JPH0541267A - Lightning stroke energy suppressing structure in power transmission line - Google Patents

Lightning stroke energy suppressing structure in power transmission line

Info

Publication number
JPH0541267A
JPH0541267A JP19450391A JP19450391A JPH0541267A JP H0541267 A JPH0541267 A JP H0541267A JP 19450391 A JP19450391 A JP 19450391A JP 19450391 A JP19450391 A JP 19450391A JP H0541267 A JPH0541267 A JP H0541267A
Authority
JP
Japan
Prior art keywords
lightning
transmission line
insulator
power transmission
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19450391A
Other languages
Japanese (ja)
Inventor
Shinji Yoshida
慎司 吉田
Shuichiro Motoyama
修一郎 本山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP19450391A priority Critical patent/JPH0541267A/en
Publication of JPH0541267A publication Critical patent/JPH0541267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulators (AREA)

Abstract

PURPOSE:To realize a compact size and a light weight of a lightning insulator by suppressing the direct invasion of a lightning surge current to a power transmission line, a connecting metal fitting at the voltage applying side to connect the supporting insulator and the wire of the power transmission line, and the like, so as to reduce the generating probability of an earthing accident to flashover the surface of supporting insulator from the wire and to flow to a support arm, and reducing the processing responsibility of a built-in resistance element in the lightning insulator when the lightning insulator is applied. CONSTITUTION:Power transmission lines 8 are held to the supporting arms 2 of an iron tower main body 1 through supporting insulators 5. While lightning insulators 22 are held to the supporting arms 2, an aerial earth line 9 is held to the tower top of the iron tower main body 1, and an aerial earth line 14 is held to the side of the above power transmission line 8 to the supporting arm 2 of the iron tower main body 1 through a supporting conductor 10, positioning lower than the above aerial earth line 9, and making the insulating interval L in the air with the transmission line 8 more than a standard insulating interval.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は送電線路において雷撃
が発生した場合に送電線及びそれを支持する課電側の連
結金具への雷サージ電流の侵入を抑制し、支持碍子から
鉄塔側への雷サージフラッシオーバーによる地絡事故の
発生確率を低減することができるとともに、避雷碍子を
装着した場合に、その小型、軽量化を図ることができる
送電線路における雷撃エネルギー抑制構造に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention suppresses the intrusion of a lightning surge current into a transmission line and a coupling metal fitting on the side of power supply supporting the transmission line when a lightning strike occurs in the transmission line, and supports from the support insulator to the tower side. The present invention relates to a structure for suppressing lightning energy in a transmission line, which can reduce the probability of occurrence of a ground fault accident due to lightning surge flashover, and can reduce the size and weight of a lightning protection insulator when it is attached.

【0002】[0002]

【従来の技術】一般に、送電線を支持する鉄塔の支持碍
子装置においては、鉄塔本体の側部に水平に支持した支
持アームに接地側の上部連結金具を介して懸垂碍子連よ
りなる支持碍子が吊下され、この支持碍子の下端部には
課電側の下部連結金具及び電線クランプを介して送電線
が支持されている。又、前記鉄塔本体の塔頂部には通信
機能を兼用し、かつ鉄塔へ侵入する雷サージ電流を軽減
するための架空地線が支持されている。
2. Description of the Related Art Generally, in a support insulator device for a tower that supports a power transmission line, a support arm that is horizontally supported on a side portion of a tower body is provided with a support insulator composed of a suspension insulator series via an upper connecting fitting on the ground side. A power transmission line is supported by a lower end portion of the support insulator that is hung and is connected via a lower coupling metal fitting on the power application side and an electric wire clamp. Further, an overhead ground wire for supporting a communication function and for reducing a lightning surge current entering the tower is supported at the top of the tower body.

【0003】又、雷撃時に雷サージ電流が送電線路に侵
入する形態として、次の5種類がある。 (1)鉄塔の上方から前記架空地線の中間に侵入した
後、前記鉄塔本体の塔頂部に侵入する場合。
Further, there are the following five types of modes in which a lightning surge current enters a power transmission line during a lightning stroke. (1) When entering the middle of the overhead ground wire from above the tower, and then entering the top of the tower body.

【0004】(2)鉄塔の上方から該鉄塔本体の塔頂部
に直接侵入する場合。 (3)鉄塔の側方から支持アームの先端部に侵入する場
合。 (4)鉄塔の側方から送電線の中間部に侵入した後、課
電側の下部連結金具に侵入する場合。
(2) In the case of directly entering the tower top of the tower body from above the tower. (3) When entering the tip of the support arm from the side of the tower. (4) When entering the middle part of the power transmission line from the side of the steel tower and then entering the lower connecting fitting on the power distribution side.

