JPH1042464A - Method for attaching surge protective device to steel tower supporting overhead wires in parallel - Google Patents

Method for attaching surge protective device to steel tower supporting overhead wires in parallel

Info

Publication number
JPH1042464A
JPH1042464A JP8195813A JP19581396A JPH1042464A JP H1042464 A JPH1042464 A JP H1042464A JP 8195813 A JP8195813 A JP 8195813A JP 19581396 A JP19581396 A JP 19581396A JP H1042464 A JPH1042464 A JP H1042464A
Authority
JP
Japan
Prior art keywords
line
lightning arrester
lines
parallel
surge protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8195813A
Other languages
Japanese (ja)
Inventor
Tatsuya Sano
達也 佐野
Tomohiro Hayashi
朋宏 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP8195813A priority Critical patent/JPH1042464A/en
Publication of JPH1042464A publication Critical patent/JPH1042464A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for attaching surge protective device to iron tower supporting overhead wires in parallel by which the occurring frequency of flashover accidents in the whole iron tower can be reduced, without increasing the number of surge protective devices. SOLUTION: At the time of attaching surge protective devices 1 to one-side lines of a iron tower supporting four or more lines, the devices 1 for top-side lines and devices 1 for bottom-side lines are staggeredly attached to the lines on the opposite sides of the support of the iron tower. The voltage across the insulator strings of lines having no surge protective devices can be lowered, and the occurring frequency of flashover accidents can be reduced than the conventional example where the surge protective devices are attached to lines on one side of the support.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、4回線以上の併架
鉄塔における避雷装置の取付方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for mounting a lightning arrester in a tower having four or more lines.

【0002】[0002]

【従来の技術】併架鉄塔とは、図1に示すように4回線
以上の電力線を支持させた鉄塔を意味し、一般の3相交
流では1回線が3相の電力線で構成されているから、4
回線の場合には12相、6回線の場合には18相の電力
線が鉄塔支柱の両側のアームに振り分けて配置されてい
る。各回線は、図1中に記したように上下の関係におい
ては上回線、下回線と呼ばれ、左右の関係においては1
L、2Lと呼ばれている。
2. Description of the Related Art As shown in FIG. 1, a parallel tower means a tower supporting four or more power lines. In general three-phase AC, one line is constituted by three-phase power lines. , 4
In the case of a line, 12-phase power lines are arranged in the case of 6 lines, and 18-phase power lines are arranged in the arms on both sides of the tower support. Each line is called an upper line and a lower line in a vertical relationship as shown in FIG. 1, and is 1 in a left and right relationship.
L, 2L.

【0003】このような併架鉄塔に避雷装置を取付ける
場合、全部の回線に避雷装置を取付けるのがベストであ
るが、多額の費用がかかることから片回線のみに避雷装
置を取付けるのが普通である。この場合、従来は図2に
模式的に示すように1L側あるいは2L側に避雷装置1
を縦に並べて取付けている。このような取付け方法が採
用されている主な理由は、鉄塔の同一サイドに取付け工
事を集中させることにより、工事の手数と工事停電時間
の短縮を図るためである。なお、図2の左側に示したよ
うに、一般に避雷装置1は限流要素部2と直列ギャップ
3とからなり、電力線4を支持する碍子連5と並列に鉄
塔アーム6に取付けられている。そして落雷により碍子
連間電圧(鉄塔アーム電位と電線電位の差)が過大にな
ると直列ギャップ3で閃絡し、限流要素部2が導体とな
り、雷電流を流しその後の常時送電電圧による続流を遮
断して碍子連5への閃絡事故及び地絡、短絡事故を防止
するようになっている。
When installing a lightning arrester on such a parallel tower, it is best to install a lightning arrester on all the lines, but it is usually expensive to install a lightning arrester on only one line because of the high cost. is there. In this case, the lightning arrester 1 is conventionally provided on the 1L or 2L side as schematically shown in FIG.
Are installed vertically. The main reason for adopting such a mounting method is to concentrate the mounting work on the same side of the steel tower, thereby reducing the number of works and the time required for power outage. As shown on the left side of FIG. 2, the lightning arrester 1 generally includes a current limiting element 2 and a series gap 3, and is attached to a tower arm 6 in parallel with an insulator string 5 supporting a power line 4. If the voltage between insulators (difference between the tower arm potential and the electric wire potential) becomes excessive due to lightning, flashing occurs at the series gap 3, the current limiting element 2 becomes a conductor, and a lightning current flows, followed by a continuous current by the constant transmission voltage. To prevent a flash accident, a ground fault, and a short circuit accident on the insulator string 5.

