JPH1041174A - Production of r-fe-b based magnet having low content of o2 - Google Patents

Production of r-fe-b based magnet having low content of o2

Info

Publication number
JPH1041174A
JPH1041174A JP8209110A JP20911096A JPH1041174A JP H1041174 A JPH1041174 A JP H1041174A JP 8209110 A JP8209110 A JP 8209110A JP 20911096 A JP20911096 A JP 20911096A JP H1041174 A JPH1041174 A JP H1041174A
Authority
JP
Japan
Prior art keywords
liquid
fine powder
gas
powder
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8209110A
Other languages
Japanese (ja)
Inventor
Yuji Kaneko
裕治 金子
Yasuhide Sasagawa
泰英 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP8209110A priority Critical patent/JPH1041174A/en
Publication of JPH1041174A publication Critical patent/JPH1041174A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • C22C1/0441Alloys based on intermetallic compounds of the type rare earth - Co, Ni
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an R-Fe-B based magnet containing O2 by 4000ppm or less and having excellent magnetic characteristics stably by protecting the material powder against oxidation and handling the material powder stably in the atmosphere. SOLUTION: Fine powder for R-Fe-B based magnet is immersed into liquid N2 or liquid Ar so that the surface of the fine powder is coated with the liquid N2 or liquid Ar. The fine powder is then collected and contained immediately in a container filled with N2 gas or Ar gas containing specified concentration of o. where the fine powder is kept at normal temperature. The-liquid N2 or liquid Ar is evaporated from the surface of the fine powder and N2 gas or Ar gas is adsorbed to the surface thus producing stabilized fine powder. The fine powder is molded in a magnetic field or not in a magnetic field and subjected to sintering and aging thus producing a stabilized R-Fe-B based magnet containing O2 by 4000ppm or less and excellent in magnetic characteristics.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、O2含有の少な
いR−Fe−B系磁石の製造方法に係り、特に含有O2
が4000ppm以下のR−Fe−B系磁石を製造する
ため、R−Fe−B系磁石用原料粉末を微粉砕後、直ち
に液体窒素(N2)または液体アルゴン(Ar)中に浸
漬して、回収後に特定のO2濃度のN2ガスまたはArガ
ス充填の容器内で前記微粉末を常温まで戻して、前記微
粉末表面の液体窒素または液体アルゴンを気化して、微
粉末表面にN2ガスまたはArガスを吸着させて安定化
した微粉末を得、この微粉末を成形、焼結、時効処理し
て、すぐれた磁気特性の磁石を安定的に得る低O2含有
R−Fe−B系磁石の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing O 2 containing less R-Fe-B magnet, in particular containing O 2
There for the production of the following R-Fe-B magnet 4000 ppm, by immersing the raw material powder for R-Fe-B magnets after milling immediately in liquid nitrogen (N 2) or liquid argon (Ar), wherein in a vessel of N 2 gas or Ar gas filling of a particular O 2 concentration after recovery by returning the fine powder to ambient temperature, vaporizing liquid nitrogen or liquid argon of the fine powder surface, N 2 gas into a fine powder surface or adsorbing the Ar gas to obtain a fine powder stabilized, molding the powder, sintering, and aging, low O 2 content R-Fe-B system to obtain the magnets of excellent magnetic properties stably The present invention relates to a method for manufacturing a magnet.

【0002】[0002]

【従来の技術】一般にR−Fe−B系磁石用原料粉末
は、鋳造後に粉砕を繰り返す鋳塊粉砕法、Ca還元によ
る粉体を得るCa還元拡散法、あるいは合金溶湯を急冷
ロールにて急冷して微細結晶を有する薄帯を得るストリ
ップキャスティング法などによりR−Fe−B系合金を
得て、これを粉砕することで原料粉末を得ていた。
2. Description of the Related Art In general, raw material powders for R-Fe-B magnets are obtained by ingot crushing, in which crushing is repeated after casting, Ca reduction diffusion, in which powder is reduced by Ca reduction, or quenching of a molten alloy with a quenching roll. An R-Fe-B-based alloy was obtained by a strip casting method or the like for obtaining a ribbon having fine crystals, and the raw material powder was obtained by pulverizing the R-Fe-B-based alloy.