【0005】(5)鉄塔の側方から前記課電側の下部連
結金具に直接侵入する場合。 近年、送電線路における雷撃後の続流電流による一時的
な停電事故を防止するため、鉄塔には雷サージ電流に続
く運転電圧に基づく続流電流を抑制するための条件を備
えた電圧−電流特性が非直線性の抵抗素子を内蔵した避
雷碍子が装着されるようになっている。この避雷碍子に
は課電側の下部連結金具に支持した放電電極と所定の気
中放電間隙をもって対向する接地側の放電電極が支持さ
れている。
(5) In the case of directly intruding into the lower connecting fitting on the side of the electricity application from the side of the steel tower. In recent years, in order to prevent a temporary power failure accident due to a follow current after a lightning strike in a transmission line, a tower has a voltage-current characteristic with a condition for suppressing a follow current based on an operating voltage following a lightning surge current. There is a lightning arrestor with a built-in non-linear resistance element. The lightning insulator supports a discharge electrode on the ground side which faces the discharge electrode supported on the lower connecting metal fitting on the power-supply side with a predetermined air discharge gap.

【0006】[0006]

【発明が解決しようとする課題】上述の送電線路におい
ては、雷サージ電流の侵入形態により、(1)の架空地
線侵入形態の場合には、架空地線の落雷点を境にして上
流側と下流側に分流して半減した雷サージ電流が鉄塔本
体の塔頂部に侵入するため、鉄塔本体を通って大地へ放
電される電流はさらに低減されることから支持碍子の沿
面をフラッシオーバーする可能性が非常に低く、このた
め雷サージ電流に続く運転電圧に基づく続流電流による
地絡事故の発生確率は、非常に低くなり問題はない。
In the above transmission line, in the case of (1) the overhead ground wire intrusion form due to the intrusion form of the lightning surge current, the upstream side with the lightning strike point of the overhead ground line as a boundary is provided. Since the lightning surge current, which is shunted to the downstream side and halved, enters the tower top of the tower main body, the current discharged to the ground through the tower main body is further reduced, so it is possible to flash over the surface of the supporting insulator. Therefore, there is no problem because the probability of occurrence of a ground fault due to a continuous current based on the operating voltage following the lightning surge current is extremely low.

【0007】又、(2)の鉄塔本体の塔頂部に直接侵入
する場合には、(1)に比べ鉄塔に流れる雷サージ電流
が増加するので、その場合の支持碍子の沿面をフラッシ
オーバーする事故の確率が増大する。しかし、鉄塔本体
から大地に放電される分流雷サージ電流があるため、そ
れほど問題とはならない。
Further, in the case of directly entering the tower top of the steel tower body of (2), since the lightning surge current flowing in the steel tower is increased as compared with (1), an accident of flashover on the surface of the supporting insulator in that case. The probability of increases. However, since there is a split lightning surge current that is discharged from the tower body to the ground, this is not a serious problem.

【0008】ところが、(3)の支持アームの先端部に
侵入する場合には、支持碍子が近傍に存在するので、前
記(2)の塔頂侵入形態と比べ支持碍子から送電線側に
フラッシオーバーして地絡事故に至る確率が増大する。
However, in the case of (3) entering the tip of the support arm, since the support insulator is present in the vicinity, flashover from the support insulator to the power transmission line side is carried out as compared with the above-mentioned tower top entry form (2). Then the probability of a ground fault accident increases.

【0009】(4)の送電線の中間部に侵入した後、課
電側の下部連結金具に侵入する場合には、送電線の落雷
点を境にして上流側と下流側に分流して半減した雷サー
ジ電流が課電側の連結金具に侵入するため、支持碍子か
ら支持アーム側へフラッシオーバーする地絡事故の発生
確率は、(3)の侵入形態と同様に増大する。
In the case of (4) after entering the middle portion of the power transmission line and then entering the lower connecting metal fitting on the power-supply side, the lightning point of the power transmission line serves as a boundary to divide the current into the upstream side and the downstream side and halve it. Since the generated lightning surge current penetrates into the coupling metal fitting on the power-supply side, the probability of occurrence of a ground fault accident that causes a flashover from the support insulator to the support arm side increases as in (3) intrusion form.