【0004】ところが、鉄塔への落雷による過大な雷電
流が流れて避雷装置1が動作した場合、避雷装置1が設
置されていない側の回線で閃絡事故が発生することがあ
る。シミュレーションによる試算によれば、図2のよう
に片回線のみに避雷装置1を取り付けた4回線の併架鉄
塔における電力線100km・年当たりの閃絡事故発生
頻度は、1回線事故が6.5回、2回線事故が3.5回
となっている。なお、1回線事故とは避雷装置が設置さ
れていない側の上回線の碍子連5で閃絡事故が発生した
ことを意味し、2回線事故とは避雷装置が設置されてい
ない側の上下の回線の碍子連5で閃絡事故が発生したこ
とを意味する。
However, when an excessive lightning current due to a lightning strike on a tower causes the lightning arrester 1 to operate, a flashover accident may occur on a line on which the lightning arrester 1 is not installed. According to the simulation calculation, as shown in FIG. 2, the frequency of flashover accidents per power line 100 km / year in a four-station parallel tower in which the lightning arrester 1 is attached to only one line is 6.5 for one line accident. 3.5 line accidents. The one-line accident means that a flash accident has occurred in the insulator line 5 of the upper line on which the lightning arrester is not installed, and the two-line accident means that the upper and lower sides of the side on which the lightning arrester is not installed are referred to. This means that a flash accident has occurred in the insulator chain 5 of the line.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決し、併架鉄塔の片回線のみに避雷装置を
取付けるという前提を崩すことなく、避雷装置が設置さ
れていない側の回線の閃絡事故発生頻度を従来よりも低
減できるようにした併架鉄塔における避雷装置の取付方
法を提供するためになされたものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and does not break the premise that the lightning arrester is installed only on one line of the parallel tower, and on the side where the lightning arrester is not installed. It is an object of the present invention to provide a method for installing a lightning arrester in a parallel tower in which the frequency of flashover accidents on a line can be reduced more than before.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明者は片回線のみに避雷装置を取付けた併架
鉄塔が雷撃を受けた場合に、他の回線にどのような電圧
変化が生ずるかをシミュレーション解析した。その結
果、上回線の1L側に取付けた避雷装置が動作した場
合、下回線の2L側の碍子連間電圧の上昇は、下回線の
1L側の碍子連間電圧の上昇よりも大きく、これが避雷
装置が設置されていない反対側の回線の閃絡事故発生頻
度を大きくしている原因であることを究明した。すなわ
ち、避雷装置による回線保護機能はより近い位置にある
上下の回線に強く作用すると言い換えることができる。
Means for Solving the Problems To solve the above problems, the present inventor has determined what kind of voltage is applied to other lines when a lightning tower installed with a lightning arrester on only one line is subjected to lightning strike. Simulation analysis was performed to determine whether a change occurred. As a result, when the lightning arrester mounted on the 1L side of the upper line operates, the rise in the voltage between the insulators on the 2L side of the lower line is larger than the increase in the voltage between the insulators on the 1L side of the lower line, which is the lightning arrester. The cause was that the frequency of flashovers on the line on the other side where no equipment was installed was increasing. In other words, it can be said that the line protection function of the lightning arrester strongly acts on the upper and lower lines located closer to each other.

【0007】本発明は上記の知見に基づいてなされたも
のであり、4回線以上の併架鉄塔の片回線に避雷装置を
取付けるにあたり、上側の回線の避雷装置と下側の回線
の避雷装置とを、鉄塔支柱を挟んで互いに反対側に取付
けたことを特徴とするものである。
The present invention has been made on the basis of the above-described knowledge. In mounting a lightning arrester on one of four or more parallel towers, a lightning arrester for an upper line and a lightning arrester for a lower line are provided. Are mounted on opposite sides of a steel tower support.

