JPH1040919A - Film for secondary battery electrode - Google Patents

Film for secondary battery electrode

Info

Publication number
JPH1040919A
JPH1040919A JP8190606A JP19060696A JPH1040919A JP H1040919 A JPH1040919 A JP H1040919A JP 8190606 A JP8190606 A JP 8190606A JP 19060696 A JP19060696 A JP 19060696A JP H1040919 A JPH1040919 A JP H1040919A
Authority
JP
Japan
Prior art keywords
film
secondary battery
electrode
battery
micrometers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8190606A
Other languages
Japanese (ja)
Other versions
JP4316689B2 (en
Inventor
Mitsumasa Ono
光正 小野
Kenji Suzuki
賢司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP19060696A priority Critical patent/JP4316689B2/en
Publication of JPH1040919A publication Critical patent/JPH1040919A/en
Application granted granted Critical
Publication of JP4316689B2 publication Critical patent/JP4316689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Laminated Bodies (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery electrode film useful for providing an electrode having an improved heat resistance, a longer life, and a greater capacity due to a smaller thickness by forming a metallic thin film on the surface of a biaxially oriented film of specific physical properties and made of a prescribed polyester-based resin. SOLUTION: A metallic (such as Al, Ni, etc.,) thin film of the thickness preferably 1-1000 nanometers, more preferably 10-1000 nanometers is formed on at least one surface of a biaxially oriented film of the following properties: made of polyester-based resin (such as polyethylene terephthalate, polyethylene 2,6-naphthalate), the thickness is 0.2-30 micrometers, preferably 0.2-20 micrometers, more preferably 0.5-15 micrometers, specially preferably 0.9-10 micrometers, the Young's modulus is 500kg/mm<2> or greater, preferably 600kg/mm<2> or greater, and the melting peak temperature by DSC temperature rise measurement is 200 deg.C or higher, preferably 230 deg.C or higher.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は二次電池用電極及び
これに用いるフィルムに関する。さらに詳しくは電池製
造の生産性に優れ、電極剤基材を薄膜化したことにより
電池容量が向上し、かつまたフィルムを用いることによ
り従来品より軽量化された二次電池用電極及びこれに用
いるフィルムに関する。
TECHNICAL FIELD The present invention relates to an electrode for a secondary battery and a film used for the same. More specifically, it is excellent in the productivity of battery production, the battery capacity is improved by thinning the electrode agent base material, and the weight of the secondary battery electrode is reduced by using a film, and the electrode is used for the secondary battery. About the film.

【0002】[0002]

【従来の技術】近年、電気電子機器の小型化に伴い、そ
れに用いられる電池の小型化が求められ、また携帯用電
気電子機器の発達に伴う電池の容量向上、長寿命化が求
められている。電池の構造としては、金属箔上に電極剤
を積層させてなる電極をシート状セパレータを介して重
ね合せたものを巻回して形成したものが多い。この電極
やセパレータを薄膜化することにより、電池の小型化、
また電池容量の向上、長寿命化が期待される。
2. Description of the Related Art In recent years, with the miniaturization of electric and electronic equipment, there has been a demand for miniaturization of batteries used therein, and with the development of portable electric and electronic equipment, there has been a demand for improved capacity and longer life of batteries. . In many cases, a battery is formed by winding an electrode formed by laminating an electrode agent on a metal foil with a sheet separator interposed therebetween. By making these electrodes and separators thinner, batteries can be made smaller,
In addition, improvement in battery capacity and extension of life are expected.

【0003】しかしながら、上記の要求に対応すべく金
属箔を薄膜化すると、金属によっては強度の不足という
問題が生じる。しかも使用する金属量は変わらないた
め、電池重量を低減させることはできない。
[0003] However, if the thickness of the metal foil is reduced to meet the above demand, there is a problem that the strength is insufficient depending on the metal. Moreover, since the amount of metal used does not change, the weight of the battery cannot be reduced.

【0004】[0004]

【発明が解決しようとする課題】この解決策の1つとし
て、基材に配向させて強度を持たせたプラスチックフィ
ルムを用い、この表面に金属の薄膜を設けることが考え
られるが、金属膜厚の低下による抵抗値の上昇のため、
温度上昇の可能性がある。
One solution to this problem is to use a plastic film which is oriented on a substrate and has strength, and to provide a thin metal film on this surface. Due to the increase in resistance due to the decrease in
Possible temperature increase.

【0005】したがって、本発明の目的は、耐熱性に優
れ、薄膜化されたことにより電池容量、寿命が改良さ
れ、かつまた基材にフィルムを用いたことにより従来品
より軽量化された二次電池用電極及びこれに用いるフィ
ルムを提供することにある。
Accordingly, it is an object of the present invention to provide a secondary battery which is excellent in heat resistance, is improved in battery capacity and life by being made thinner, and is lighter than conventional products by using a film as a base material. An object of the present invention is to provide a battery electrode and a film used therefor.

