JPH103937A - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery

Info

Publication number
JPH103937A
JPH103937A JP8154299A JP15429996A JPH103937A JP H103937 A JPH103937 A JP H103937A JP 8154299 A JP8154299 A JP 8154299A JP 15429996 A JP15429996 A JP 15429996A JP H103937 A JPH103937 A JP H103937A
Authority
JP
Japan
Prior art keywords
separator
electrolyte
fiber diameter
electrode plate
average fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8154299A
Other languages
Japanese (ja)
Inventor
Yuji Ishii
裕治 石井
Kotaro Kobayashi
康太郎 小林
Takao Ogura
孝夫 小倉
Satoshi Minoura
敏 箕浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP8154299A priority Critical patent/JPH103937A/en
Publication of JPH103937A publication Critical patent/JPH103937A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a sealed alkaline storage battery in which an electrolyte liquid holding rate of a separator can be improved even where pressure is applied to the separator. SOLUTION: A separator comprising nonwoven fabric is formed by mixing polyproypylene fibers of an average fiber diameter of 2-8μm with polypropylene fibers of an average fiber diameter of 15-30μm. The polypropylene fibers of the average fiber diameter of 2-8μm are included by 20-50wt.% to the nonwoven fabric. A positive electrode plate and a negative electrode plate are wound through a separator to form an electrode plate group. The electrode plate group is disposed in a battery jar to be pressurized by force of 2-6kg/cm<2> in a thickness direction. Electrolyte comprising potassium hydroxide solution is injected into the battery jar to set an electrolyte liquid holding rate of the separator at 150% or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、密閉形アルカリ蓄
電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed alkaline storage battery.

【0002】[0002]

【従来の技術】密閉形ニッケル−カドミウム蓄電池、密
閉形ニッケル−水素蓄電池等の密閉形アルカリ蓄電池
は、正極板と負極板とが合成樹脂繊維の不織布からなる
セパレータに電解液が含浸された電解質層を介して積層
された極板群が厚み方向に加圧(2〜6 kg/cm2 )され
て構成されている。従来では、セパレータの不織布とし
て、ナイロン繊維以外では平均繊維径15〜30μmの
ポリプロピレン繊維が一般的に用いられていた。
2. Description of the Related Art A sealed alkaline storage battery such as a sealed nickel-cadmium storage battery and a sealed nickel-hydrogen storage battery includes an electrolyte layer in which a positive electrode plate and a negative electrode plate are made of a nonwoven fabric of synthetic resin fibers and impregnated with an electrolyte. The electrode plate group laminated via the pressure is pressurized (2 to 6 kg / cm 2 ) in the thickness direction. Conventionally, as a non-woven fabric of the separator, polypropylene fibers having an average fiber diameter of 15 to 30 μm other than nylon fibers have been generally used.