【0010】さらに、(5)の課電側の下部連結金具に
直接もしくは付近の送電線に侵入する場合には、雷サー
ジ電流の殆どが支持碍子に作用することになるため、支
持碍子から支持アーム側にフラッシオーバーして地絡事
故となる確率が(4)の侵入形態に比べさらに増大す
る。
Further, in the case of (5) intruding directly into the lower connecting metal fitting on the power-supply side or into a nearby transmission line, most of the lightning surge current will act on the supporting insulator, so that the supporting insulator will support it. The probability of flashover to the arm side and causing a ground fault is further increased compared to the intrusion form of (4).

【0011】ところで、送電線路に避雷碍子を適用した
場合には、前述した(1)〜(5)の侵入形態のうち
(5)の侵入形態の想定される最も大きい雷サージ電流
を気中放電間隙及び避雷碍子の抵抗素子を介して鉄塔の
支持アームへ流し、大地に放電するとともに、その後に
生じる続流電流を抑制することができるように、前記抵
抗素子の容量を設定している。つまり、最も大きい雷サ
ージ電流に耐えるような径方向の寸法の大きい抵抗素子
を備えた避雷碍子を使用する必要があった。換言すれ
ば、想定される最大の雷サージ電流が流れても前記抵抗
素子が導通破壊しないような避雷碍子を使用する必要が
ある。なお、抵抗素子の長さについては、適用する送電
線路の電圧階級により所定長さに設定される。
By the way, when the lightning protection insulator is applied to the transmission line, the largest possible lightning surge current in the intrusion form of (5) among the intrusion forms of (1) to (5) described above is discharged in the air. The capacitance of the resistance element is set so that the resistance element is caused to flow to the support arm of the steel tower through the gap and the resistance element of the lightning protection insulator, and is discharged to the ground, and the subsequent current generated thereafter can be suppressed. That is, it has been necessary to use a lightning arrester provided with a resistance element having a large radial dimension capable of withstanding the largest lightning surge current. In other words, it is necessary to use a lightning protection insulator which does not cause conduction breakdown of the resistance element even when the maximum expected lightning surge current flows. The length of the resistance element is set to a predetermined length according to the voltage class of the applied transmission line.

【0012】一方、雷サージ電流は、気象条件により変
化し、通常の雷サージ電流に対しては実用的な抵抗素子
の寸法設計が可能であるため、避雷碍子も大型化せず製
造上あるいは既設電線路への適用上の問題は発生しな
い。ところが、雷サージ電流が非常に大きい場合には、
従来の設計基準で対応しようとしても実用的な寸法で対
応することが困難である。そして、大きい雷サージ電流
が(5)の形態で支持碍子の課電側の連結金具付近に侵
入する場合が最も雷サージ電流が大きくなり、非常に対
応が困難となる。
On the other hand, the lightning surge current changes depending on the weather conditions, and a practical resistance element can be dimensioned for a normal lightning surge current. There are no problems in application to electric lines. However, when the lightning surge current is very large,
Even if the conventional design standard is used, it is difficult to use a practical size. Then, when a large lightning surge current intrudes into the vicinity of the connecting metal fitting of the support insulator on the power-charging side in the form of (5), the lightning surge current becomes the largest and it becomes very difficult to cope with it.

【0013】この発明は前述した侵入形態のうち
(3),(4)及び(5)の場合に対処するために提案
されたものであって、その目的は送電線、送電線と支持
碍子の課電側連結金具付近、あるいは支持アームに雷サ
ージ電流が侵入しようとした場合、その雷サージ電流を
架空接地線で捕捉して分流させるとともに、分流雷サー
ジ電流を支持アームへ放電させることにより、雷サージ
電流が支持碍子から支持アームへフラッシオーバーして
地絡事故となる確率を少なくすることができるととも
に、避雷碍子を装着した場合には、該碍子に内蔵した抵
抗素子の雷サージ電流に対する責務を軽減して、避雷碍
子の小型、軽量化を図ることができる送電線路における
雷撃エネルギー抑制構造を提供することにある。
The present invention has been proposed to deal with the cases (3), (4) and (5) of the above-mentioned intrusion forms, and its purpose is to provide a power transmission line, a power transmission line and a support insulator. When a lightning surge current attempts to enter the power-supply-side connecting metal fittings or into the support arm, the lightning surge current is captured by an overhead grounding wire and split, and the split lightning surge current is discharged to the support arm. It is possible to reduce the probability of a lightning surge current flashing over from the support insulator to the support arm, resulting in a ground fault, and when a lightning protection insulator is attached, the responsibility of the resistance element built into the insulator against the lightning surge current. It is intended to provide a lightning strike energy suppressing structure in a power transmission line, which can reduce the size of the lightning protection insulator and reduce the size thereof.