【0006】[0006]

【課題を解決するための手段】本発明の目的は、本発明
によれば、第一に、DSC昇温測定における融解ピーク
温度が200℃以上であるポリエステル系樹脂からな
り、厚み0.2〜30μm、ヤング率500kg/mm
2以上の二軸延伸フィルムの少なくとも一方の表面に金
属薄膜が形成されていることを特徴とする二次電池電極
用フィルムによって達成される。
SUMMARY OF THE INVENTION According to the present invention, first, a polyester resin having a melting peak temperature of 200 ° C. or higher in DSC temperature measurement is used. 30 μm, Young's modulus 500 kg / mm
This is achieved by a film for a secondary battery electrode, wherein a metal thin film is formed on at least one surface of two or more biaxially stretched films.

【0007】本発明における二軸延伸フィルムを構成す
る樹脂は、以下に述べるDSC特性を満足し、分子中に
エステル結合を有するポリエステル系樹脂である。
The resin constituting the biaxially stretched film in the present invention is a polyester resin satisfying the following DSC characteristics and having an ester bond in the molecule.

【0008】このポリエステル系樹脂を構成する酸成分
の好ましい例として、テレフタル酸、イソフタル酸、
2,6−ナフタレンジカルボン酸などの芳香族ジカルボ
ン酸、コハク酸、アジピン酸、アゼライン酸、セバシン
酸などの脂肪族ジカルボン酸、シクロヘキサン−1,4
−ジカルボン酸などの脂環族ジカルボン酸などが挙げら
れる。これらの中芳香族ジカルボン酸がさらに好まし
い。また好ましいジオール成分の例として、エチレング
リコール、プロピレングリコール、テトラメチレングリ
コール、ヘキサメチレングリコール、ネオペンチルグリ
コール、シクロヘキサン−1,4−ジメタノール、ビス
フェノールAなどが挙げられる。これらの中エチレング
リコールがさらに好ましい。さらにp−ヒドロキシ安息
香酸、m−クロル−p−ヒドロキシ安息香酸、ω−ヒド
ロキシカプロン酸などのヒドロキシカルボン酸類も使用
することができるし、また炭酸エステルの形とすること
もできる。
Preferred examples of the acid component constituting the polyester resin include terephthalic acid, isophthalic acid,
Aromatic dicarboxylic acids such as 2,6-naphthalenedicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, azelaic acid and sebacic acid, cyclohexane-1,4
And alicyclic dicarboxylic acids such as dicarboxylic acids. Of these, aromatic dicarboxylic acids are more preferred. Examples of preferable diol components include ethylene glycol, propylene glycol, tetramethylene glycol, hexamethylene glycol, neopentyl glycol, cyclohexane-1,4-dimethanol, and bisphenol A. Of these, ethylene glycol is more preferred. Further, hydroxycarboxylic acids such as p-hydroxybenzoic acid, m-chloro-p-hydroxybenzoic acid and ω-hydroxycaproic acid can be used, and they can also be in the form of a carbonate.

【0009】ポリエステル系樹脂は、好ましくはホモポ
リマーであるが、コポリマー(共重合体)であってもよ
い。またこれらホモポリマーおよび/または共重合体の
2種以上からなるポリマーブレンドであってもよい。
The polyester resin is preferably a homopolymer, but may be a copolymer. Further, a polymer blend composed of two or more of these homopolymers and / or copolymers may be used.

【0010】これらの中で特に好ましいものとして、ポ
リエチレンテレフタレート、ポリエチレン−2,6−ナ
フタレートを挙げることができる。
Of these, polyethylene terephthalate and polyethylene-2,6-naphthalate are particularly preferred.

【0011】本発明において二軸延伸フィルムを構成す
るポリエステル系樹脂は、DSC昇温測定における融解
ピーク温度が200℃以上、好ましくは230℃以上の
ものである。該融解ピーク温度が200℃未満の場合
は、二次電池としたときに、内部抵抗による発熱が生じ
た際の電極の熱変形により短絡の原因となり、好ましく
ない。
In the present invention, the polyester resin constituting the biaxially stretched film has a melting peak temperature of 200 ° C. or higher, preferably 230 ° C. or higher in DSC temperature measurement. When the melting peak temperature is lower than 200 ° C., when a secondary battery is used, a short circuit is caused by thermal deformation of the electrode when heat is generated due to internal resistance, which is not preferable.

【0012】本発明におけるフィルムは、二軸延伸され
ている必要があり、一軸延伸や未延伸のフィルムでは熱
寸法安定性不足による容量バラツキの原因となり好まし
くない。
The film in the present invention must be biaxially stretched, and a uniaxially stretched or unstretched film is not preferable because it causes a variation in capacity due to insufficient thermal dimensional stability.

【0013】前記二軸延伸フィルムは、ヤング率が50
0kg/mm2以上、好ましくは600kg/mm2以上
であることにより、電極剤の積層、巻回による電池作成
の作業性がより良好となる。ヤング率が500kg/m
2未満では電池作成時に破断などのトラブルが発生す
る可能性がある。但し、このヤング率は、縦、横方向の
ヤング率の平均値をもって表す。
The biaxially stretched film has a Young's modulus of 50
When it is 0 kg / mm 2 or more, preferably 600 kg / mm 2 or more, the workability of forming a battery by laminating and winding the electrode agent becomes better. Young's modulus is 500kg / m
If it is less than m 2 , troubles such as breakage may occur during battery production. However, this Young's modulus is represented by the average value of the Young's modulus in the vertical and horizontal directions.