【0008】[0008]

【発明の実施の形態】以下に本発明の好ましい実施の形
態を示す。図3は4回線の併架鉄塔に本発明を適用した
例を示す模式図であり、上回線の避雷装置1を1L側に
取付け、下回線の避雷装置1を2L側に取付けてある。
この構成の持つ意味を、以下に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. FIG. 3 is a schematic view showing an example in which the present invention is applied to a four-line parallel tower, in which the lightning arrester 1 for the upper line is mounted on the 1L side and the lightning arrester 1 for the lower line is mounted on the 2L side.
The meaning of this configuration will be described below.

【0009】まず、図4に示すように4回線の併架鉄塔
の上回線の1L側にのみ避雷装置1を取付け、この併架
鉄塔の塔頂に雷撃を受けた場合に、他の回線にどのよう
な電圧変化が生ずるかをシミュレーション解析した結果
を示す。図5は50kAの雷撃電流が併架鉄塔の塔頂に
流れたときの下回線上相の鉄塔アーム電位を示すグラフ
であり、この鉄塔アーム電位は大地からの高さに比例し
ており、同じ高さであれば1Lと2Lのアーム電位はほ
ぼ同じである。また図6は下回線上相の電力線電位を示
すグラフであり、矢印が避雷装置1が動作した瞬間を示
す。避雷装置1が動作すると、避雷装置1を介して鉄塔
から上回線の1L側の電力線に大電流が流れるため、誘
導効果によって他の回線の電力線電位も急激に上昇し、
下回線の1L側と2L側に図6に示した通りの電位変化
が生じる。誘導効果は下回線の1L側により強く出るの
で、避雷装置1が動作後は1L側の下回線の電力線電位
の方が高くなる。
First, as shown in FIG. 4, the lightning arrester 1 is mounted only on the 1L side of the upper line of the four parallel towers. The result of a simulation analysis of what kind of voltage change occurs is shown. FIG. 5 is a graph showing the electric potential of the tower arm in the upper phase of the lower line when a lightning current of 50 kA flows to the top of the overhead tower, and the electric potential of the tower arm is proportional to the height from the ground. If the height is higher, the arm potentials of 1L and 2L are almost the same. FIG. 6 is a graph showing the power line potential of the lower line upper phase, and the arrow indicates the moment when the lightning arrester 1 operates. When the lightning arrester 1 operates, a large current flows from the tower to the power line on the 1L side of the upper line via the lightning arrester 1, so that the power line potential of other lines also rises sharply due to the inductive effect,
A potential change as shown in FIG. 6 occurs on the 1L side and the 2L side of the lower line. Since the inductive effect is stronger on the 1L side of the lower line, the power line potential of the lower line on the 1L side becomes higher after the lightning arrester 1 operates.

【0010】そして閃絡の原因となる碍子連間電圧は、
前述したように鉄塔アーム電位と電線電位の差であるか
ら、図5の鉄塔アーム電位から図6の電線電位を引き算
すると、図7に示す通りの碍子連間電圧のグラフが得ら
れる。この図7に示されるように、避雷装置1の動作後
における下回線の2L側の碍子連間電圧は、下回線の1
L側の碍子連間電圧よりも高くなっている。この結果
は、図4に示すように4回線の併架鉄塔の上回線の1L
側にのみ避雷装置1を取付けた場合には、下回線の1L
側よりも2L側において閃絡事故が生じ易いことを示し
ている。
[0010] The voltage between the insulators that causes flashover is:
As described above, since the difference between the electric potential of the tower arm and the electric potential of the electric wire is obtained, subtracting the electric potential of the electric wire in FIG. 6 from the electric potential of the electric tower arm in FIG. 5 gives a graph of the voltage between the insulators as shown in FIG. As shown in FIG. 7, after the lightning arrester 1 is operated, the voltage between the insulators on the 2L side of the lower line becomes 1
It is higher than the voltage between the L-side insulators. As shown in FIG. 4, the result is 1 L of the upper line of the four towers.
If the lightning arrester 1 is installed only on the
This indicates that a flashover accident is more likely to occur on the 2L side than on the side.