【0014】[0014]

【課題を解決するための手段】この発明は上記の目的を
達成するため、複数の鉄塔間に支持碍子を介して送電線
を支持し、前記鉄塔の塔頂部に架空接地線を支持すると
ともに、前記鉄塔に対し支持導体を介して前記送電線の
側方に前記架空接地線よりも下方に位置するように、か
つ送電線との気中絶縁間隔が標準絶縁間隔以上になるよ
うに架空接地線を支持するという手段をとっている。
In order to achieve the above object, the present invention supports a power transmission line between a plurality of steel towers through supporting insulators, and supports an overhead ground wire at the top of the steel tower, An overhead grounding wire is located laterally of the power transmission line below the overhead grounding wire through a supporting conductor with respect to the tower, and an air insulation distance with the power transmission wire is equal to or greater than a standard insulation distance. Has taken the means of supporting.

【0015】[0015]

【作用】この発明は上記手段をとったことにより、雷撃
時に雷サージ電流が鉄塔の側方から空気中を飛来して送
電線、送電線と支持碍子の課電側連結金具付近、あるい
は支持アームに雷サージ電流が侵入する以前に、鉄塔側
方に位置する架空接地線により捕捉され、該架空接地線
で上流側と下流側に分流されるとともに、その分流雷サ
ージ電流が該架空接地線と支持導体とに分流され、この
減衰された雷サージ電流が支持導体から鉄塔の支持アー
ムへ流れ、鉄塔本体から大地に放電される。従って、雷
サージ電流が支持アームから接地側の連結金具、支持碍
子の沿面、及び課電側の連結金具へフラッシオーバーし
て地絡事故となる確率が低減する。
According to the present invention, by taking the above-mentioned means, a lightning surge current comes into the air from the side of a steel tower at the time of a lightning strike, and the power transmission line, the power transmission line and a supporting insulator, the vicinity of a coupling member on a power-supply side, or a support arm. Before the lightning surge current invades, it is captured by the overhead grounding wire located on the side of the tower and is shunted to the upstream side and the downstream side by the overhead grounding wire, and the split lightning surge current is connected to the overhead grounding wire. The shunt current is divided into the support conductor, and the attenuated lightning surge current flows from the support conductor to the support arm of the tower, and is discharged from the tower body to the ground. Therefore, the probability of a lightning surge current flashing over from the support arm to the grounding side connecting fitting, the surface of the supporting insulator, and the power applying side connecting fitting to cause a ground fault is reduced.

【0016】又、鉄塔の支持アームに避雷碍子を装着し
た場合には、避雷碍子に内蔵した抵抗素子を流れるサー
ジ電流が低減されることから、それだけ抵抗素子のエネ
ルギー責務を軽減して抵抗素子の小型化、軽量化を図る
ことができる。
Further, when the lightning protection insulator is mounted on the support arm of the steel tower, the surge current flowing through the resistance element built in the lightning protection insulator is reduced, so the energy duty of the resistance element is reduced accordingly. The size and weight can be reduced.

【0017】[0017]

【実施例】以下、この発明を具体化した一実施例を図
1,図2に基づいて説明する。図1に示すように、鉄塔
本体1の左右両側には三相二回線用として片側三段、計
六箇所に支持アーム2が水平に支持されている。これら
の支持アーム2には図2に示すように接地側の連結金具
3を介して懸垂碍子4を複数個直列に連結してなる支持
碍子5が吊下されている。この支持碍子5の下端部には
課電側の連結金具6及び電線クランプ7を介して送電線
8が支持されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. As shown in FIG. 1, support arms 2 are horizontally supported on the right and left sides of the tower main body 1 at three positions on one side for three-phase two-circuit, three stages on one side. As shown in FIG. 2, a supporting insulator 5 having a plurality of suspending insulators 4 connected in series through a connecting metal fitting 3 on the ground side is suspended from these supporting arms 2. A power transmission line 8 is supported on the lower end of the support insulator 5 via a coupling metal fitting 6 on the charging side and an electric wire clamp 7.