【0003】密閉形アルカリ蓄電池を含めた電池では、
正極活物質及び負極活物質の組成が充電状態と放電状態
で異なる。そのため、電池に充放電が繰り返されると、
活物質が膨脹、収縮して、体積が変化して、活物質内に
微細な細孔ができる。その結果、セパレータ内の電解液
が毛細管現象によって活物質の細孔内に移動して、セパ
レータ内の電解液保液率が低下する。特に平均繊維径1
5〜30μmのポリプロピレン繊維を用いていた電池で
は、電解液保液率が低下が大きい。そのため、放電容量
が低下したり、サイクル寿命が低下するという問題があ
った。そこで、特開昭60−9056号公報に示すよう
に、セパレータの不織布として、平均繊維径0.1〜5
μmの極細のポリプロピレン繊維を用いることが提案さ
れた。このように極細のポリプロピレン繊維を用いる
と、電解液を保持する容積が増えるため、セパレータ内
の電解液保液率を高めることができる。
In batteries including sealed alkaline storage batteries,
The compositions of the positive electrode active material and the negative electrode active material are different between the charged state and the discharged state. Therefore, when the battery is repeatedly charged and discharged,
As the active material expands and contracts, the volume changes, and fine pores are formed in the active material. As a result, the electrolyte in the separator moves into the pores of the active material due to the capillary action, and the electrolyte retention rate in the separator decreases. Especially average fiber diameter 1
In the battery using the polypropylene fiber of 5 to 30 μm, the retention rate of the electrolytic solution is largely reduced. Therefore, there are problems that the discharge capacity is reduced and the cycle life is reduced. Therefore, as disclosed in JP-A-60-9056, the nonwoven fabric of the separator has an average fiber diameter of 0.1 to 5 mm.
It has been proposed to use ultra-fine micron polypropylene fibers. When the ultrafine polypropylene fiber is used as described above, the volume for holding the electrolytic solution increases, so that the electrolyte retaining ratio in the separator can be increased.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うに極細のポリプロピレン繊維をセパレータに用いる
と、無加圧時には、セパレータの電解液保液率を高める
ことができるものの、セパレータが電池内に配置されて
厚み方向に圧力(2〜6 kg/cm2 )が加わると、セパレ
ータ内の電解液保液率が低下するという問題があった。
これは、極細のポリプロピレン繊維を用いると、セパレ
ータに加圧力が加わる際に、セパレータが厚み方向に変
形して潰れやすくなって、電解液を保持する空間が減少
するためである。
However, when such a very fine polypropylene fiber is used for the separator, the separator can be disposed in the battery, although the electrolyte retention rate of the separator can be increased when no pressure is applied. When a pressure (2 to 6 kg / cm 2 ) is applied in the thickness direction, there is a problem that the electrolyte retention rate in the separator decreases.
This is because, when a very thin polypropylene fiber is used, when a pressing force is applied to the separator, the separator is easily deformed in the thickness direction and crushed, and the space for holding the electrolyte is reduced.

【0005】本発明の目的は、セパレータに加圧力が加
わっても、セパレータの電解液保液率を高めることがで
きる密閉形アルカリ蓄電池を提供することにある。
An object of the present invention is to provide a sealed alkaline storage battery that can increase the electrolyte retention rate of a separator even when a pressure is applied to the separator.

【0006】[0006]

【課題を解決するための手段】本発明は、正極板と負極
板とが電解質層を介して積層され、電解質層は、ポリプ
ロピレン繊維の不織布からなるセパレータに電解液が含
浸されてなり、セパレータが厚み方向に2〜6 kg/cm2
で加圧されてなる密閉形アルカリ蓄電池を対象にする。
本発明では、不織布を平均繊維径2〜8μmのポリプロ
ピレン繊維と平均繊維径15〜30μmのポリプロピレ
ン繊維とを混合して構成し、平均繊維径2〜8μmのポ
リプロピレン繊維を不織布に対して20〜50重量%含
有される。そして、セパレータの電解液保液率を150
%以上とする。
According to the present invention, a positive electrode plate and a negative electrode plate are laminated with an electrolyte layer interposed therebetween. The electrolyte layer is formed by impregnating a separator made of a nonwoven fabric of polypropylene fibers with an electrolyte, and 2-6 kg / cm 2 in the thickness direction
A sealed alkaline storage battery pressurized with.
In the present invention, the nonwoven fabric is formed by mixing a polypropylene fiber having an average fiber diameter of 2 to 8 μm and a polypropylene fiber having an average fiber diameter of 15 to 30 μm. % By weight. Then, the electrolyte retention rate of the separator is set to 150
% Or more.

