
電解透析されていることを特徴とする請求項3の金属酸
化物および被酸化性物質を含む廃棄物の処理方法。
6. An electrolytic solution supplied from the catholyte chamber of the electrolytic oxidizing means to the first electrolytic chamber of the electrolytic dialysis concentrating means contains silver ions at a concentration of at least 0.02 M or more. A potential of at least 2.0 V is applied to the anode of the electrodialysis desalting means as compared with the hydrogen standard electrode,
Until the first electrolytic solution is supplied to the catholyte compartment of the electrolytic oxidizing means and flows out of the catholyte compartment, an excess amount of electricity is added so that silver species in a divalent state remain. 4. The method for treating waste containing a metal oxide and an oxidizable substance according to claim 3, wherein the waste is electrodialyzed.
【請求項7】前記電解透析濃縮手段の前記第2電解液室
に水を供給しながら電解して、前記第1電解液室から第
1陽イオン交換膜を通過して前記第2電解液室に移動し
た金属イオンを含む硝酸水溶液を含み、濃度が10M以
下に調節された第2電解液を前記電解酸化手段の前記陰
極液室に電解液を供給する循環液槽に供給し、前記循環
液槽の溢流液を陽極液室に電解液を供給する循環液槽
に、金属酸化物を硝酸塩とするために補給する硝酸銀を
含んだ硝酸水溶液と混合して、供給することを特徴とす
る請求項1の金属酸化物および被酸化性物質を含む廃棄
物の処理方法。
7. An electrolysis while supplying water to said second electrolytic solution chamber of said electrolytic dialysis concentrating means, and said second electrolytic solution chamber passes through said first cation exchange membrane from said first electrolytic solution chamber. Supplying a second electrolytic solution having a concentration adjusted to 10 M or less to a circulating liquid tank for supplying an electrolytic solution to the catholyte chamber of the electrolytic oxidizing means, wherein The effluent of the tank is mixed with an aqueous nitric acid solution containing silver nitrate to supply metal oxide to nitrate and supplied to a circulating liquid tank for supplying an electrolytic solution to the anolyte chamber. Item 6. A method for treating waste containing the metal oxide and the oxidizable substance according to Item 1.
【請求項8】前記電解透析濃縮手段の前記第4電解液室
で生成する水酸化ナトリウムの水溶液に硝酸の水溶液を
加えて中和し、硝酸ナトリウム水溶液となし、前記電解
透析濃縮手段の第3電解液室に供給して0.5M乃至1.
0Mの一定濃度に保持することを特徴とする請求項1の
金属酸化物および被酸化性物質を含む廃棄物の処理方
法。
8. An aqueous solution of nitric acid is added to an aqueous solution of sodium hydroxide produced in the fourth electrolytic solution chamber of the electrolytic dialysis / concentrating means to neutralize the aqueous solution to form an aqueous sodium nitrate solution. 0.5M to 1.
The method for treating waste containing a metal oxide and an oxidizable substance according to claim 1, wherein the concentration is maintained at a constant concentration of 0M.
【請求項9】複数の陽イオン交換膜および複数の陰イオ
ン交換膜を交互に配置することによって希釈液室、およ
び濃縮液室がそれらの間に交互に配置された電気透析脱
塩手段の前記希釈液室に、硝酸ナトリウムの濃度が低下
した前記電解透析濃縮手段の前記第3電解液の硝酸ナト
リウム水溶液を供給し、この希釈液の塩濃度を0.1M
以下に低下せしめて外部に排出し、一方、前記濃縮液室
から生成する濃縮液の塩濃度を3.5M 以上となし、前
記第3電解液室に導く前記第3電解液に加えて電解透析
に供することを特徴とする請求項1の金属酸化物および
被酸化性物質を含む廃棄物の処理方法。
9. The electrodialysis desalination means in which a plurality of cation exchange membranes and a plurality of anion exchange membranes are alternately arranged, whereby a diluent chamber and a concentrate chamber are alternately arranged therebetween. An aqueous solution of sodium nitrate of the third electrolytic solution of the electrolytic dialysis / concentration means having a reduced concentration of sodium nitrate is supplied to the diluent solution chamber, and the salt concentration of the diluent is adjusted to 0.1 M.