【0018】前記鉄塔本体1の塔頂部には通信機能を兼
用した雷捕捉用の架空地線9が支持されている。前記各
支持アーム2には鉄骨トラス構造の支持導体10が水平
方向に、かつ線路直交方向へ片持ち支持されている。こ
の支持導体10の先端部にはクランプ金具11,12及
び締め付けボルト13により架空接地線14が線路方向
へ指向するように支持されている。又、この架空接地線
14は前記送電線8の側方において前記架空接地線9よ
りも下方に位置するように、かつ送電線8との気中絶縁
間隔Lが標準絶縁間隔すなわち、支持碍子5の気中絶縁
距離をZ(mm)とすると、次式を満たすように装設さ
れている。
An overhead ground wire 9 for capturing lightning, which also has a communication function, is supported at the top of the tower main body 1. A support conductor 10 having a steel frame truss structure is cantilevered in a horizontal direction and in a direction orthogonal to the track on each of the support arms 2. An overhead ground wire 14 is supported on the tip of the support conductor 10 by clamp fittings 11 and 12 and a tightening bolt 13 so as to be oriented in the line direction. Further, the overhead ground wire 14 is positioned below the overhead ground wire 9 on the side of the power transmission line 8, and the air insulation distance L from the power transmission wire 8 is a standard insulation distance, that is, the support insulator 5. When the aerial insulation distance of is Z (mm), it is installed so as to satisfy the following equation.

【0019】[0019]

【数1】L>1.115Z+21 そして、この架空接地線14により前記送電線8、送電
線8と支持碍子5の課電側連結金具6付近、あるいは支
持アーム2に対し、鉄塔の側方から雷サージ電流が直接
侵入しようとした場合、その雷サージ電流を捕捉して分
流させ、支持アーム2に流れる電流を減衰して支持碍子
5の沿面をフラッシオーバーして地絡事故となる確率を
低減するようにしている。
[Equation 1] L> 1.115Z + 21 Then, from the side of the steel tower with respect to the power transmission line 8, the power transmission line 8 and the vicinity of the power-supply-side connecting metal fitting 6 of the support insulator 5, or the support arm 2 by the overhead ground wire 14. When a lightning surge current tries to directly invade, it is captured and shunted, the current flowing through the support arm 2 is attenuated, and the probability of a ground fault accident by flashing over the creeping surface of the support insulator 5 is reduced. I am trying to do it.

【0020】一方、前記支持アーム2には図2に示すよ
うに取付アダプタ21が支持され、該アダプタ21には
避雷碍子22が吊下固定されている。この避雷碍子22
は電圧−電流特性が非直線性の酸化亜鉛を主材とする抵
抗素子23を内蔵している。又、前記抵抗素子23は図
示しない耐圧絶縁筒に収容され、絶縁筒の両端部には接
地側及び課電側の電極金具24,25が嵌合されてい
る。又、前記耐圧絶縁筒の外周部にはゴム等の絶縁外套
体26がモールド成形されている。さらに、前記課電側
の電極金具25には前記課電側の連結金具6に支持した
課電側の放電電極27と所定の気中放電間隙Gをもって
対向する接地側の放電電極28が支持されている。
On the other hand, a mounting adapter 21 is supported on the support arm 2 as shown in FIG. 2, and a lightning protection insulator 22 is suspended and fixed to the adapter 21. This lightning protection insulator 22
Incorporates a resistance element 23 whose main component is zinc oxide having a non-linear voltage-current characteristic. Further, the resistance element 23 is housed in a pressure-proof insulating cylinder (not shown), and the metal fittings 24 and 25 on the ground side and the charging side are fitted to both ends of the insulating cylinder. An insulating jacket 26 made of rubber or the like is molded on the outer peripheral portion of the pressure-proof insulating cylinder. Further, a grounding-side discharge electrode 28, which faces the power-discharging-side discharge electrode 27 supported by the power-charging-side connecting metal fitting 6 with a predetermined air discharge gap G, is supported by the power-charging-side electrode fitting 25. ing.

【0021】次に、前記のように構成した送電線用避雷
碍子装置について、その作用を説明する。今、図1にお
いて、雷撃時に雷サージ電流が送電線8に向かって鉄塔
の側方から飛来すると、架空接地線14が送電線8、支
持アーム2及び連結金具6よりも外側に位置しているの
で、送電線8等に落雷する以前に架空接地線14により
捕捉される。この雷サージ電流は架空接地線14の落雷
点を境にして上流側と下流側へ二分の一に分流して流
れ、さらに支持導体10と接地線14の連結点において
分流して支持導体10に流れる。又、この雷サージ電流
は支持導体10から支持アーム2に流れ、その一部の雷
サージ電流は、鉄塔本体1において上下に分流され、上
方へ流れた分流雷サージ電流は架空地線9へ流れ、下方
へ流れた分流電流は大地へ放電される。
Next, the operation of the transmission line lightning arrester device configured as described above will be described. Now, in FIG. 1, when a lightning surge current flies from the side of the tower toward the power transmission line 8 during a lightning stroke, the overhead ground wire 14 is located outside the power transmission line 8, the support arm 2 and the connecting fitting 6. Therefore, it is captured by the overhead ground wire 14 before the lightning strikes the power transmission line 8 or the like. This lightning surge current is shunted to the upstream side and the downstream side in half at the lightning strike point of the overhead ground wire 14, and further shunted at the connection point of the support conductor 10 and the ground wire 14 to the support conductor 10. Flowing. The lightning surge current flows from the support conductor 10 to the support arm 2, and a part of the lightning surge current is split up and down in the tower main body 1, and the split lightning surge current that flows upward flows to the overhead ground wire 9. , The shunt current flowing downward is discharged to the ground.