【0014】本発明における二軸延伸フィルムは、本発
明の効果を損なわない範囲で、粗面化剤として、平均粒
径が好ましくは0.05〜2.0μmの微粒子を、フィ
ルム中に好ましくは0.1〜5.0重量%含有させるこ
とができる。この微粒子としては内部析出粒子であって
も外部添加粒子であっても良い。外部添加粒子として
は、例えば炭酸カルシウム、炭酸マグネシウム、炭酸バ
リウム、硫酸バリウム、リン酸カルシウム、リン酸リチ
ウム、リン酸マグネシウム、フッ化リチウム、酸化アル
ミニウム、酸化ケイ素(シリカ)、酸化チタン、カオリ
ン、タルク、カーボンブラック、窒化ケイ素、窒化ホウ
素、架橋ポリマー微粒子(例えば、架橋ポリスチレン、
架橋アクリル樹脂、架橋シリコーン樹脂などの微粒子)
等を挙げることができる。これらは単独使用でも良く、
また2種以上の併用でも良い。
In the biaxially stretched film of the present invention, fine particles having an average particle size of preferably 0.05 to 2.0 μm are preferably used as a surface roughening agent within a range not impairing the effects of the present invention. The content can be 0.1 to 5.0% by weight. The fine particles may be internally precipitated particles or externally added particles. Examples of the externally added particles include calcium carbonate, magnesium carbonate, barium carbonate, barium sulfate, calcium phosphate, lithium phosphate, magnesium phosphate, lithium fluoride, aluminum oxide, silicon oxide (silica), titanium oxide, kaolin, talc, and carbon. Black, silicon nitride, boron nitride, crosslinked polymer fine particles (for example, crosslinked polystyrene,
Fine particles such as cross-linked acrylic resin and cross-linked silicone resin)
And the like. These may be used alone,
Also, two or more kinds may be used in combination.

【0015】かかる粗面化剤を含有させる方法として
は、ポリエステル系樹脂の製造時にアルカリ(土類)金
属化合物をリン化化合物の添加で微細な粒子として析出
させる内部粒子析出法や、ポリマー製造工程からフィル
ム製膜工程のいずれかの工程で、ポリマーに不活性な無
機または有機の微粒子を添加する外部粒子添加法が挙げ
られる。
Examples of the method for incorporating the surface roughening agent include an internal particle precipitation method in which an alkali (earth) metal compound is precipitated as fine particles by the addition of a phosphating compound during the production of a polyester resin, or a polymer production process. And an external particle addition method in which inorganic or organic fine particles inert to the polymer are added in any one of the film forming step and the film forming step.

【0016】本発明における二軸延伸フィルムは、従来
から知られている方法に準じて製造することが出来る。
例えば、原料ポリマーを所定の条件で十分乾燥した後、
周知の溶融押出装置(エクストルーダーに代表される)
に供給し、ポリマー融点(Tm:℃)以上の温度、特に
m〜(Tm+70)℃の温度に加熱し溶融する。この押
出工程で原料ポリマーが均一となるよう溶融混練し、か
つ溶融混練の程度を調整する。
The biaxially stretched film of the present invention can be produced according to a conventionally known method.
For example, after sufficiently drying the raw material polymer under predetermined conditions,
Well-known melt extrusion equipment (typically extruder)
And melted by heating to a temperature higher than the melting point of the polymer (T m : ° C.), particularly a temperature of T m to (T m +70) ° C. In this extrusion step, the raw material polymer is melt-kneaded so as to be uniform, and the degree of melt-kneading is adjusted.

【0017】次いで、溶融混練したポリマーを、スリッ
ト状のダイリップからシートに押出し、回転冷却ドラム
上で急冷固化し、実質的に非晶状態の未延伸シートを得
る。この場合、回転冷却ドラムとの密着性を高め、シー
トの表面平坦性(平面性、平滑性)を向上させるため
に、静電荷印加密着法及び/または液体塗布密着法が好
ましく採用される。静電荷印加密着法とは、ダイから押
し出されたシートの流れと直行する方向に張った線状電
極に直流電圧を印加して該シートの表面(非ドラム側)
に静電荷を乗せ、この作用でシートと回転冷却ドラムと
の密着性を向上させる方法である。液体塗布密着法と
は、回転冷却ドラム表面の全部または一部(例えば、シ
ート両端部と接触する部分)に液体を均一に塗布するこ
とにより、シートと回転冷却ドラムとの密着性を向上さ
せる方法である。本発明においては必要に応じ両者を併
用しても良い。また、実質的に非晶状態の未延伸シート
を製造する方法として、インフレーションキャスト法や
流延法を採用することもできる。
Next, the melt-kneaded polymer is extruded from a slit-shaped die lip into a sheet and quenched and solidified on a rotary cooling drum to obtain a substantially amorphous unstretched sheet. In this case, in order to enhance the adhesion to the rotary cooling drum and to improve the surface flatness (flatness, smoothness) of the sheet, an electrostatic charge application adhesion method and / or a liquid application adhesion method are preferably employed. The electrostatic charge application adhesion method is a method in which a DC voltage is applied to a linear electrode extending in a direction perpendicular to the flow of a sheet extruded from a die and the surface of the sheet (non-drum side)
This is a method of improving the adhesion between the sheet and the rotary cooling drum by this action. The liquid application adhesion method is a method of improving the adhesion between the sheet and the rotary cooling drum by uniformly applying the liquid to all or a part of the surface of the rotary cooling drum (for example, a portion in contact with both ends of the sheet). It is. In the present invention, both may be used as needed. Further, as a method for producing a substantially amorphous unstretched sheet, an inflation casting method or a casting method may be employed.