【0007】本発明では、細い繊維径を有するポリプロ
ピレン繊維(平均繊維径2〜8μm)により電解液を保
持する容積を増やして、セパレータ内の電解液保液率を
高める。そして太い繊維径を有するポリプロピレン繊維
(平均繊維径15〜30μm)により、セパレータに加
圧力(2〜6 kg/cm2 )が加わっても、セパレータが厚
み方向に変形して潰れるのを抑制して、電解液を保持す
る空間が減少するのを防ぐ。本発明では、平均繊維径2
〜8μmのポリプロピレン繊維を不織布に対して20〜
50重量%含有させることにより、細い繊維径を有する
ポリプロピレン繊維と太い繊維径を有するポリプロピレ
ン繊維とを有効的に作用させて、加圧時におけるセパレ
ータの電解液保液率を高く維持する。平均繊維径2〜8
μmのポリプロピレン繊維の含有量が20重量%を下回
ると、電解液を十分に保持できず、セパレータの電解液
保液率を高くできない。平均繊維径2〜8μmのポリプ
ロピレン繊維の含有量が50重量%を上回ると、加圧時
にセパレータが厚み方向に変形して、セパレータの電解
液保液率を高くできない。
[0007] In the present invention, the volume of holding the electrolyte is increased by the polypropylene fiber having a small fiber diameter (average fiber diameter of 2 to 8 µm), and the electrolyte retention rate in the separator is increased. The polypropylene fiber having a large fiber diameter (average fiber diameter: 15 to 30 μm) suppresses the separator from being deformed in the thickness direction and crushed even when a pressure (2 to 6 kg / cm 2 ) is applied to the separator. In addition, the space for holding the electrolyte is prevented from decreasing. In the present invention, the average fiber diameter 2
88 μm polypropylene fiber to nonwoven fabric
By containing 50% by weight, the polypropylene fibers having a small fiber diameter and the polypropylene fibers having a large fiber diameter are effectively acted on, and the electrolyte retention rate of the separator during pressurization is maintained high. Average fiber diameter 2-8
If the content of the μm polypropylene fiber is less than 20% by weight, the electrolyte cannot be held sufficiently, and the electrolyte retention rate of the separator cannot be increased. When the content of the polypropylene fiber having an average fiber diameter of 2 to 8 μm exceeds 50% by weight, the separator is deformed in the thickness direction at the time of pressurization, and the electrolyte retention rate of the separator cannot be increased.

【0008】なお、セパレータの電解液保液率(%)は
(セパレータ中の電解液保液重量(g))/(セパレー
タの重量(g))×100の数式で算出するものであ
る。
The electrolyte retention rate (%) of the separator is calculated by a formula of (weight of electrolyte retention liquid in separator (g)) / (weight of separator (g)) × 100.

【0009】[0009]

【発明の実施の形態】試験に用いた各種の密閉形アルカ
リ蓄電池を次のようにして製造した。まず、表1に示す
ように平均繊維径の配合が異なるポリプロピレン繊維が
相互に分散するようにポリプロピレン繊維を抄造して厚
み0.2mmの不織布からなるセパレータをそれぞれ作
った。次にニッケルを活物質とする容量1200mAh
の正極板とランタンを含むミッシュメタル・ニッケル系
の水素吸蔵合金を活物質とする容量1800mAhの負
極板とを用意した。なお、正極板及び負極板は、セパレ
ータより小さい幅寸法を有している。そして、負極板が
電池缶の内側面に接触するように各セパレータを介して
正極板と負極板とを捲回するように積層して極板群をそ
れぞれ作った。次に各極板群が厚み方向に加圧されるよ
うに電池缶内に配置した。この状態でセパレータは厚み
方向に5 kg/cm2 で加圧される。次に、20℃で比重
1.3の水酸化カリウム水溶液からなる電解液を電池缶
内に電池容量に対して2.0ml/Ah 注液した。これによ
り例えば実施例3の電池では、セパレータの電解液保液
率は160%(150%以上)になる。そして、円筒形
のAA形密閉形ニッケル−水素蓄電池をそれぞれ完成し
た。
BEST MODE FOR CARRYING OUT THE INVENTION Various sealed alkaline storage batteries used in the tests were manufactured as follows. First, as shown in Table 1, polypropylene fibers were formed so that polypropylene fibers having different average fiber diameters were mutually dispersed, and separators made of a nonwoven fabric having a thickness of 0.2 mm were produced. Next, a capacity of 1200 mAh using nickel as an active material
And a negative electrode plate having a capacity of 1800 mAh using a misch metal / nickel based hydrogen storage alloy containing lanthanum as an active material. In addition, the positive electrode plate and the negative electrode plate have a smaller width dimension than the separator. Then, the positive electrode plate and the negative electrode plate were laminated so as to be wound through the respective separators so that the negative electrode plate was in contact with the inner side surface of the battery can, thereby forming an electrode plate group. Next, each electrode plate group was disposed in the battery can so as to be pressed in the thickness direction. In this state, the separator is pressed at 5 kg / cm 2 in the thickness direction. Next, an electrolyte consisting of an aqueous solution of potassium hydroxide having a specific gravity of 1.3 at 20 ° C. was injected into the battery can at a rate of 2.0 ml / Ah with respect to the battery capacity. Thus, for example, in the battery of Example 3, the electrolyte retention rate of the separator becomes 160% (150% or more). Then, cylindrical AA type nickel-metal hydride storage batteries were completed.

【0010】[0010]

【表1】 電池を用いて行う試験とは別に上記電池の実施例1〜3
及び比較例1〜4に用いるセパレータの加圧による電解
液保液率の変化を調べた。無加圧時の電解液保液率は次
のようにして測定した。まず各セパレータから5cm角
の試料をそれぞれ10枚作り、各試料の重量(電解液を
含浸しない重量)を測定した。次に各試料を20℃で比
重1.3の水酸化カリウム水溶液に15分間浸漬した。
そして、水酸化カリウム水溶液から各試料を引き上げて
から10分後に各試料の重量(電解液を含浸した重量)
を測定して、無加圧時の電解液保液率を算出した。
[Table 1] Examples 1 to 3 of the above battery separately from the test performed using the battery
And the change of the electrolytic solution retention rate by the pressurization of the separator used in Comparative Examples 1 to 4 was examined. The electrolyte retention rate under no pressure was measured as follows. First, ten 5 cm square samples were made from each separator, and the weight (weight not impregnated with the electrolyte) of each sample was measured. Next, each sample was immersed in an aqueous solution of potassium hydroxide having a specific gravity of 1.3 at 20 ° C. for 15 minutes.
Then, 10 minutes after lifting each sample from the aqueous potassium hydroxide solution, the weight of each sample (the weight impregnated with the electrolyte)
Was measured, and the electrolyte retention rate at the time of no pressurization was calculated.

【0011】加圧時の電解液保液率は次のようにして測
定した。まず各セパレータから5cm角の試料をそれぞ
れ10枚作り、各試料の重量(電解液を含浸しない重
量)を測定した。次に各試料を四辺を揃えて重ねて試料
群を作った後、水平方向に加圧する圧縮装置の加圧部に
試料群を配置した。そして、加圧部を毎分1mmの速度
で動かして試料群に圧力を加えた。それぞれの圧力が加
わった時点で20℃で比重1.3の水酸化カリウム水溶
液を試料群に注液して加圧状態を10分間維持した。そ
して、加圧を停止した後に各試料の重量(電解液を含浸
した重量)を測定して、電解液保液率を算出した。図1
はその測定結果を示している。本図より、平均繊維径2
〜8μmのポリプロピレン繊維の含有量が20重量%を
下回る比較例1,2に用いるセパレータでは、無加圧時
及び加圧時においてセパレータの電解液保液率を高くで
きないのが分る。また平均繊維径2〜8μmのポリプロ
ピレン繊維の含有量が50重量%を上回る比較例3,4
に用いるセパレータでは、無加圧時においてはセパレー
タの電解液保液率を高くできるものの、加圧時にはセパ
レータが厚み方向に変形して、セパレータの電解液保液
率の低下を抑制できないのが分る。これに対して実施例
1〜3に用いるセパレータでは、2〜6 kg/cm2 の範囲
に加圧されても、セパレータの電解液保液率の低下を抑
制でき、5 kg/cm2 の加圧時には、電解液保液率を15
0%以上にできるのが分る。
[0011] The electrolyte retention rate during pressurization was measured as follows. First, ten 5 cm square samples were made from each separator, and the weight (weight not impregnated with the electrolyte) of each sample was measured. Next, each sample was overlapped so that the four sides were aligned to form a sample group, and then the sample group was arranged in a pressing unit of a compression device for pressing horizontally. Then, the pressure unit was moved at a speed of 1 mm per minute to apply pressure to the sample group. When each pressure was applied, an aqueous solution of potassium hydroxide having a specific gravity of 1.3 was injected into the sample group at 20 ° C., and the pressurized state was maintained for 10 minutes. Then, after the pressurization was stopped, the weight of each sample (the weight impregnated with the electrolyte) was measured to calculate the electrolyte retention rate. FIG.
Shows the measurement results. From this figure, the average fiber diameter 2
It can be seen that in the separators used in Comparative Examples 1 and 2 in which the content of polypropylene fibers of 〜8 μm is less than 20% by weight, the electrolyte retention rate of the separator cannot be increased under no pressure and under pressure. Comparative Examples 3 and 4 in which the content of polypropylene fibers having an average fiber diameter of 2 to 8 μm exceeds 50% by weight.
In the separator used in the above, although the electrolyte retention rate of the separator can be increased when no pressure is applied, the separator is deformed in the thickness direction at the time of pressurization, and the decrease in the electrolyte retention rate of the separator cannot be suppressed. You. On the other hand, in the separators used in Examples 1 to 3, even if the separator is pressurized to the range of 2 to 6 kg / cm 2 , the decrease in the electrolyte retention rate of the separator can be suppressed, and the application of 5 kg / cm 2 can be suppressed. At pressure, the electrolyte retention rate is 15
You can see that it can be made 0% or more.

【0012】次に上記各電池を用いて試験を行った。最
初に各電池の放電率特性を調べた。まず20℃の雰囲気
中で各電池を1CmAの電流値で90分間充電した後に
0.2CmA、1.0CmA、3.0CmAの各放電率
で終止電圧1Vまで放電して、各放電率における各電池
の放電容量を測定した。表2はその測定結果を示してい
る。表2より5 kg/cm2 の加圧時に電解液保液率を高く
維持できる実施例1〜6の電池は、比較例1〜10の電
池に比べて高率放電における放電容量が高いのが分る。
これは、電解液保液率が高いほど電気化学反応面積が増
加するためであると考えられる。
Next, a test was performed using each of the above batteries. First, the discharge rate characteristics of each battery were examined. First, each battery was charged at a current value of 1 CmA for 90 minutes in an atmosphere of 20 ° C., and then discharged at a discharge rate of 0.2 CmA, 1.0 CmA, and 3.0 CmA to a final voltage of 1 V. Was measured for discharge capacity. Table 2 shows the measurement results. According to Table 2, the batteries of Examples 1 to 6 which can maintain a high electrolyte retention rate at the time of pressurization of 5 kg / cm 2 have a higher discharge capacity in high-rate discharge than the batteries of Comparative Examples 1 to 10. I understand.
This is considered to be because the electrochemical reaction area increases as the electrolyte retention rate increases.

【0013】[0013]