【0022】一方、前記支持アーム2と避雷碍子22の
連結点において分流され最初のサージ電流と比較して約
六分の一に減衰された雷サージ電流は、避雷碍子22を
流れる確率そのものも低減するので、避雷碍子の動作回
数を低減することができる。又、大規模な雷撃の場合、
避雷碍子22の抵抗素子23及び気中絶縁間隙Gを経て
送電線8に流れ、その後生じる続流電流は、抵抗素子2
3の抵抗値の復元及び気中絶縁間隙Gにより抑制遮断さ
れ、地絡事故が防止される。
On the other hand, the lightning surge current, which is shunted at the connection point between the support arm 2 and the lightning protection insulator 22 and attenuated to about one sixth of the first surge current, also reduces the probability itself of flowing through the lightning protection insulator 22. Therefore, the number of times of operation of the lightning arrester can be reduced. In the case of a large-scale lightning strike,
The continuous current flowing through the resistance element 23 of the lightning protection insulator 22 and the air insulation gap G to the power transmission line 8 and thereafter generated is the resistance element 2
The restoration of the resistance value of No. 3 and the air insulation gap G suppress and shut off, thereby preventing a ground fault.

【0023】又、前記避雷碍子22に流れた分流サージ
電流は、前述したように最初の雷サージ電流の六分の一
程度に減衰されるので、避雷碍子22及び接地側の放電
電極28から気中放電間隙Gをフラッシオーバーして課
電側の放電電極27へ流れるサージ電流も小さくなり、
避雷碍子22に内蔵した抵抗素子23へ流れる雷サージ
電流が小さくなり、それだけ抵抗素子23のサージ電流
処理責務が低下する。この結果、大きな雷撃エネルギー
が直接連結金具6に侵入する場合を想定して、抵抗素子
23の設計をする必要がなくなり、抵抗素子23の通電
断面積を小さくして素子の小型化及び軽量化を図り、製
造を容易に行い、避雷碍子22のコストダウンを実現す
ることができる。
Further, the shunt surge current flowing through the lightning protection insulator 22 is attenuated to about one sixth of the first lightning surge current as described above, so that the surge current from the lightning protection insulator 22 and the discharge electrode 28 on the ground side is reduced. The surge current flowing through the middle discharge gap G to the discharge electrode 27 on the charging side also becomes small,
The lightning surge current flowing to the resistance element 23 built in the lightning protection insulator 22 is reduced, and the surge current processing duty of the resistance element 23 is reduced accordingly. As a result, it is not necessary to design the resistance element 23 in consideration of the case where a large amount of lightning energy directly enters the coupling fitting 6, and the energization cross-sectional area of the resistance element 23 is reduced to reduce the size and weight of the element. The lightning insulator 22 can be manufactured at a reduced cost by implementing the manufacturing process easily.

【0024】又、避雷碍子22を装着した場合には、避
雷碍子22側で優先的に雷サージ電流を処理するよう
に、絶縁協調がとられているが、この避雷碍子22を省
略した場合には、雷サージ電流が最初に架空接地線14
に侵入し、その後電流が前述したように大幅に減衰する
ので、課電側の連結金具6に直接雷サージ電流が侵入す
る場合と比較して、支持碍子5の沿面をフラッシオーバ
ーして送電線8側へ流れ、地絡事故が発生する確率を大
幅に抑制することができる。
Further, when the lightning protection insulator 22 is mounted, insulation coordination is taken so that the lightning surge current is preferentially processed on the side of the lightning protection insulator 22, but when this lightning protection insulator 22 is omitted. The lightning surge current is the first
As described above, the current is greatly attenuated. Therefore, as compared with the case where the lightning surge current directly enters the connecting metal fitting 6 on the power-supply side, the surface of the support insulator 5 is flashed over and the transmission line It is possible to drastically reduce the probability of a flow to the 8 side and a ground fault.