【0018】かくして得られる未延伸シートを、次い
で、二軸方向に延伸して二軸延伸フィルムとする。この
延伸方法としては逐次二軸延伸法(テンター法)や同時
二軸延伸法(テンター法またはチューブ法)を用いるこ
とが出来る。逐次二軸延伸法での延伸条件としては、前
記未延伸シートを(Tg−10)〜(Tg+70)℃の温
度(但し、Tgは最も高いガラス転移温度)で一方向
(縦方向または横方向)に2〜6倍、好ましくは2.5
〜5.5倍延伸し、次に一段目と直行する方向(一段目
延伸が縦方向の場合は二段目延伸は横方向になる)にT
g〜(Tg+70)℃の温度で2〜6倍、好ましくは2.
5〜5.5倍延伸する。尚、一方向の延伸は2段階以上
の多段で行う方法も用いることが出来るが、その場合も
最終的な延伸倍率が前記した範囲内であることが望まし
い。また、二段目延伸後中間熱処理をしてから、再度一
段目と同じ方向及び/または二段目と同じ方向に延伸し
ても良い。また、前記未延伸シートを面積倍率が6〜3
0倍、好ましくは8〜25倍になるように同時二軸延伸
することもできる。
The unstretched sheet thus obtained is then stretched biaxially to form a biaxially stretched film. As this stretching method, a sequential biaxial stretching method (tenter method) or a simultaneous biaxial stretching method (tenter method or tube method) can be used. As the stretching conditions in the sequential biaxial stretching method, the unstretched sheet is subjected to a temperature (T g −10) to (T g +70) ° C. (where T g is the highest glass transition temperature) in one direction (longitudinal direction). Or 2 to 6 times, preferably 2.5 times
The film is stretched to 5.5 times, and then in a direction perpendicular to the first step (if the first step is longitudinal, the second step is transverse).
g to (T g +70) ° C. 2 to 6 times, preferably 2.
Stretch 5 to 5.5 times. In addition, a method of performing unidirectional stretching in two or more stages can be used, but in such a case, it is desirable that the final stretching ratio is within the above range. Further, after the intermediate heat treatment after the second stage stretching, the film may be stretched again in the same direction as the first stage and / or in the same direction as the second stage. The unstretched sheet may have an area magnification of 6 to 3.
Simultaneous biaxial stretching can be performed so as to be 0 times, preferably 8 to 25 times.

【0019】かくして得られる二軸延伸フィルムは、必
要に応じ熱処理するが、この熱処理は、Tg〜(Tg+1
40)℃の温度で、1秒〜10分間行うのが好ましい。
その際、20%以内の制限収縮もしくは伸長、または定
長下で行い、また2段以上で行っても良い。
The thus-obtained biaxially stretched film is subjected to a heat treatment if necessary. This heat treatment is carried out at a temperature between T g and (T g +1).
40) It is preferable to carry out at a temperature of 1 ° C. for 1 second to 10 minutes.
At this time, the reaction may be performed under limited contraction or elongation within 20% or under a fixed length, or may be performed in two or more stages.

【0020】かくして得られる二軸延伸フィルムの厚み
は、0.2〜30μm、好ましくは0.2〜20μm、
さらに好ましくは0.5〜15μm、特に好ましくは
0.9〜10μmである。フィルムの厚みが薄すぎる
と、電極剤基材としての十分な強度が得られないため好
ましくない。一方厚すぎると、電池の体積に対する電極
面積が不十分なために十分な電池容量が得られず、好ま
しくない。
The thickness of the biaxially stretched film thus obtained is 0.2 to 30 μm, preferably 0.2 to 20 μm,
More preferably, it is 0.5 to 15 μm, particularly preferably 0.9 to 10 μm. If the thickness of the film is too small, it is not preferable because sufficient strength as an electrode agent base material cannot be obtained. On the other hand, if the thickness is too large, a sufficient battery capacity cannot be obtained due to an insufficient electrode area with respect to the battery volume, which is not preferable.

【0021】本発明の二軸延伸フィルムは、金属薄膜と
の接着性を向上させる目的で、表面加工されていてもよ
い。表面加工の方法は特に限定されないが、易接剤層の
塗布、コロナ処理、プラズマ処理等を好ましい例として
挙げることができる。これらの表面加工は、二軸延伸フ
ィルムを製膜する工程中で行っても、また製膜工程とは
別の工程で行ってもよい。この中、製膜工程中で行うの
が好ましい。
The biaxially stretched film of the present invention may be surface-treated for the purpose of improving the adhesion to a metal thin film. The surface processing method is not particularly limited, but preferred examples include application of an easy-adhesive agent layer, corona treatment, and plasma treatment. These surface treatments may be performed during the step of forming the biaxially stretched film, or may be performed in a step different from the film forming step. Among these, it is preferable to carry out during the film forming process.