【表2】 次に各電池のサイクル寿命特性を調べた。まず20℃の
雰囲気中で各電池に1CmAの電流値で90分間充電し
た後に1.0CmAの放電率で終止電圧1Vまで放電す
るという充放電を繰り返してサイクル回数が1回目、2
50回目、500回目の各電池の放電容量を測定した。
上記表2にその測定結果を示す。表2より実施例1〜6
の電池は、比較例1〜10の電池に比べて充放電を繰り
返した場合の放電容量の低下が少ないのが分る。これ
は、比較例の電池では充放電を繰り返すと、正極活物質
及び負極活物質の体積変化により生じた細孔に電解液が
移動すること並びに過放電傾向にある充放電を繰り返す
ことにより、正極活物質内、負極活物質内、及びその近
傍にある電解液中の水が分解することにより、セパレー
タ中の電解液量が低下するためであると考えられる。
[Table 2] Next, the cycle life characteristics of each battery were examined. First, each battery was charged in a 20 ° C. atmosphere at a current value of 1 CmA for 90 minutes, and then discharged at a discharge rate of 1.0 CmA to a final voltage of 1 V.
The 50th and 500th discharge capacity of each battery was measured.
Table 2 shows the measurement results. From Table 2, Examples 1 to 6
It can be seen that the battery of No. 1 has a smaller decrease in discharge capacity when charging and discharging are repeated as compared with the batteries of Comparative Examples 1 to 10. This is because, in the battery of the comparative example, when the charge and discharge are repeated, the electrolyte moves to the pores generated by the volume change of the positive electrode active material and the negative electrode active material, and the charge and discharge with the tendency to overdischarge is repeated, whereby the positive electrode This is considered to be because the amount of the electrolyte in the separator decreases due to the decomposition of water in the electrolyte in the active material, the anode active material, and the vicinity thereof.

【0014】[0014]

【発明の効果】本発明によれば、細い繊維径を有するポ
リプロピレン繊維(平均繊維径2〜8μm)により電解
液を保持する容積を増やして、セパレータ内の電解液保
液率を高める。そして太い繊維径を有するポリプロピレ
ン繊維(平均繊維径15〜30μm)により、セパレー
タに加圧力(2〜6 kg/cm2 )が加わっても、セパレー
タが厚み方向に変形して潰れるのを抑制して、電解液を
保持する空間が減少するのを防ぐ。本発明では、平均繊
維径2〜8μmのポリプロピレン繊維を不織布に対して
20〜50重量%含有させることにより、細い繊維径を
有するポリプロピレン繊維と太い繊維径を有するポリプ
ロピレン繊維と有効的に作用させて、加圧時におけるセ
パレータの電解液保液率を高く維持する。そのため、放
電容量を高めて、サイクル寿命を延ばすことができる。
According to the present invention, the volume of holding the electrolyte is increased by the polypropylene fibers having a small fiber diameter (average fiber diameter of 2 to 8 μm), and the electrolyte retention rate in the separator is increased. The polypropylene fiber having a large fiber diameter (average fiber diameter: 15 to 30 μm) suppresses the separator from being deformed in the thickness direction and crushed even when a pressure (2 to 6 kg / cm 2 ) is applied to the separator. In addition, the space for holding the electrolyte is prevented from decreasing. In the present invention, by containing 20 to 50% by weight of a polypropylene fiber having an average fiber diameter of 2 to 8 μm with respect to the nonwoven fabric, the polypropylene fiber having a small fiber diameter and the polypropylene fiber having a large fiber diameter can effectively act. In addition, the electrolyte retention rate of the separator during pressurization is maintained high. Therefore, the discharge capacity can be increased and the cycle life can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 セパレータの加圧による電解液保液率の変化
を示す図である。
FIG. 1 is a diagram showing a change in an electrolyte retention rate due to pressurization of a separator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 箕浦 敏 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Satoshi Minoura Shin Kobe Electric Co., Ltd. 2-1-1 Nishi Shinjuku, Shinjuku-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極板と負極板とが電解質層を介して積
層され、 前記電解質層は、ポリプロピレン繊維の不織布からなる
セパレータに電解液が含浸されてなり、 前記セパレータが厚み方向に2〜6 kg/cm2 で加圧され
てなる密閉形アルカリ蓄電池において、 前記不織布は、平均繊維径2〜8μmのポリプロピレン
繊維と平均繊維径15〜30μmのポリプロピレン繊維
とが混合されてなり、 前記平均繊維径2〜8μmのポリプロピレン繊維は、前
記不織布に対して20〜50重量%含有されており、 前記セパレータの電解液保液率が150%以上であるこ
とを特徴とする密閉形アルカリ蓄電池。
1. A positive electrode plate and a negative electrode plate are laminated with an electrolyte layer interposed therebetween, wherein the electrolyte layer is formed by impregnating a separator made of a nonwoven fabric of polypropylene fiber with an electrolytic solution, and the separator has a thickness of 2 to 6 in a thickness direction. In a sealed alkaline storage battery pressurized at kg / cm 2 , the nonwoven fabric is obtained by mixing polypropylene fibers having an average fiber diameter of 2 to 8 μm and polypropylene fibers having an average fiber diameter of 15 to 30 μm, A sealed alkaline storage battery, wherein 2 to 8 μm of polypropylene fiber is contained in an amount of 20 to 50% by weight with respect to the nonwoven fabric, and the electrolyte retention rate of the separator is 150% or more.
JP8154299A 1996-06-14 1996-06-14 Sealed alkaline storage battery Withdrawn JPH103937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8154299A JPH103937A (en) 1996-06-14 1996-06-14 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8154299A JPH103937A (en) 1996-06-14 1996-06-14 Sealed alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH103937A true JPH103937A (en) 1998-01-06