【0025】次に、この発明の別例を図3及び図4によ
り説明する。図3に示す別例は、烏帽子型の鉄塔に具体
化したものである。この別例では塔頂側の架空接地線9
が二本平行に支持されている。又、支持導体10及び架
空接地線14の支持構造及び作用効果は、前記実施例と
同様である。
Next, another example of the present invention will be described with reference to FIGS. Another example shown in FIG. 3 is embodied in a crow hat type steel tower. In this another example, the overhead ground wire 9 on the tower top side
Are supported in parallel. Further, the supporting structure of the supporting conductor 10 and the overhead grounding wire 14 and the function and effect are the same as those in the above-mentioned embodiment.

【0026】図4に示す別例は、架空接地線14に対し
被覆リード線31を接続し、該リード線31を鉄塔本体
1側に導いて接続している。この別例では、架空接地線
14により捕捉された雷サージ電流が最初に架空接地線
14及びリード線31を通して、鉄塔本体1に誘導され
るので、ここで上下に分流される。このとき、支持アー
ム2にはサージ電流が流れないことから対地に対するサ
ージ電圧が低減されることとなり、支持碍子5の沿面を
フラッシオーバーして電線側へ流れる際の地絡事故が発
生する確率をより大幅に抑制することができる。又、避
雷碍子22の動作回数をさらに低減することができると
ともに、避雷碍子22の責務を低減することもできる。
In another example shown in FIG. 4, a covered lead wire 31 is connected to the overhead ground wire 14, and the lead wire 31 is led to the tower main body 1 side for connection. In this another example, the lightning surge current captured by the overhead ground wire 14 is first guided to the tower main body 1 through the overhead ground wire 14 and the lead wire 31 and is thus shunted vertically. At this time, since the surge current does not flow in the support arm 2, the surge voltage with respect to the ground is reduced, and the probability of occurrence of a ground fault accident when flashing over the creeping surface of the support insulator 5 and flowing to the electric wire side. It can be suppressed significantly. Moreover, the number of operations of the lightning protection insulator 22 can be further reduced, and the duty of the lightning protection insulator 22 can be reduced.

【0027】なお、この発明は前記実施例に限定される
ものではなく、次のように具体化してもよい。 (1)前記実施例では架空接地線14を支持する支持導
体10を水平に支持したが、これを使用状況に応じて前
上がり又は前下がりの傾斜状態に支持すること。
The present invention is not limited to the above embodiment, but may be embodied as follows. (1) In the above-described embodiment, the support conductor 10 that supports the overhead ground wire 14 is supported horizontally, but it should be supported in a forwardly-upward or forward-downwardly inclined state according to the use situation.

【0028】(2)懸垂型の送電線路以外に耐張型の送
電線路に適用すること。 (3)支持碍子5自身に避雷機能を付与した送電線路に
構成すること。 (4)二回線のうち重要な一回線側にのみ支持導体10
及び架空接地線14を設けること。
(2) Application to a tension-type transmission line other than the suspension-type transmission line. (3) The supporting insulator 5 itself should be configured as a power transmission line having a lightning protection function. (4) Support conductor 10 only on the important one line side of the two lines
Also, provide an overhead ground wire 14.

【0029】(5)リード線31としてサージ電流に対
するインピーダンスの小さい板状、パイプ状のものを使
用すること。
(5) As the lead wire 31, use is made of a plate-like or pipe-like one having a small impedance against surge current.

【0030】[0030]

【発明の効果】以上詳述したように、この発明は送電
線、該送電線の支持碍子と電線を連結する課電側の連結
金具、あるいは支持アーム等へ雷サージ電流が直接侵入
するのを抑制して、電線から支持碍子の沿面をフラッシ
オーバーして支持アームへ流れる地絡事故、又その逆方
向へ流れる地絡事故の発生確率を少なくすることができ
るとともに、避雷碍子を適用した場合には、その避雷碍
子に内蔵した抵抗素子の雷サージ電流に対する処理責務
を軽減して、避雷碍子の小型、軽量化を図ることができ
る効果がある。
As described in detail above, according to the present invention, it is possible to prevent a lightning surge current from directly intruding into a power transmission line, a metal-coupling side metal fitting for connecting a support insulator of the power transmission line and an electric wire, or a support arm. It is possible to suppress the occurrence of a ground fault accident that flows over the surface of the support insulator from the electric wire and flows to the support arm by flashover, or in the opposite direction.In addition, if a lightning insulator is applied, Has the effect of reducing the burden of processing the lightning surge current of the resistance element built into the lightning protection insulator, and making it possible to reduce the size and weight of the lightning protection insulator.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の送電線路における雷撃エネルギー抑
制構造を具体化した送電線支持碍子装置全体を示す正面
図である。
FIG. 1 is a front view showing an entire transmission line support insulator device embodying a structure for suppressing lightning strike energy in a transmission line according to the present invention.