【0022】本発明における二軸延伸フイルムは、二次
電池電極用フィルムとして使用するため、その少なくと
も一方の表面に金属薄膜を有する。薄膜を形成する金属
としては、例えばアルミニウム、ニッケル、金、銀、
銅、カドミウム等が挙げられるが、本発明の目的から導
電性のものであれば特に限定はされない。金属薄膜の厚
みは、通常1〜1000nmの範囲であるが、電池の内
部抵抗発熱を抑える目的から、10〜1000nmであ
ることが好ましい。金属薄膜の作成方法としては、真空
蒸着法、エレクトロプレーティング法、スパッタリング
法等の方法を好ましい例として挙げることができる。
The biaxially stretched film of the present invention has a metal thin film on at least one surface thereof for use as a film for a secondary battery electrode. As the metal forming the thin film, for example, aluminum, nickel, gold, silver,
Although copper, cadmium, etc. are mentioned, it is not particularly limited as long as it is conductive for the purpose of the present invention. The thickness of the metal thin film is usually in the range of 1 to 1000 nm, but is preferably 10 to 1000 nm for the purpose of suppressing the internal resistance heat generation of the battery. Preferable examples of the method for forming the metal thin film include a vacuum deposition method, an electroplating method, and a sputtering method.

【0023】本発明の二次電池電極用フィルムは、その
金属薄膜面に電極剤を積層することにより、二次電池用
電極とすることができる。この電極剤としては、従来か
ら知られているもの、例えばコバルト酸リチウム、黒鉛
等を用いることができる。さらに、この二次電池用電極
を用い、従来から知られている方法で二次電池を製造す
ることができる。例えば、リチウムイオン二次電池を製
造する場合には、銅スパッタ膜を有する二次電池電極用
フィルムにコバルト酸リチウムを塗布したものを正極と
して、またアルミニウム蒸着膜を有する二次電池電極用
フィルムに黒鉛を塗布したものを負極として用い、両者
の間にポリエチレン微多孔膜からなるセパレータを介在
させて巻回し、リチウム塩を溶解した有機溶媒を電解液
として二次電池を形成することができる。
The electrode film for a secondary battery of the present invention can be used as an electrode for a secondary battery by laminating an electrode agent on the metal thin film surface. As the electrode agent, conventionally known ones, for example, lithium cobaltate, graphite and the like can be used. Furthermore, a secondary battery can be manufactured by a conventionally known method using the secondary battery electrode. For example, when manufacturing a lithium ion secondary battery, a film obtained by applying lithium cobalt oxide to a film for a secondary battery electrode having a copper sputtered film is used as a positive electrode, and a film for a secondary battery electrode having an aluminum vapor-deposited film is used. A graphite-coated negative electrode is used as a negative electrode, wound with a separator made of a microporous polyethylene film interposed therebetween, and a secondary battery can be formed using an organic solvent in which a lithium salt is dissolved as an electrolyte.

【0024】[0024]

【実施例】以下、実施例を挙げて本発明をさらに詳細に
説明するが、本発明はその要旨を越えない限り、以下の
実施例に限定されるものではない。なお、本発明におけ
る種々の物性値および特性は以下の如く測定されたもの
であり、また定義される。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the scope of the invention. In the present invention, various physical properties and characteristics are measured and defined as follows.

【0025】(1)固有粘度([η]) o−クロロフェノールを溶媒として用い、25℃で測定
した値(単位:dl/g)である。
(1) Intrinsic viscosity ([η]) This is a value (unit: dl / g) measured at 25 ° C. using o-chlorophenol as a solvent.

【0026】(2)融解ピーク温度(Tm) フィルム10mgをセイコー電子工業(株)製熱分析シ
ステムSSC/5200,DSC5200にセットし、
窒素ガス気流中で20℃/minの昇温速度で加熱し、
該フィルムの融解に伴う吸熱挙動を1次微分、2次微分
で解析し、ピークまたはショルダーを示す温度を決定
し、これを融解ピーク温度(単位:℃)とする。
(2) Melting peak temperature (T m ) 10 mg of the film was set in a thermal analysis system SSC / 5200, DSC5200 manufactured by Seiko Electronic Industry Co., Ltd.
Heating at a rate of 20 ° C./min in a nitrogen gas stream,
The endothermic behavior accompanying the melting of the film is analyzed by the first derivative and the second derivative to determine a temperature showing a peak or a shoulder, which is defined as a melting peak temperature (unit: ° C.).

【0027】(3)フィルム厚み(t) フィルムを、幅W(cm)、長さl(cm)にサンプリ
ングしたときの重さG(g)、該フィルムの密度をd
(g/cm3)としたとき、下記式で計算する(単位:
μm)。密度dは、n−ヘプタン〜四塩化炭素、又は硝
酸カルシウム水溶液からなる密度勾配管を用いて測定す
る。
(3) Film Thickness (t) The weight G (g) when the film is sampled to a width W (cm) and a length l (cm), and the density of the film is d
(G / cm 3 ), it is calculated by the following formula (unit:
μm). The density d is measured using a density gradient tube composed of an aqueous solution of n-heptane to carbon tetrachloride or calcium nitrate.