【0011】このように、避雷装置1による閃絡防止効
果は水平方向よりも上下方向に強く作用するので、図4
の状態から更に下回線にも避雷装置1を取付ける際に
は、従来のように(図2のように)同一側に縦に並べて
取付けるよりも、本発明のように(図3のように)上回
線の避雷装置1と下回線の避雷装置1とを、鉄塔支柱を
挟んで互いに反対側に取付ける方が合理的である。換言
すれば、下回線にも避雷装置1を取付けるのであれば、
上回線の1L側に避雷装置1を取付けた場合に碍子連間
電圧がより高くなる2L側に取付ける方が、併架鉄塔全
体における事故率の低減効果が大きくなるのである。
As described above, the flash-prevention effect of the lightning arrester 1 acts more strongly in the vertical direction than in the horizontal direction.
When the lightning arrester 1 is further mounted on the lower line from the state of (1), the lightning arrester 1 is mounted according to the present invention (as shown in FIG. 3), rather than being vertically mounted on the same side as in the conventional case (as shown in FIG. 2). It is more reasonable to mount the lightning arrester 1 for the upper line and the lightning arrester 1 for the lower line on opposite sides of the tower support. In other words, if the lightning arrester 1 is also installed on the lower line,
When the lightning arrester 1 is attached to the 1L side of the upper line, the lightning arrester 1 is attached to the 2L side where the voltage between the insulators is higher, so that the effect of reducing the accident rate in the entire parallel tower becomes greater.

【0012】図8に、4回線の併架鉄塔への避雷装置の
取付け方法を変えた場合の、閃絡事故発生頻度を示す。
この図8に示したように、片回線に縦に並べて避雷装置
を取付けた場合と、本発明の取付け方法とを比較する
と、2回線事故の頻度は3.5 回から2.3 回までである
が、1回線事故の頻度は6.5 回から4.5 回までそれぞれ
約3割も低下することが分かる。
FIG. 8 shows the frequency of flashover accidents when the method of mounting the lightning arrester on the four towers is changed.
As shown in FIG. 8, a comparison between the case where the lightning arrester is mounted vertically on one line and the mounting method of the present invention shows that the frequency of two line accidents is 3.5 to 2.3 times, It can be seen that the frequency of line accidents drops by about 30% from 6.5 to 4.5.

【0013】なお、6回線の併架鉄塔に避雷装置を取付
ける場合にも、図9に示すように上側の回線の避雷装置
と下側の回線の避雷装置とを、鉄塔支柱を挟んで互いに
反対側に取付ければよい。
When the lightning arresters are installed on the six towers, the lightning arrester on the upper line and the lightning arrester on the lower line are opposite to each other with the tower post interposed therebetween, as shown in FIG. It can be attached to the side.

【0014】[0014]

【発明の効果】以上に説明した通り、本発明によれば避
雷装置の数を従来より増加させることなく、避雷装置の
取付け位置を変更するだけで併架鉄塔全体における閃絡
事故発生頻度を低減させることができるから、落雷時の
停電事故の抑制に大きく寄与することができる。
As described above, according to the present invention, it is possible to reduce the frequency of flashover accidents in the entire parallel tower by simply changing the mounting position of the lightning arrester without increasing the number of lightning arresters. Therefore, it is possible to greatly contribute to suppression of a power failure accident during a lightning strike.

【図面の簡単な説明】[Brief description of the drawings]

【図1】4回線の併架鉄塔の概念図である。FIG. 1 is a conceptual diagram of a four-line parallel tower.

【図2】従来の避雷装置の取付け方法の説明図である。FIG. 2 is an explanatory view of a conventional method for mounting a lightning arrester.

【図3】本発明の避雷装置の取付け方法の説明図であ
る。
FIG. 3 is an explanatory diagram of a method for mounting a lightning arrester of the present invention.

【図4】上回線の1L側にのみ避雷装置を取付けた状態
の説明図である。
FIG. 4 is an explanatory view showing a state in which a lightning arrester is mounted only on the 1L side of the upper line.

【図5】50kAの雷撃電流が併架鉄塔に流れたときの
鉄塔アーム電位を示すグラフである。
FIG. 5 is a graph showing a tower arm potential when a lightning strike current of 50 kA flows through a pier.