【図2】支持碍子装置の拡大斜視図である。FIG. 2 is an enlarged perspective view of a support insulator device.

【図3】この発明の別例を示す正面図である。FIG. 3 is a front view showing another example of the present invention.

【図4】この発明の別例を示す略体正面図である。FIG. 4 is a schematic front view showing another example of the present invention.

【符号の説明】[Explanation of symbols]

1 鉄塔本体、2 支持アーム、3 接地側の連結金
具、5 支持碍子、6課電側の連結金具、8 送電線、
9 架空接地線、10 支持導体、14 架空接地線、
22 避雷碍子。
1 steel tower body, 2 support arms, 3 grounding side connecting metal fittings, 5 supporting insulators, 6 power distribution side connecting metal fittings, 8 power transmission lines,
9 overhead ground wire, 10 support conductors, 14 overhead ground wire,
22 Lightning arrester.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の鉄塔間に支持碍子を介して送電線
を支持し、前記鉄塔の塔頂部に架空接地線を支持すると
ともに、前記鉄塔に対し支持導体を介して前記送電線の
側方に前記架空接地線よりも下方に位置するように、か
つ送電線との気中絶縁間隔が標準絶縁間隔以上になるよ
うに架空接地線を支持したことを特徴とする送電線路に
おける雷撃エネルギー抑制構造。
1. A power transmission line is supported between a plurality of steel towers via a support insulator, an overhead grounding wire is supported on the tower top of the steel tower, and the side of the power transmission line is supported by a supporting conductor with respect to the steel tower. A structure for suppressing lightning energy in a transmission line, wherein the overhead grounding line is supported so as to be located below the overhead grounding line and the air insulation distance from the transmission line is equal to or greater than the standard insulation distance. ..
JP19450391A 1991-08-02 1991-08-02 Lightning stroke energy suppressing structure in power transmission line Pending JPH0541267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19450391A JPH0541267A (en) 1991-08-02 1991-08-02 Lightning stroke energy suppressing structure in power transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19450391A JPH0541267A (en) 1991-08-02 1991-08-02 Lightning stroke energy suppressing structure in power transmission line

Publications (1)

Publication Number Publication Date
JPH0541267A true JPH0541267A (en) 1993-02-19

Family

ID=16325602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19450391A Pending JPH0541267A (en) 1991-08-02 1991-08-02 Lightning stroke energy suppressing structure in power transmission line

Country Status (1)

Country Link
JP (1) JPH0541267A (en)

Similar Documents

Publication Publication Date Title
JPH0432114A (en) Lightning arresting insulator device
CN207265416U (en) A kind of 10kV exchanges overhead transmission line arc blowing type lightning protection device
CN105896312A (en) Lightning protection apparatus of installing lightning attractor on same tower of overhead power distribution line in insulation mode
JPH0541267A (en) Lightning stroke energy suppressing structure in power transmission line
CN106684833A (en) Power frequency current-prevention discharge gap device
JP2698445B2 (en) Suspended lightning insulator for power transmission lines
CN207442184U (en) The fixation external series gap lightning arrester that a kind of low residual voltage, deterioration can be shown
CN111463662A (en) Tower lightning protection system
JP3210386B2 (en) Applicable structure of lightning arrester device in transmission line
CN215185797U (en) Ground connection downlead device of lightning conductor
JP2509741B2 (en) Lightning arrester device for power lines
CN215868826U (en) Insulator lightning protection structure
JPH0541121A (en) Lighting stroke energy suppressing structure in insulator apparatus supporting electric cable
JPH04345709A (en) Lighting stroke energy suppressing structure in wire-supporting insulator device
CN212366424U (en) Tower lightning protection system
JPH04347534A (en) Lighting energy suppressing structure for wire supporting insulator unit
CN212366423U (en) Multi-cavity arc extinguishing lightning arrester
JP2509742B2 (en) Lightning arrester device for power lines
CN214280429U (en) 500kV discharge gap device
CN110707533B (en) Lightning arrester for electric power iron tower
JPH04345708A (en) Lightning stroke energy suppressing structure in wire-supporting insulator device
JP4127655B2 (en) Lightning damage protection method for single-phase distribution lines
JPH06333453A (en) Lighting insulator device
JPH07272574A (en) Arrester insulator apparatus
JP2564332B2 (en) Lightning protection horn insulator device