【0028】[0028]

【数1】t=[g/(W×l×d)]×10000## EQU1 ## t = [g / (W × 1 × d)] × 10000

【0029】(4)ヤング率 フィルムを、幅10mm、長さ150mmにサンプリン
グし、周知の引張り試験機にてチャック間100mm、
速度10mm/minで引張り、得られた荷重−伸度曲
線の立上がり部の接線よりヤング率を求める(単位:k
g/mm2)。
(4) Young's Modulus A film was sampled to a width of 10 mm and a length of 150 mm, and a known tensile tester was used to sample 100 mm between the chucks.
It is pulled at a speed of 10 mm / min, and the Young's modulus is determined from the tangent to the rising portion of the obtained load-elongation curve (unit: k).
g / mm 2 ).

【0030】(5)電池容量 フィルムを用いてリチウムイオン二次電池を作成し、連
続放電を行い、放電電圧が80%となる放電容量が20
00mAh以上のものを良好とする。
(5) Battery capacity A lithium ion secondary battery was prepared using the film, and was continuously discharged. The discharge capacity at which the discharge voltage was 80% was 20%.
Those having a value of 00 mAh or more are regarded as good.

【0031】(6)電池作成の生産性 電極剤塗工、巻回の一連の作業において破断などによる
生産性の低下が10%未満であるものを良好とする。
(6) Productivity of Battery Preparation A battery having a productivity of less than 10% due to breakage or the like in a series of operations of coating and winding the electrode agent is considered to be good.

【0032】(7)電池寿命 作成した電池について100℃の条件下で繰返し充/放
電試験を行い、電池総数の10%に短絡が発生するまで
の劣化サイクルが500回以上のものを良好とする。
(7) Battery Life The battery thus prepared is subjected to repeated charge / discharge tests under the condition of 100 ° C., and a battery having a deterioration cycle of 500 times or more until a short circuit occurs in 10% of the total number of batteries is determined to be good. .

【0033】[実施例1][η]が0.65のポリエチ
レン−2,6−ナフタレート(Tm=267℃)を十分
乾燥し、スリット状ダイより溶融押出し、静電荷印可密
着法を用いて表面温度15℃の回転冷却ドラム上で密着
させて急冷固化し、未延伸シートを得た。
Example 1 A polyethylene-2,6-naphthalate (T m = 267 ° C.) having an [η] of 0.65 was sufficiently dried, melt-extruded from a slit die, and then subjected to an electrostatic charge printing and adhesion method. It was brought into close contact with a rotating cooling drum having a surface temperature of 15 ° C. and solidified rapidly to obtain an unstretched sheet.

【0034】この未延伸シートを140℃の延伸温度で
縦方向に3.7倍、横方向に4.0倍の延伸倍率で逐次
二軸延伸を施した。次いで、一旦冷却した後240℃の
定長熱処理を施し、厚さ7.0μmの二軸延伸フィルム
を得た。得られた二軸延伸フィルムのヤング率は、表1
に示す通りであった。
This unstretched sheet was successively biaxially stretched at a stretching temperature of 140 ° C. at a stretching ratio of 3.7 times in the machine direction and 4.0 times in the transverse direction. Next, after cooling once, a constant-length heat treatment at 240 ° C. was performed to obtain a biaxially stretched film having a thickness of 7.0 μm. Table 1 shows the Young's modulus of the obtained biaxially stretched film.
As shown in FIG.

【0035】この二軸延伸フィルムの両面に銅スパッタ
を施し、その上にコバルト酸リチウムを塗布して正極材
とした。また上記二軸延伸フィルムの両面にアルミニウ
ム蒸着を施し、その上に黒鉛を塗布して負極材とした。
これらの間にポリエチレン微多孔膜からなるセパレータ
を介在させて巻回し、エチレンカーボネート/ジエチル
カーボネート/酢酸エチル混合溶媒に六フッ化リン酸リ
チウムを溶解したものを電解液としてリチウムイオン二
次電池を作成した。得られた電池の容量および一連の工
程中の生産性は表1に示す通りであった。
The biaxially stretched film was subjected to copper sputtering on both sides, and lithium cobaltate was applied thereon to obtain a positive electrode material. Aluminum was deposited on both sides of the biaxially stretched film, and graphite was applied thereon to obtain a negative electrode material.
A lithium ion secondary battery is prepared by winding a separator consisting of a microporous polyethylene membrane between them and winding it, and dissolving lithium hexafluorophosphate in a mixed solvent of ethylene carbonate / diethyl carbonate / ethyl acetate as an electrolyte. did. The capacity of the obtained battery and the productivity during a series of steps were as shown in Table 1.

【0036】[比較例1]二軸延伸フィルムの原料とし
て、イソフタル酸成分が12mol%の割合で共重合さ
れた、[η]が0.65のポリエチレンテレフタレート
・イソフタレート共重合体(Tm=193℃)を用い、
60℃の延伸温度で縦方向に3.7倍、横方向に4.0
倍の延伸倍率で逐次二軸延伸を施し、120℃の定長熱
処理を施してフィルム製膜を行う以外は実施例1と同様
にしてフィルム製膜、電池作成を行った。
Comparative Example 1 As a raw material of a biaxially stretched film, a polyethylene terephthalate / isophthalate copolymer (T m = 0.65) in which an isophthalic acid component was copolymerized at a ratio of 12 mol% and [η] was 0.65. 193 ° C.)
At a stretching temperature of 60 ° C., 3.7 times in the longitudinal direction and 4.0 times in the lateral direction.
A film was formed and a battery was prepared in the same manner as in Example 1 except that the film was formed by successively biaxially stretching the film at a double magnification and then performing a constant-length heat treatment at 120 ° C. to form a film.