The concentration is reduced to below and discharged to the outside. On the other hand, the salt concentration of the concentrated solution generated from the concentrated solution chamber is set to 3.5M or more, and the dialysis is performed in addition to the third electrolytic solution guided to the third electrolytic solution chamber. The method for treating waste containing a metal oxide and an oxidizable substance according to claim 1, wherein the waste is provided.
【請求項10】陽極液室と陰極室液室とそれらを隔離す
る隔膜とからなる電解酸化手段と、第1電解液室と第2
電解液室と第3電解液室と第4電解液室とそれらを隔離
するイオン交換膜からなる電解透析塩分解手段と、多数
のイオン交換膜で構成される希釈液室と濃縮液室からな
る電気透析脱塩手段で構成され、 前記陰極液室から亜硝酸と酸化窒素を含んだ硝酸水溶液
を受け入れ、前記第1電解液室に供給するための循環液
槽と、配管と、前記第1電解液室から硝酸が再生され、
水が除去された硝酸水溶液を受け入れ、前記陰極室液室
に供給するための循環液槽と、配管とを備え、 前記第2電解液の循環槽の溢流液を前記電解酸化手段の
陰極液循環槽に供給するための経路を備え、前記陰極液
循環槽の溢流液を硝酸銀を含んだ硝酸水溶液と混合して
前記陽極液循環槽に供給する経路を備え、前記陽極液循
環槽の溢流液を特定の処理工程に排出する経路を備え、 前記第3電解液の循環槽の溢流液を前記電気透析脱塩手
段の前記希釈液の循環液槽に供給するための経路を備
え、 前記濃縮液の循環槽の溢流液を前記電解透析濃縮手段の
前記第3電解液の循環槽に供給するための経路を備え、 前記希釈液の循環槽の溢流液を排出する経路を備えるこ
とを特徴とする金属酸化物および被酸化性物質を含む廃
棄物の処理装置。
10. An electrolytic oxidizing means comprising an anolyte compartment, a catholyte compartment and a diaphragm separating them, a first electrolyte compartment and a second electrolyte compartment.
An electrolytic dialysis salt decomposition means comprising an electrolytic solution chamber, a third electrolytic solution chamber, a fourth electrolytic solution chamber and an ion exchange membrane for isolating them, and a diluent chamber and a concentrate chamber comprising a number of ion exchange membranes. A circulating fluid tank for receiving an aqueous nitric acid solution containing nitrous acid and nitric oxide from the catholyte compartment and supplying the nitric acid aqueous solution to the first electrolytic compartment; a pipe; Nitric acid is regenerated from the liquid chamber,
A circulating liquid tank for receiving the aqueous nitric acid solution from which water has been removed and supplying the liquid to the cathode chamber liquid chamber; and a pipe. A path for supplying the circulating tank; and a path for mixing the overflow of the catholyte circulating tank with an aqueous nitric acid solution containing silver nitrate and supplying the mixture to the anolyte circulating tank. A path for discharging the flowing liquid to a specific treatment step; and a path for supplying an overflow of the circulating tank for the third electrolytic solution to the circulating liquid tank for the diluting liquid of the electrodialysis desalting means. A path for supplying the overflow of the concentrated liquid circulation tank to the third electrolyte circulation tank of the electrolytic dialysis concentrating means; and a path for discharging the overflow of the diluted liquid circulation tank. An apparatus for treating waste containing a metal oxide and an oxidizable substance.
【請求項11】陽極液室と陰極室液室とそれらを隔離す
る隔膜とからなる電解酸化手段と、第1電解液室と第2
電解液室と第3電解液室と第4電解液室とそれらを隔離
するイオン交換膜からなる電解透析塩分解手段と、多数
のイオン交換膜で構成される希釈液室と濃縮液室からな
る電気透析脱塩手段で構成され、 前記第1電解液室で電解的に生成した、二価の原子価状
態にある銀の化学種を高い濃度で含む硝酸水溶液を受け
入れ、前記陰極液室に供給し、前記陰極液室で二価の原
子価状態にある銀の化学種が低下した硝酸水溶液を受け
入れ、前記第1電解液室に供給する共通の陰極液循環槽
とそれぞれの配管を備え、 前記第2電解液の循環槽の溢流液を前記電解酸化手段の
陰極液循環槽に供給するための経路を備え、前記陰極液
循環槽の溢流液を硝酸銀を含んだ硝酸水溶液と混合して
前記陽極液循環槽に供給する経路を備え、前記陽極液循
環槽の溢流液を特定の処理工程に排出する経路を備え、 前記第3電解液の循環槽の溢流液を前記電気透析脱塩手
段の前記希釈液の循環液槽に供給するための経路を備
え、 前記第3電解液室で電解透析的に濃度が低下した硝酸ナ
トリウム水溶液を受け入れ、前記電気透析脱塩手段の濃
縮液室に供給し、前記濃縮液室で電気透析的に濃度が上
昇した硝酸ナトリウム水溶液を受け入れ、前記第3電解
液室に供給する共通の第3電解液循環槽とそれぞれの配
管を備え、 前記希釈液の循環槽の溢流液を排出する経路を備えるこ
とを特徴とする金属酸化物および被酸化性物質を含む廃
棄物の処理装置。
11. An electrolytic oxidizing means comprising an anolyte compartment, a catholyte compartment and a diaphragm separating them, a first electrolyte compartment and a second electrolyte compartment.
An electrolytic dialysis salt decomposition means comprising an electrolytic solution chamber, a third electrolytic solution chamber, a fourth electrolytic solution chamber and an ion exchange membrane for isolating them, and a diluent chamber and a concentrate chamber comprising a number of ion exchange membranes. It receives an aqueous nitric acid solution containing a high concentration of silver species in a divalent valence state, which is electrolytically generated in the first electrolytic solution chamber, and is supplied to the catholyte chamber. And a common catholyte circulation tank and respective pipes for receiving a nitric acid aqueous solution in which the silver species in a divalent valence state is reduced in the catholyte compartment and supplying the same to the first electrolyte compartment, A channel for supplying the overflow of the second electrolyte circulation tank to the catholyte circulation tank of the electrolytic oxidizing means; mixing the overflow of the catholyte circulation tank with a nitric acid aqueous solution containing silver nitrate; A path for supplying the anolyte circulation tank is provided; A path for discharging the overflow of the third electrolytic solution circulating tank to the circulating liquid tank of the diluting solution of the electrodialysis desalting means. (3) An aqueous solution of sodium nitrate whose concentration has been reduced by electrodialysis is received in the electrolytic solution chamber, and supplied to the concentrated solution chamber of the electrodialysis desalting means. A metal oxide, comprising: a common third electrolytic solution circulation tank for receiving and supplying the third electrolytic solution chamber and respective pipes; and a path for discharging an overflow from the diluent circulation tank. And waste treatment equipment containing oxidizable substances.
【請求項12】前記電解透析濃縮手段の前記陰極がガス
拡散性電極であり、水酸化ナトリウム水溶液である前記
第4電解液と接する電極面の裏側に空気を供給すること
を特徴とする請求項1の金属酸化物および被酸化性物質
を含む廃棄物の処理方法。
12. The method according to claim 1, wherein said cathode of said electrolytic dialysis concentrating means is a gas diffusive electrode, and supplies air to the back side of the electrode surface in contact with said fourth electrolytic solution which is an aqueous solution of sodium hydroxide. 1. A method for treating waste containing the metal oxide and the oxidizable substance.
JP8204468A 1996-08-02 1996-08-02 Method and device for treating waste containing metal oxide and material to be oxidized Pending JPH1043710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8204468A JPH1043710A (en) 1996-08-02 1996-08-02 Method and device for treating waste containing metal oxide and material to be oxidized

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8204468A JPH1043710A (en) 1996-08-02 1996-08-02 Method and device for treating waste containing metal oxide and material to be oxidized

Publications (1)

Publication Number Publication Date
JPH1043710A true JPH1043710A (en) 1998-02-17

Family

ID=16491041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8204468A Pending JPH1043710A (en) 1996-08-02 1996-08-02 Method and device for treating waste containing metal oxide and material to be oxidized

Country Status (1)

Country Link
JP (1) JPH1043710A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522635A (en) * 2009-04-01 2012-09-27 アース・リニューアル・グループ,エルエルシー Improved aqueous phase oxidation process
US9272936B2 (en) 2009-04-01 2016-03-01 Earth Renewal Group, Llc Waste treatment process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522635A (en) * 2009-04-01 2012-09-27 アース・リニューアル・グループ,エルエルシー Improved aqueous phase oxidation process
JP2014144452A (en) * 2009-04-01 2014-08-14 Earth Renewal Group Llc Improved aqueous phase oxidation process
US9272936B2 (en) 2009-04-01 2016-03-01 Earth Renewal Group, Llc Waste treatment process
US9611158B2 (en) 2009-04-01 2017-04-04 Earth Renewal Group, Llc Waste treatment process
US9902632B2 (en) 2009-04-01 2018-02-27 Earth Renewal Group, Llc Waste treatment method

Similar Documents

Publication Publication Date Title
JP2750123B2 (en) Waste treatment method and equipment
JP4549849B2 (en) New collection process
CN112978874A (en) Method for purifying iodine salt-containing wastewater by using flowing electrode capacitive deionization device
KR20170099616A (en) Electrodialysis coupled with electrochemical nitrogen removal Process for contaminated groundwater treatment, and Apparatus therefor
JPH09271781A (en) Method of removing nitrogen from waste water
JPH06248486A (en) System and method for regenerating reducing agent
JP3236315B2 (en) Pure water electrolysis tank with an intermediate chamber
US4004993A (en) Electrolytic trapping of iodine from process gas streams
JPH1043710A (en) Method and device for treating waste containing metal oxide and material to be oxidized
EP2772976B1 (en) Regenerative fuel cell system with gas purification
Chiba et al. Mediated electrochemical oxidation as an alternative to incineration for mixed wastes
KR100564062B1 (en) The apparatus for hybrid mediated oxidation of destroying organic wastes
KR20000006392A (en) Method and apparatus for exhaust gas treatment
ES2243454T3 (en) PROCEDURE AND APPARATUS FOR SEPARATION OF DISSOLVED NITRATE.
GB2396625A (en) Removal of an acid
EP0696228B1 (en) A method for converting ammonia in a gas stream to nitrogen
CN218025746U (en) Chemical wastewater treatment system
KR100564055B1 (en) Apparatus for Hybrid Mediated Oxidation of Destroying Organic Wastes by Electrochemical and Ozone Oxidation
JPS5816953B2 (en) Electrolysis method to remove wastewater pollutants
CN111410343B (en) Ammonia nitrogen removal device and method for acid regeneration acid-containing wastewater
JP2938869B1 (en) Treatment of radioactive liquid waste
JP3981424B2 (en) Decomposition method of halogenated ethylene
JP4381602B2 (en) Method and apparatus for oxidizing one or more actinides stabilized in a reduced form by one or more anti-nitrite agents in concentrated nitric acid solution
WO2001072641A1 (en) Method and apparatus for reducing an electrolyte containing nitric acid
JPH08299962A (en) Treatment of waste water containing oxidizable matter and device therefor