【0003】前記種々の方法にて得られたR−Fe−B
系磁石用原料粉末は、化学的に非常に活性で、大気中に
おいて急激に酸化して、磁気特性の劣化、バラツキを招
来したり、また急激な酸化により発熱するだけでなく、
発火して安全性の点でも問題があった。
[0003] The R-Fe-B obtained by the various methods described above
The raw material powder for system magnets is chemically very active and rapidly oxidizes in the air, leading to deterioration and variation in magnetic properties, and not only generates heat due to rapid oxidation,
There was also a problem in terms of safety after firing.

【0004】そこで、得られたR−Fe−B系磁石用原
料粉末は、N2、Ar等の不活性ガス中に長時間保管し
て安定化を計る方法が採用されていたが、量産的に問題
があり、また前記粉末は吸湿性があるため、大気中の水
分と反応しO2量が増加し、得られたR−Fe−B系磁
石の磁気特性を劣化する問題があった。
Therefore, a method of stabilizing the obtained raw material powder for R-Fe-B magnet by storing it in an inert gas such as N 2 or Ar for a long time has been adopted. In addition, since the powder has a hygroscopic property, it reacts with moisture in the air to increase the amount of O 2 , thereby deteriorating the magnetic properties of the obtained R—Fe—B magnet.

【0005】[0005]

【発明が解決しようとする課題】最近、R−Fe−B系
磁石用原料粉末の酸化防止及び大気中で安定して取扱え
るように、前記原料粉末を特定の分留点を有する鉱物油
または合成油に浸漬して、鉱物油または合成油を表面に
被覆した粉末を得て、前記粉末を成形、焼結、時効処理
して、低O2含有R−Fe−B系磁石を製造する方法が
提案(特開平7−86069号、特開平7−90469
号)されている。
Recently, in order to prevent oxidation of the raw material powder for R-Fe-B based magnets and to stably handle the raw material powder in the atmosphere, the raw material powder is made of mineral oil having a specific fractionation point. A method of producing a low O 2 -containing R-Fe-B based magnet by immersing in synthetic oil to obtain a powder having a surface coated with mineral oil or synthetic oil, and molding, sintering and aging the powder. Are proposed (JP-A-7-86069, JP-A-7-90469).
No.).

【0006】前記製造方法においては、鉱物油または合
成油を被覆した粉末を用いて磁石化することになり、鉱
物油または合成油中に含有されるC、O2等が磁石内に
残存しないように、原料粉末と鉱物油または合成油との
混合粉末を遠心分離機等で分離したり、また成形体を焼
結する際に付着した鉱物油または合成油を除去して、残
留C量およびO2量を低減するため、特定の熱処理条件
にて昇温、炉冷する必要があり、作業の繁雑化、製造コ
ストの上昇を招来する問題があった。
In the above-mentioned production method, magnetizing is performed using a powder coated with a mineral oil or a synthetic oil, so that C, O 2 and the like contained in the mineral oil or the synthetic oil do not remain in the magnet. In addition, the mixed powder of the raw material powder and the mineral oil or the synthetic oil is separated by a centrifugal separator or the like, and the mineral oil or the synthetic oil adhering when the compact is sintered is removed to obtain the residual C content and O In order to reduce the amount, it is necessary to raise the temperature and cool the furnace under specific heat treatment conditions, which has led to a problem that the work becomes complicated and the production cost increases.

【0007】この発明は、R−Fe−B系磁石用原料粉
末の酸化防止が可能で大気中で安定して取扱うことがで
き、含有O2が4000ppm以下の磁石特性のすぐれ
たR−Fe−B系磁石を安定的に製造することが可能な
低O2含有R−Fe−B系磁石の製造方法の提供を目的
としている。
According to the present invention, R-Fe-B based magnet powder can be prevented from being oxidized, can be stably handled in the atmosphere, and has an O 2 content of 4000 ppm or less. An object of the present invention is to provide a method for producing a low O 2 -containing R—Fe—B-based magnet capable of stably producing a B-based magnet.

【0008】[0008]

【課題を解決するための手段】発明者らは、R−Fe−
B系磁石用原料粉末の酸化防止、且つ大気中で安定な原
料粉末を得るため、種々検討した結果、公知のいずれか
の製造方法で得られたR−Fe−B系磁石用の微粉末
を、液体N2または液体Ar中に浸漬して、前記微粉末
表面に液体N2または液体Arを被覆、回収した後、直
ちに特定のO2濃度のN2ガスまたはArガスを充満した
容器内に収容して、前記微粉末を常温にすることによ
り、前記微粉末表面に被覆した液体N2または液体Ar
は気化され、表面にN2ガスまたはArガスが吸着して
安定化した微粉末が得られ、前記微粉末を磁場中あるい
は磁場なしで成形後、焼結、時効処理することにより、
2含有量が4000ppm以下の磁気特性がすぐれ且
つ安定したR−Fe−B系磁石が得られることを知見
し、この発明を完成した。
Means for Solving the Problems The present inventors have proposed R-Fe-
To prevent oxidation of the raw material powder for the B-based magnet, and to obtain a raw material powder that is stable in the air, as a result of various studies, a fine powder for the R-Fe-B-based magnet obtained by any of the known manufacturing methods was used. is immersed in the liquid N 2 or liquid Ar, the fine powder surface liquid N 2 or liquid Ar coating, after recovering immediately particular O 2 concentration in the N 2 gas or Ar gas filled the container to the The liquid N 2 or liquid Ar coated on the surface of the fine powder
Is vaporized, and a stable fine powder is obtained by adsorbing N 2 gas or Ar gas on the surface.After molding the fine powder in a magnetic field or without a magnetic field, sintering and aging are performed.
O 2 content was found that following magnetic properties superior and stable R-Fe-B magnet 4000ppm obtained, and have completed the present invention.

【0009】この発明は、R−Fe−B系磁石用原料粉
末を微粉砕後、直ちに液体N2または液体Ar中に浸漬
し、回収後に、例えば、O2濃度1%以下のN2ガスまた
はArガス充填の容器内で前記微粉末を室温にした後、
成形、焼結、時効処理することを特徴とする低O2含有
R−Fe−B系磁石の製造方法である。
According to the present invention, the raw material powder for an R—Fe—B magnet is finely pulverized and immediately immersed in liquid N 2 or liquid Ar, and after recovery, for example, N 2 gas having an O 2 concentration of 1% or less. After bringing the fine powder to room temperature in a container filled with Ar gas,
This is a method for producing a low O 2 -containing R—Fe—B-based magnet, which is subjected to molding, sintering, and aging.

【0010】[0010]

【発明の実施の形態】この発明において、対象とするR
−Fe−B系磁石用原料粉末は、公知の鋳塊粉砕法、C
a還元拡散法、ストリップキャスティング法などの公知
の製造方法で得られた微粉末、また、ストリップキャス
ティング法により得られた粗粉砕粉を特定条件のジェッ
トミル粉砕法、あるいはボールミル等の機械的粉砕法等
により微粉砕して得られた微粉末など、いずれの製造方
法によるものも利用できる。また、液体N2または液体
Ar中に浸漬する粉末の平均粒度は0.1〜10μmが
好ましく、0.1μm未満ではプレス成形性が悪くなり
ヒビ不良等を引き起こすことになり、また10μmを越
えるとプレス成形後の成形体密度が低下するため好まし
くなく、より好ましくは平均粒度2〜4μmの微粉末で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION
-Fe-B-based raw material powder is obtained by a known ingot grinding method, C
a A fine powder obtained by a known production method such as a reduction diffusion method or a strip casting method, or a coarse pulverized powder obtained by a strip casting method is jet-milled under a specific condition, or a mechanical pulverization method such as a ball mill. Any of the production methods, such as fine powder obtained by finely pulverizing the powder, can be used. Further, the average particle size of the powder immersed in the liquid N 2 or liquid Ar is preferably 0.1 to 10 μm. If the average particle size is less than 0.1 μm, the press moldability is deteriorated, causing cracks and the like. It is not preferable because the density of the compact after press molding is reduced, and is more preferably a fine powder having an average particle size of 2 to 4 μm.

【0011】特に、原料粉末の製造方法としては、スト
リップキャスティング法により得られた鋳片あるいは薄
片をH2吸蔵崩壊法により平均粒度10〜500μmの
粗粉砕粉に粗粉砕した後、O2 2000pm以下の超
音速不活性ガス気流によりジェットミル粉砕する方法が
好ましい。ジェットミル粉砕時の超音速不活性ガス気流
中のO2量を2000ppm以下に限定した理由は、O2
量が2000ppmを超えると微粉砕時に微粉末が不活
性ガス中のO2と反応して酸化し、得られた微粉末のO2
含有量が4000ppmを超えるため、好ましくない。
Particularly, as a method for producing a raw material powder, a slab or a flake obtained by a strip casting method is roughly pulverized into a coarsely pulverized powder having an average particle size of 10 to 500 μm by an H 2 occlusion collapse method, and then O 2 2,000 pm or less. The method of carrying out jet mill pulverization by a supersonic inert gas stream described above is preferred. The reason for limiting the amount of O 2 in the supersonic inert gas stream at the time of jet mill pulverization to 2000 ppm or less is that O 2
When the amount exceeds 2,000 ppm, the fine powder reacts with O 2 in the inert gas to oxidize at the time of fine pulverization, and O 2 of the obtained fine powder is
It is not preferable because the content exceeds 4000 ppm.

【0012】この発明による製造方法を詳述すると、上
記のR−Fe−B系磁石用原料粉末を、液体N2中ある
いは液体Ar中に60秒〜100時間浸漬した後、液体
2あるいは液体Arを気化させて、N2ガスまたはAr
ガスとして放散させるか、あるいは前記微粉末を回収し
て、O2濃度1%以下のN2ガスまたはArガスを充満す
る容器に収容して、前記微粉末温度を常温にすると、微
粉末表面に被覆の液体N2または液体Arは気化して、
前記微粉末表面にはN2ガスまたはArガスが吸着した
状態となり安定化され、前記微粉末を磁場中成形後、焼
結、時効処理して、O2含有量4000ppm以下の磁
気特性のすぐれ、バラツキの少ないR−Fe−B系磁石
を得ることができる。
[0012] More specifically the manufacturing method according to the invention, the raw material powder for the above R-Fe-B magnet was immersed for 60 seconds to 100 hours in liquid N 2 or in a liquid Ar, liquid N 2 or liquid Ar is vaporized into N 2 gas or Ar
Either disperse as a gas, or collect the fine powder and store it in a container filled with N 2 gas or Ar gas having an O 2 concentration of 1% or less. The liquid N 2 or liquid Ar of the coating is vaporized,
The surface of the fine powder is stabilized by adsorbing N 2 gas or Ar gas, and after shaping the fine powder in a magnetic field, sintering and aging, excellent magnetic properties with an O 2 content of 4000 ppm or less, An R—Fe—B-based magnet with little variation can be obtained.

【0013】この発明において、R−Fe−B系磁石用
原料微粉末を液体N2あるいは液体Ar中に浸漬する時
間は60秒未満では微粉末が十分に冷却されずに液体N
2または液体Arに浸漬されないままの状態で、微粉末
の表面にN2ガスまたはArガスを吸着、安定化するこ
とができない。また、100時間を越えると、保管の状
況によっては、液体N2または液体Ar中の不純物O2
が増加して、結果的に微粉末のO2量が増加したり、保
管が困難となるため好ましくない。
In the present invention, if the time for immersing the R-Fe-B-based magnet raw material powder in the liquid N 2 or liquid Ar is less than 60 seconds, the fine powder is not sufficiently cooled and the liquid N 2 is not sufficiently cooled.
The N 2 gas or Ar gas cannot be adsorbed and stabilized on the surface of the fine powder without being immersed in 2 or liquid Ar. On the other hand, if the time exceeds 100 hours, the amount of impurities O 2 in the liquid N 2 or liquid Ar increases depending on the storage conditions, and as a result, the amount of O 2 in the fine powder increases or storage becomes difficult. Therefore, it is not preferable.

【0014】この発明において、液体N2または液体A
rを表面に被覆した原料微粉末を回収後に、O2濃度1
%以下のN2ガスまたはArガスを充満する容器に収容
して、昇温して室温にする理由は、微粉末表面に微粉末
が液体N2または液体Arの低温状況において、O2との
酸化反応を抑制しながら表面の安定化処理を行うことが
できるためである。また、浸漬被覆する液体N2または
液体Arが気化して、微粉末表面にN2ガスまたはAr
ガスが吸着することにより、微粉末と大気との接触が遮
断され、酸化防止に極めて有効で安定性にすぐれてい
る。
In the present invention, the liquid N 2 or the liquid A
The raw material fine powder coated with r on the surface after recovery, O 2 concentration 1
% Of N 2 gas or Ar gas or less, and the temperature is raised to room temperature because the fine powder is mixed with O 2 in the low temperature condition of liquid N 2 or liquid Ar on the surface of the fine powder. This is because the surface stabilization treatment can be performed while suppressing the oxidation reaction. Further, the liquid N 2 or liquid Ar to be immersed and coated is vaporized, and N 2 gas or Ar
By adsorbing the gas, the contact between the fine powder and the atmosphere is cut off, which is extremely effective in preventing oxidation and excellent in stability.

【0015】この発明において、R−Fe−B系磁石用
原料粉末の組成は以下の組成が好ましい。希土類元素R
は、組成の10原子%〜30原子%を占めるが、Nd、
Pr、Dy、Ho、Tbのうち少なくとも1種、あるい
はさらに、La、Ce、Sm、Gd、Er、Eu、T
m、Yb、Lu、Yのうち少なくとも1種を含むものが
好ましい。また、通常Rのうち1種をもって足りるが、
実用上は2種以上の混合物(ミッシュメタル、ジジム
等)を入手上の便宜等の理由により用いることができ
る。なお、このRは純希土類元素でなくてもよく、工業
上入手可能な範囲で製造上不可避な不純物を含有するも
のでも差支えない。
In the present invention, the composition of the raw material powder for the R—Fe—B magnet is preferably as follows. Rare earth element R
Accounts for 10 to 30 atomic% of the composition, but Nd,
At least one of Pr, Dy, Ho, and Tb; or La, Ce, Sm, Gd, Er, Eu, T
Those containing at least one of m, Yb, Lu, and Y are preferable. Also, usually one of R is sufficient,
In practice, a mixture of two or more kinds (mish metal, dymium, etc.) can be used for reasons such as convenience in obtaining. Note that R may not be a pure rare earth element, and may contain impurities which are unavoidable in production within the industrially available range.

【0016】Rは、R−Fe−B系永久磁石における必
須元素であって、10原子%未満では結晶構造がα−鉄
と同一構造の立方晶組織となるため、高磁気特性、特に
高保磁力が得られず、30原子%を越えるとRリッチな
非磁性相が多くなり、残留磁束密度(Br)が低下して
すぐれた特性の永久磁石が得られない。よって、Rは1
0原子%〜30原子%の範囲が望ましい。
R is an essential element in the R—Fe—B permanent magnet, and if it is less than 10 atomic%, the crystal structure becomes a cubic structure having the same structure as α-iron, so that it has high magnetic properties, especially high coercive force. When the content exceeds 30 atomic%, the R-rich nonmagnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R is 1
A range of 0 to 30 atomic% is desirable.

【0017】Bは、上記系永久磁石における必須元素で
あって、2原子%未満では菱面体構造が主相となり高い
保磁力(iHc)は得られず、28原子%を越えるとB
リッチな非磁性相が多くなり、残留磁束密度(Br)が
低下するため、すぐれた永久磁石が得られない。よっ
て、Bは2原子%〜28原子%の範囲が望ましい。
B is an essential element in the above-mentioned permanent magnets. If it is less than 2 at%, the rhombohedral structure becomes the main phase and a high coercive force (iHc) cannot be obtained.
Since a rich non-magnetic phase increases and the residual magnetic flux density (Br) decreases, an excellent permanent magnet cannot be obtained. Therefore, B is desirably in the range of 2 to 28 atomic%.

【0018】Feは、上記系永久磁石において必須元素
であり、65原子%未満では残留磁束密度(Br)が低
下し、80原子%を越えると高い保磁力が得られないの
で、Feは65原子%〜80原子%の含有が望ましい。
また、Feの一部をCoで置換することは、得られる磁
石の磁気特性を損うことなく、温度特性を改善すること
ができるが、Co置換量がFeの20%を越えると、逆
に磁気特性が劣化するため好ましくない。Coの置換量
がFeとCoの合計量で5原子%〜15原子%の場合
は、(Br)は置換しない場合に比較して増加するた
め、高磁束密度を得るために好ましい。
Fe is an essential element in the above-mentioned permanent magnets. When the content is less than 65 at%, the residual magnetic flux density (Br) decreases, and when it exceeds 80 at%, a high coercive force cannot be obtained. % To 80 atomic%.
Further, substituting part of Fe with Co can improve the temperature characteristics without impairing the magnetic characteristics of the obtained magnet. However, when the amount of Co exceeds 20% of Fe, the conversely occurs. It is not preferable because the magnetic properties deteriorate. When the substitution amount of Co is 5 atomic% to 15 atomic% in the total amount of Fe and Co, (Br) increases as compared with the case where the substitution is not performed, so that it is preferable to obtain a high magnetic flux density.

【0019】また、R、B、Feの他、工業的生産上不
可避的不純物の存在を許容でき、例えば、Bの一部を
4.0wt%以下のC、2.0wt%以下のP、2.0
wt%以下のS、2.0wt%以下のCuのうち少なく
とも1種、合計量で2.0wt%以下で置換することに
より、永久磁石の製造性改善、低価格化が可能である。
Further, in addition to R, B, and Fe, the presence of unavoidable impurities in industrial production can be tolerated. For example, a part of B may be 4.0 wt% or less of C, 2.0 wt% or less of P, .0
By replacing at least one of S by wt% or less and Cu by 2.0 wt% or less with a total amount of 2.0 wt% or less, it is possible to improve the productivity and reduce the cost of the permanent magnet.

【0020】さらに、Al、Ti、V、Cr、Mn、B
i、Nb、Ta、Mo、W、Sb、Ge、Sn、Zr、
Ni、Si、Zn、Hf、のうち少なくとも1種は、R
−Fe−B系永久磁石に対してその保磁力、減磁曲線の
角型性を改善あるいは製造性の改善、低価格化に効果が
あるため添加することができる。なお、添加量の上限
は、磁石材料の(BH)maxを20MGOe以上とす
るには、(Br)が少なくとも9kG以上必要となるた
め、該条件を満す範囲が望ましい。
Further, Al, Ti, V, Cr, Mn, B
i, Nb, Ta, Mo, W, Sb, Ge, Sn, Zr,
At least one of Ni, Si, Zn, and Hf is R
-It can be added to the Fe-B-based permanent magnet because it has the effect of improving the coercive force and the squareness of the demagnetization curve, improving the productivity, and reducing the price. Note that the upper limit of the addition amount is desirably in a range that satisfies the above condition because (Br) must be at least 9 kG or more in order to make the (BH) max of the magnet material 20 MGOe or more.

【0021】[0021]

【実施例】【Example】

実施例1 Nd13.28−B5.95−Fe80.67wt%組
成のR−Fe−B系合金鋳塊をN2ガス中で1100℃
に10時間の溶体化処理後、H2吸蔵崩壊法により平均
粒度500μmに粗粉砕後、前記粗粉砕粉をO2450
ppm含有の超音速N2気流にてジェットミル粉砕し
て、平均粒度3.5μmの微粉砕粉を得た。
Example 1 An R-Fe-B based alloy ingot having a composition of Nd13.28-B5.95-Fe80.67 wt% was heated at 1100 ° C. in N 2 gas.
After 10 hours solution treatment, after coarse grinding to an average particle size of 500μm with H 2 occlusion decay process, the coarsely pulverized powder O 2 450
It was pulverized by a jet mill using a supersonic N 2 gas stream containing ppm to obtain a finely pulverized powder having an average particle size of 3.5 μm.

【0022】その後、微粉砕粉を液体N2中に1時間浸
漬後、前記微粉末をO2濃度0.1%のN2ガス充満の容
器内に3時間保持して、前記微粉末を常温にした後、前
記微粉末を大気中(25℃×75%R・H)で600分
間放置した場合の粉末の最高到達温度を図1に表す。
Thereafter, the finely pulverized powder is immersed in liquid N 2 for 1 hour, and the fine powder is held in a container filled with N 2 gas having an O 2 concentration of 0.1% for 3 hours. After that, the maximum temperature of the powder when the fine powder is left in the air (25 ° C. × 75% RH) for 600 minutes is shown in FIG.

【0023】前記微粉末を磁場強さ15kOe中で成形
圧1ton/cm2にて磁場成形後、1050℃に5時
間焼結後、580℃に2時間の時効処理を行ってR−F
e−B系磁石を得た。得られた磁石のO2含有量、磁気
特性を表1に、減磁特性曲線を図2に表す。
The fine powder is magnetically molded at a molding pressure of 1 ton / cm 2 in a magnetic field strength of 15 kOe, sintered at 1050 ° C. for 5 hours, and then subjected to an aging treatment at 580 ° C. for 2 hours to obtain RF.
An eB magnet was obtained. Table 1 shows the O 2 content and magnetic characteristics of the obtained magnet, and FIG. 2 shows a demagnetization characteristic curve.

【0024】比較例1 実施例1と同一組成の粗粉砕粉をO2450ppm含有
の超音速N2気流にてジェットミル粉砕して、平均粒度
3.5μmの微粉末を得た。この微粉末を大気中に保管
したところ、図1に示すごとく、30秒で発火して、永
久磁石にすることはできなかった。
Comparative Example 1 A coarsely pulverized powder having the same composition as in Example 1 was jet-milled in a supersonic N 2 stream containing 450 ppm of O 2 to obtain a fine powder having an average particle size of 3.5 μm. When this fine powder was stored in the atmosphere, it ignited in 30 seconds as shown in FIG. 1 and could not be made into a permanent magnet.

【0025】比較例2 実施例1と同一組成の粗粉砕粉をO210000ppm
含有の超音速N2気流にてジェットミル粉砕して、平均
粒度3.5μmの微粉末にした後、実施例1と同一条件
にて永久磁石にした。得られた磁石のO2含有量、磁気
特性を表1に、減磁特性曲線を図2に表す。
[0025] Comparative Example 2 Example 1 and coarse pulverized powder having the same composition O 2 10000 ppm
The resulting powder was pulverized by a jet mill using a supersonic N 2 gas stream to obtain a fine powder having an average particle size of 3.5 μm, and then formed into a permanent magnet under the same conditions as in Example 1. Table 1 shows the O 2 content and magnetic characteristics of the obtained magnet, and FIG. 2 shows a demagnetization characteristic curve.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】この発明による低O2含有R−Fe−B
系磁石の製造方法は、R−Fe−B系磁石用原料粉末を
微粉砕後、直ちに液体窒素または液体アルゴン中に浸漬
して、回収後に特定のO2濃度のN2ガスまたはArガス
充填の容器内で前記微粉末を常温まで戻して、前記微粉
末表面の液体窒素または液体アルゴンを気化させ、微粉
末表面にN2ガスまたはArガスを吸着させて安定化し
た微粉末を得るもので、この微粉末を成形、焼結、時効
処理することにより、含有O2が4000ppm以下で
すぐれた磁気特性の磁石を安定的に製造することができ
る。
According to the present invention, R-Fe-B having a low O 2 content is obtained.
The method for producing a magnet based on R-Fe-B magnet raw material powder is immediately pulverized, then immediately immersed in liquid nitrogen or liquid argon, and after collection, filled with a specific O 2 concentration of N 2 gas or Ar gas. Returning the fine powder to normal temperature in a container, vaporizing liquid nitrogen or liquid argon on the surface of the fine powder, and obtaining a stabilized fine powder by adsorbing N 2 gas or Ar gas on the surface of the fine powder, By molding, sintering and aging the fine powder, a magnet having excellent magnetic properties with a content of O 2 of 4000 ppm or less can be stably manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】放置時間と最高到達温度との関係を示すグラフ
である。
FIG. 1 is a graph showing a relationship between a standing time and a maximum attained temperature.

【図2】減磁特性曲線を示すグラフであり、一点鎖線が
実施例1、実線が比較例2を示す。
FIG. 2 is a graph showing a demagnetization characteristic curve, in which an alternate long and short dash line indicates Example 1 and a solid line indicates Comparative Example 2.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 R−Fe−B系磁石用原料粉末を微粉砕
後、直ちに液体窒素または液体アルゴン中に浸漬し、回
収後に前記粉末を室温にした後、成形、焼結、時効処理
することを特徴とする低O2含有R−Fe−B系磁石の
製造方法。
1. A raw material powder for an R—Fe—B magnet is finely pulverized and immediately immersed in liquid nitrogen or liquid argon. After recovery, the powder is brought to room temperature, and then molded, sintered, and aged. A method for producing a low O 2 -containing R—Fe—B-based magnet, comprising:
【請求項2】 R−Fe−B系磁石用原料粉末を微粉砕
後、直ちに液体窒素または液体アルゴン中に浸漬し、回
収後にO2濃度1%以下のN2ガスまたはArガス充填の
容器中で前記微粉末を室温にした後、成形、焼結、時効
処理することを特徴とする低O2含有R−Fe−B系磁
石の製造方法。
2. The raw material powder for an R—Fe—B magnet is finely pulverized, immediately immersed in liquid nitrogen or liquid argon, recovered, and placed in a container filled with N 2 gas or Ar gas having an O 2 concentration of 1% or less. A method for producing a low O 2 -containing R-Fe-B magnet, which comprises subjecting the fine powder to room temperature, followed by molding, sintering and aging.
JP8209110A 1996-07-19 1996-07-19 Production of r-fe-b based magnet having low content of o2 Pending JPH1041174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8209110A JPH1041174A (en) 1996-07-19 1996-07-19 Production of r-fe-b based magnet having low content of o2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8209110A JPH1041174A (en) 1996-07-19 1996-07-19 Production of r-fe-b based magnet having low content of o2

Publications (1)

Publication Number Publication Date
JPH1041174A true JPH1041174A (en) 1998-02-13

Family

ID=16567461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8209110A Pending JPH1041174A (en) 1996-07-19 1996-07-19 Production of r-fe-b based magnet having low content of o2

Country Status (1)

Country Link
JP (1) JPH1041174A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141126B2 (en) 2000-09-19 2006-11-28 Neomax Co., Ltd. Rare earth magnet and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141126B2 (en) 2000-09-19 2006-11-28 Neomax Co., Ltd. Rare earth magnet and method for manufacturing the same

Similar Documents

Publication Publication Date Title
RU2377680C2 (en) Rare-earth permanaent magnet
JP5348124B2 (en) Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
US6527874B2 (en) Rare earth magnet and method for making same
JPWO2006043348A1 (en) Rare earth permanent magnet material and manufacturing method thereof
JP4702548B2 (en) Functionally graded rare earth permanent magnet
EP0561650B1 (en) Process for making R-Fe-B permanent magnets
JP2513994B2 (en) permanent magnet
JP3540438B2 (en) Magnet and manufacturing method thereof
JP2009010305A (en) Method for manufacturing rare-earth magnet
JPH01220803A (en) Magnetic anisotropic sintered magnet and manufacture thereof
EP0386286B1 (en) Rare earth iron-based permanent magnet
JPH0320046B2 (en)
JPH1041174A (en) Production of r-fe-b based magnet having low content of o2
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JPH045739B2 (en)
JP4753024B2 (en) Raw material alloy for RTB-based sintered magnet, RTB-based sintered magnet, and manufacturing method thereof
JP3815983B2 (en) Rare earth magnet and manufacturing method thereof
JPH1022154A (en) Manufacture of rear-earth permanent magnet
JP2927987B2 (en) Manufacturing method of permanent magnet powder
JPS6247455A (en) Permanent magnet material having high performance
JPH05182813A (en) Manufacture of rare earth permanent magnet
JP2868062B2 (en) Manufacturing method of permanent magnet
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
JP3157660B2 (en) Method for producing R-Fe-B permanent magnet material
JPH044383B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050511