【0037】得られた電池の容量および一連の工程中の
生産性は表1に示す通りであった。この電池は、基材フ
ィルムの融解ピーク温度が200℃未満であるため短絡
を起こしやすく、寿命が不足するものであった。
Table 1 shows the capacity of the obtained battery and the productivity during a series of steps. In this battery, since the melting peak temperature of the base film was lower than 200 ° C., a short circuit was easily caused, and the life was short.

【0038】[比較例2]二軸延伸フィルムの厚みを4
0μmとする以外は実施例1と同様にしてフィルム製
膜、電池作成を行った。
Comparative Example 2 A biaxially stretched film having a thickness of 4
A film was formed and a battery was prepared in the same manner as in Example 1 except that the thickness was set to 0 μm.

【0039】得られたリチウムイオン二次電池の容量お
よび一連の工程中の生産性は表1に示す通りであった。
この電池は、電極剤基材となるフィルムの厚みが厚すぎ
るため、電池容量が不足するものであった。
Table 1 shows the capacity of the obtained lithium ion secondary battery and the productivity during a series of steps.
In this battery, the battery capacity was insufficient because the film serving as the electrode material base was too thick.

【0040】[比較例3]二軸延伸フィルムの原料とし
て[η]が0.65のポリエチレンテレフタレート(T
m=258℃)を用い、130℃の延伸温度で縦方向に
2.9倍、横方向に3.2倍の延伸倍率で逐次二軸延伸
を施し、210℃の定長熱処理を施してフィルム製膜を
行う以外は実施例1と同様にしてフィルム製膜、電池作
成を行った。
Comparative Example 3 As a raw material of a biaxially stretched film, polyethylene terephthalate (T) having [η] of 0.65 (T
m = 258 ° C.), and subjected to sequential biaxial stretching at a stretching temperature of 130 ° C. at a stretching ratio of 2.9 times in the longitudinal direction and 3.2 times in the transverse direction, and a constant-length heat treatment at 210 ° C. A film was formed and a battery was prepared in the same manner as in Example 1 except that the film was formed.

【0041】この電池の容量および一連の工程中の生産
性は表1に示す通りであった。この電池は、フィルムの
ヤング率が小さすぎるため、生産性に劣るものであっ
た。
The capacity of this battery and the productivity during a series of steps were as shown in Table 1. This battery was inferior in productivity because the Young's modulus of the film was too small.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【発明の効果】本発明の二次電池電極用フィルムを用い
て作成した二次電池は、電極剤基材が薄膜化されたこと
により電池容量が向上し、かつ該電極剤基材として融解
ピーク温度が高く、高ヤング率の二軸延伸フィルムを用
いているので、電極剤基材の熱変形による短絡が防止さ
れ電池寿命が向上し、かつ電池作成の生産性に優れたも
のである。
As described above, in the secondary battery prepared using the film for a secondary battery electrode of the present invention, the battery capacity is improved by making the electrode material substrate thinner, and the melting peak as the electrode material substrate is improved. Since a biaxially stretched film having a high temperature and a high Young's modulus is used, a short circuit due to thermal deformation of the electrode material base is prevented, the battery life is improved, and the productivity of battery production is excellent.

【0044】また本発明の二次電池電極用フィルムを用
いて作成した二次電池は、電極剤基材に金属箔を用いた
従来品より軽量化されたものであり、重量エネルギー密
度も高いものである。
A secondary battery prepared using the film for a secondary battery electrode of the present invention has a lighter weight and a higher weight energy density than a conventional product using a metal foil as an electrode material base. It is.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 DSC昇温測定における融解ピーク温度
が200℃以上であるポリエステル系樹脂からなり、厚
みが0.2〜30μm、ヤング率が500kg/mm2
以上である二軸延伸フィルムの少なくとも一方の表面に
金属薄膜が形成されていることを特徴とする二次電池電
極用フィルム。
1. A polyester resin having a melting peak temperature of 200 ° C. or higher in a DSC temperature rise measurement, a thickness of 0.2 to 30 μm, and a Young's modulus of 500 kg / mm 2.
A film for a secondary battery electrode, wherein a metal thin film is formed on at least one surface of the biaxially stretched film described above.
【請求項2】 請求項1記載の二次電池電極用フィルム
の金属薄膜面に電極剤を積層してなる二次電池用電極。
2. A secondary battery electrode obtained by laminating an electrode agent on a metal thin film surface of the secondary battery electrode film according to claim 1.
【請求項3】 請求項2記載の二次電池用電極が組み込
まれてなる二次電池。
3. A secondary battery incorporating the secondary battery electrode according to claim 2.
JP19060696A 1996-07-19 1996-07-19 Secondary battery electrode film Expired - Fee Related JP4316689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19060696A JP4316689B2 (en) 1996-07-19 1996-07-19 Secondary battery electrode film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19060696A JP4316689B2 (en) 1996-07-19 1996-07-19 Secondary battery electrode film