Family

ID=15581103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8154299A Withdrawn JPH103937A (en) 1996-06-14 1996-06-14 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH103937A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848436A3 (en) * 1996-12-13 1999-05-26 Matsushita Electric Industrial Co., Ltd. Separator material for alkaline storage batteries
US10495094B2 (en) 2003-03-20 2019-12-03 Nortek Air Solutions, Llc Modular fan housing with multiple modular units having sound attenuation for a fan array for an air-handling system
US10641271B2 (en) 2003-03-20 2020-05-05 Nortek Air Solutions, Llc Fan array fan section in air-handling systems
US11255332B2 (en) 2003-03-20 2022-02-22 Nortek Air Solutions, Llc Modular fan housing with multiple modular units having sound attenuation for a fan array for an air-handling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848436A3 (en) * 1996-12-13 1999-05-26 Matsushita Electric Industrial Co., Ltd. Separator material for alkaline storage batteries
US10495094B2 (en) 2003-03-20 2019-12-03 Nortek Air Solutions, Llc Modular fan housing with multiple modular units having sound attenuation for a fan array for an air-handling system
US10641271B2 (en) 2003-03-20 2020-05-05 Nortek Air Solutions, Llc Fan array fan section in air-handling systems
US11255332B2 (en) 2003-03-20 2022-02-22 Nortek Air Solutions, Llc Modular fan housing with multiple modular units having sound attenuation for a fan array for an air-handling system

Similar Documents

Publication Publication Date Title
CN101043091B (en) Nickel hydrogen storage battery
JP2001313066A (en) Alkaline storage battery
JP3345889B2 (en) Manufacturing method of alkaline storage battery and its negative electrode
JPH103937A (en) Sealed alkaline storage battery
US20030124428A1 (en) Alkaline storage battery
EP0921580A1 (en) Manufacturing method of alkali storage cell
JP3567021B2 (en) Alkaline secondary battery
JPH11135096A (en) Nickel-hydrogen secondary battery
JP3418721B2 (en) Sealed nickel / metal hydride storage battery
JP3332139B2 (en) Sealed alkaline storage battery
JP2926732B2 (en) Alkaline secondary battery
JP4411388B2 (en) Manufacturing method of negative electrode for secondary battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP7092639B2 (en) Alkaline secondary battery
JP2001283902A (en) Alkaline battery
JP3148409B2 (en) Stationary batteries
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPH10106527A (en) Alkaline storate battery
JPH0729562A (en) Alkaline accumulator
JP3235895B2 (en) Nickel hydride rechargeable battery
JP3558082B2 (en) Nickel-cadmium secondary battery
JP3114419B2 (en) Sealed storage battery
JP3390494B2 (en) Nickel hydride rechargeable battery
JP2000021400A (en) Sealed nickel-hydrogen storage battery
JPH08213045A (en) Sealed alkaline storage battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030902