【図6】下回線の電線電位を示すグラフである。FIG. 6 is a graph showing the electric wire potential of the lower line.

【図7】下回線の碍子連間電圧を示すグラフである。FIG. 7 is a graph showing a voltage between insulators in a lower line.

【図8】閃絡事故発生頻度を示すグラフである。FIG. 8 is a graph showing the frequency of occurrence of flashover accidents.

【図9】6回線の併架鉄塔に本発明を適用した場合の説
明図である。
FIG. 9 is an explanatory diagram in the case where the present invention is applied to a 6-line parallel tower.

【符号の説明】[Explanation of symbols]

1 避雷装置、2 限流要素部、3 直列ギャップ、4
電力線、5 碍子、6 鉄塔アーム
1 lightning arrester, 2 current limiting element, 3 series gap, 4
Power line, 5 insulators, 6 tower arm

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 4回線以上の併架鉄塔の片回線に避雷装
置を取付けるにあたり、上側の回線の避雷装置と下側の
回線の避雷装置とを、鉄塔支柱を挟んで互いに反対側に
取付けたことを特徴とする併架鉄塔における避雷装置の
取付方法。
When mounting a lightning arrester on one of four or more parallel towers, the lightning arrester on the upper line and the lightning arrester on the lower line are mounted on opposite sides of the tower support. A method for mounting a lightning arrester on a parallel tower.
JP8195813A 1996-07-25 1996-07-25 Method for attaching surge protective device to steel tower supporting overhead wires in parallel Withdrawn JPH1042464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8195813A JPH1042464A (en) 1996-07-25 1996-07-25 Method for attaching surge protective device to steel tower supporting overhead wires in parallel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8195813A JPH1042464A (en) 1996-07-25 1996-07-25 Method for attaching surge protective device to steel tower supporting overhead wires in parallel

Publications (1)

Publication Number Publication Date
JPH1042464A true JPH1042464A (en) 1998-02-13

Family

ID=16347422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8195813A Withdrawn JPH1042464A (en) 1996-07-25 1996-07-25 Method for attaching surge protective device to steel tower supporting overhead wires in parallel

Country Status (1)

Country Link
JP (1) JPH1042464A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009303320A (en) * 2008-06-11 2009-12-24 Hokuriku Electric Power Co Inc:The Application structure of follow current blocking device in three-phase four-circuit joint spanning steel tower

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009303320A (en) * 2008-06-11 2009-12-24 Hokuriku Electric Power Co Inc:The Application structure of follow current blocking device in three-phase four-circuit joint spanning steel tower

Similar Documents

Publication Publication Date Title
JPH0432114A (en) Lightning arresting insulator device
CN207895922U (en) A kind of ground wire deicing insulation suspension string
JPH1042464A (en) Method for attaching surge protective device to steel tower supporting overhead wires in parallel
JP3406624B2 (en) Lightning arrester for transmission line
JPH07111722A (en) Induction arrester for transmission steel tower
JPH03235612A (en) Lightning current shunting device for transmission steel tower
JP3210386B2 (en) Applicable structure of lightning arrester device in transmission line
Hayashiya et al. Improvement of grounding system of DC traction substation in railway power supply system
JP2509741B2 (en) Lightning arrester device for power lines
JPH08138470A (en) Application structure for lightning arrester insulator in transmission line
JPH0515130B2 (en)
JP5285966B2 (en) Applicable structure of continuous current interrupting device in three-phase four-line parallel tower
CN212462745U (en) Supporting mechanism for power equipment installation
US2280917A (en) Mounting for protective discharge devices
JP2509742B2 (en) Lightning arrester device for power lines
JPH10285794A (en) Distribution line thunderproof system
JP4060915B2 (en) Current limiting device
JPS6225813A (en) Arrester for transmission wire
JPH06209514A (en) Lightning-arrester type interphase spacer
JPH0541267A (en) Lightning stroke energy suppressing structure in power transmission line
JPH1169537A (en) Lightning insulator device
JPH06333453A (en) Lighting insulator device
JPH0541126A (en) Supporting apparatus for power transmission line
JPH03112018A (en) Lightning surge resistant horn insulator set
JPS62170113A (en) Lightning arrestor for protection of aerial transmission wire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007