Publications (2)

Publication Number Publication Date
JPH1040919A true JPH1040919A (en) 1998-02-13
JP4316689B2 JP4316689B2 (en) 2009-08-19

Family

ID=16260875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19060696A Expired - Fee Related JP4316689B2 (en) 1996-07-19 1996-07-19 Secondary battery electrode film

Country Status (1)

Country Link
JP (1) JP4316689B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103476A (en) * 2002-09-11 2004-04-02 Sony Corp Nonaqueous electrolyte battery
WO2012127561A1 (en) * 2011-03-18 2012-09-27 株式会社日立製作所 Non-aqueous electrolyte battery
JP2014220187A (en) * 2013-05-10 2014-11-20 帝人デュポンフィルム株式会社 Biaxially oriented polyester film for power storage element electrode
CN112186197A (en) * 2019-07-01 2021-01-05 宁德时代新能源科技股份有限公司 Positive current collector, positive pole piece and electrochemical device
WO2022004414A1 (en) 2020-06-30 2022-01-06 東洋紡株式会社 Biaxially stretched polyphenylene sulfide film and secondary battery electrode film composed of same
KR20240011657A (en) 2021-05-20 2024-01-26 도레이 케이피 필름 가부시키가이샤 Metallized film for secondary battery positive electrode, and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102687333B (en) 2010-12-08 2015-04-29 公益财团法人三重县产业支援中心 Method of manufacturing lithium rechargeable battery,method of manufacturing stacked battery,and method of manufacturing complex

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314984A (en) * 1992-05-12 1993-11-26 Yuasa Corp Current collector body for battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314984A (en) * 1992-05-12 1993-11-26 Yuasa Corp Current collector body for battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
加藤秀雄: "「二軸延伸PENフィルム」", 工業材料, vol. 1993年5月号(Vol.41 No.6), JPN4006024422, pages 31 - 36, ISSN: 0000774986 *
加藤秀雄: "「二軸延伸PENフィルム」", 工業材料, vol. 1993年5月号(Vol.41 No.6), JPN6008005967, pages 31 - 36, ISSN: 0001305845 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103476A (en) * 2002-09-11 2004-04-02 Sony Corp Nonaqueous electrolyte battery
WO2012127561A1 (en) * 2011-03-18 2012-09-27 株式会社日立製作所 Non-aqueous electrolyte battery
JPWO2012127561A1 (en) * 2011-03-18 2014-07-24 株式会社日立製作所 Non-aqueous electrolyte battery
JP2014220187A (en) * 2013-05-10 2014-11-20 帝人デュポンフィルム株式会社 Biaxially oriented polyester film for power storage element electrode
CN112186197A (en) * 2019-07-01 2021-01-05 宁德时代新能源科技股份有限公司 Positive current collector, positive pole piece and electrochemical device
WO2022004414A1 (en) 2020-06-30 2022-01-06 東洋紡株式会社 Biaxially stretched polyphenylene sulfide film and secondary battery electrode film composed of same
KR20230006908A (en) 2020-06-30 2023-01-11 도요보 가부시키가이샤 Biaxially stretched polyphenylene sulfide film and secondary battery electrode film including the same
KR20240011657A (en) 2021-05-20 2024-01-26 도레이 케이피 필름 가부시키가이샤 Metallized film for secondary battery positive electrode, and method for manufacturing the same

Also Published As

Publication number Publication date
JP4316689B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
EP1197976B1 (en) Polyester film for heat-resistant capacitor, metallized film thereof, and heat-resistant film capacitor containing the same
JP2015147309A (en) biaxially oriented polyester film
JPH1040919A (en) Film for secondary battery electrode
JP6205868B2 (en) Biaxially oriented polyester film
JP6211796B2 (en) Biaxially stretched polyester film for storage element electrodes
JPH1040920A (en) Film for secondary battery electrode
JP2012238491A (en) Polyester film for battery outer package, laminate for battery outer package including the same, and constitutional body
JP4543626B2 (en) Polyester film for lithium battery packaging
JPH1110723A (en) Manufacture of biaxially oriented polyester film
TWI779690B (en) Biaxially stretched polyphenylene sulfide film, film for secondary battery electrode, and electrode for secondary battery composed of the same
JP4427766B2 (en) Polyester film for capacitor and film capacitor
JP3829424B2 (en) Polyester film for capacitors and film capacitors
JPH10305541A (en) Biaxially oriented polyester film for laminate
JP3858459B2 (en) Polyester film for condenser
EP4131512A1 (en) Conductive film, preparation process therefor, electrode plate and battery
JP2576465B2 (en) Method of manufacturing film for capacitor
JPH08222477A (en) Polyethylene naphthalate film for capacitor
JP2023118077A (en) Battery electrode film and battery
JP2024518527A (en) Current collectors including metallized films
CN118160116A (en) Current collector comprising metallized multilayer film
WO2023079281A1 (en) Current collectors comprising metallised multi-layer films
JPH09131844A (en) Biaxially oriented polyester film for capacitor
JP2000114095A (en) Metalized laminating polyester film for capacitor
JP2000323351A (en) Polyester film for capacitor
JPH10163065A (en) Polyester film for capacitor, metallized polyester film and film capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees