JPH103922A - Carbon or graphite powder for lithium battery negative electrode material - Google Patents

Carbon or graphite powder for lithium battery negative electrode material

Info

Publication number
JPH103922A
JPH103922A JP8174399A JP17439996A JPH103922A JP H103922 A JPH103922 A JP H103922A JP 8174399 A JP8174399 A JP 8174399A JP 17439996 A JP17439996 A JP 17439996A JP H103922 A JPH103922 A JP H103922A
Authority
JP
Japan
Prior art keywords
graphite powder
carbon
powder
mesophase
oxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8174399A
Other languages
Japanese (ja)
Other versions
JP3153471B2 (en
Inventor
Hiroshi Ichikawa
宏 市川
Akira Yokoyama
昭 横山
Takanobu Kawai
河井隆伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP17439996A priority Critical patent/JP3153471B2/en
Publication of JPH103922A publication Critical patent/JPH103922A/en
Application granted granted Critical
Publication of JP3153471B2 publication Critical patent/JP3153471B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Working-Up Tar And Pitch (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mathod for obtaining carbon powder and graphite powder having a small specific surface and a nearly spherical shape, and is suitable for lithium battery negative material, with a bulk mesophase as the starting raw material, by mass production inexpensively without trouble in environmental and safeyy aspects. SOLUTION: Bulk phase pitch; wherein mesophase quantity is 80wt.% or more, and a volatilization part is 25wt.% or less; is powdered into a means particle diameter of 3-20μm, and then is oxidized light, so that an oxygen containing ratio can be 2-8wt.%. This oxidized mesophase pitch is heated up to 30-50 deg.C, and a mold obtained by molding the resultant pitch under pressure, by an isotropic pressure molding method of a molding forming method oxidized as necessary, and then heated up to 600-3000 deg.C in an inert or own atmosphere to be carbonized or graphitized, and finally crushed and grain size uniformized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は、リチウム電池負極用材料として
好適な炭素または黒鉛粉末に関し、詳しくはバルクメソ
フェーズピッチを出発原料として、特定の工程、処理条
件で製造される、略球状で比表面積が小さい炭素または
黒鉛粉末およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to a carbon or graphite powder suitable as a material for a negative electrode of a lithium battery, and more specifically to a substantially spherical and small specific surface area manufactured from bulk mesophase pitch as a starting material under specific steps and processing conditions. The present invention relates to carbon or graphite powder and a method for producing the same.

【0002】[0002]

【従来の技術】従来よりリチウム電池用負極材には、各
種の炭素粉末または黒鉛粉末が用いられている。近年、
最もよく使用されるのは、導電性にすぐれ、球状に近
く、充填性にすぐれたメソカーボンマイクロビーズであ
る。
2. Description of the Related Art Conventionally, various carbon powders or graphite powders have been used as negative electrode materials for lithium batteries. recent years,
The most frequently used are mesocarbon microbeads having excellent conductivity, being close to spherical, and having excellent filling properties.

【0003】しかし、このメソカーボンマイクロビーズ
は、例えば、特開平1−219010号、特開平1−2
12208号の発明のように、製造の際に、マトリック
スピッチからビーズを分離するのに多量の溶剤を使用す
るため、製造時の環境面で問題がある。
However, these mesocarbon microbeads are disclosed in, for example, Japanese Patent Application Laid-Open Nos.
As in the invention of No. 12208, since a large amount of solvent is used to separate beads from the matrix pitch during production, there is an environmental problem at the time of production.

【0004】そこで、本発明者らは先に、多量の溶剤を
使用することなく環境面、コスト面で有利に、略球状で
導電性にすぐれた炭素粉末、黒鉛粉末を得る方法とし
て、特願平6−36396号 出願した。
Therefore, the present inventors have previously proposed a method for obtaining a carbon powder and a graphite powder having excellent spheroidity and excellent electrical conductivity without using a large amount of solvent in terms of environment and cost. Hei 6-36396 filed.

【0005】この出願は、バルクメソフェーズピッチを
出発原料として表層を酸化処理した後、高温熱処理する
ことを特徴とし、多量の溶剤を使用せずに球状に近く導
電性にすぐれ、球状に近い炭素粉末、黒鉛粉末を得るた
めの方法としてメリットが高い。
This application is characterized in that a surface layer is oxidized using a bulk mesophase pitch as a starting material and then subjected to a high-temperature heat treatment. The carbon powder having a nearly spherical shape and excellent conductivity without using a large amount of solvent is used. It is highly advantageous as a method for obtaining graphite powder.

【0006】しかし、粉体特に粒度の小さな微粉体の性
質を踏まえると、大量生産を行なう際に、環境面等で問
題がなく、かつリチウム電池負極材として、すぐれた特
性の炭素粉末、黒鉛粉末を得る手段が望まれている。す
なわち、一般に微粉体を扱うには、粉塵の飛散による作
業者への影響、周囲の環境に対する汚染、また粉塵爆発
等の危険性を考慮する必要がある。
However, in view of the properties of powders, particularly fine powders having a small particle size, there is no problem in terms of environment and the like when mass production is carried out, and carbon powder and graphite powder having excellent characteristics as a lithium battery negative electrode material. There is a need for a means to obtain That is, in general, when handling fine powder, it is necessary to consider the effects of scattering of dust on workers, contamination of the surrounding environment, and the danger of dust explosion.

【0007】対策として粉体の輸送、移動にはパイプラ
インを用いた空気輸送が挙げられ反応器も密閉度の高い
ものが選ばれる。特に粉体が加熱処理を受け、しかも可
燃性のガス発生を伴い、さらに反応雰囲気が特殊な非酸
化性雰囲気であるような場合は、反応/処理装置の設計
も複雑であり、輸送系と接続するとなれば更に工夫を要
することになり、コスト高の要因となる。
As a countermeasure, pneumatic transportation using a pipeline is used for transporting and moving powder, and a reactor having a high degree of sealing is selected. In particular, when the powder is subjected to heat treatment, accompanied by flammable gas generation, and the reaction atmosphere is a special non-oxidizing atmosphere, the design of the reaction / processing apparatus is complicated, and the connection with the transport system is made. If this is the case, further devising will be required, resulting in higher costs.

【0008】また各処理段階において、粉体の流動性、
密度、凝集等による粒度の変化、発生ガスに起因する内
壁への付着等もエンジニアリング的に解決するのに工夫
を要する。このような微粉体の性質も踏まえると、原料
粉末を最初から粉体のまま焼成、黒鉛化する方法も考え
られるが、より安全性、コスト面でメリットのある方法
が望まれることになる。
In each of the processing steps, the fluidity of the powder,
It is necessary to devise an engineering solution to the change in particle size due to density, agglomeration, etc., and adhesion to the inner wall due to the generated gas. Considering such properties of the fine powder, a method of firing and graphitizing the raw material powder as it is from the beginning can be considered, but a method having advantages in terms of safety and cost is desired.

【0009】[0009]

【発明の課題】上記のような問題点に鑑み、本発明者
は、バルクメソフェースを出発原料として、比表面積が
小さく、略球状でリチウム電池負極材として、好適な炭
素粉末、黒鉛粉末を大量生産で安価に環境、安全面で問
題なく得る方法を提供するものである。
SUMMARY OF THE INVENTION In view of the above problems, the present inventors have prepared a large amount of carbon powder and graphite powder having a small specific surface area, a substantially spherical shape, and suitable as a negative electrode material for a lithium battery using a bulk mesophase as a starting material. It is intended to provide a method that can be obtained at low cost in production without any problem in terms of environment and safety.

【0010】[0010]

【課題を解決の手段】上記のような課題を解決するため
には本発明者が提案するのは、メソフェーズ量が80w
t%以上でかつ揮発分が25wt%以下であるバルクメ
ソフェーズピッチを平均粒子系3〜20μmに粉砕した
後、酸素含有率が2〜8wt%となるよう軽度に酸化処
理し、該バルクメソフェーズピッチを等方圧成形法、型
込め成形法で加圧成形して得た成形体を必要に応じ後酸
化処理をした後、不活性または自己雰囲気中で600℃
〜3000℃に加熱して炭素化および/または黒鉛化し
た後、粉砕・整粒することを特徴とする、リチウム電池
負極材用炭素または黒鉛粉末の製造法である。
In order to solve the above problems, the present inventors propose that the mesophase amount is 80 watts.
After pulverizing a bulk mesophase pitch of not less than t% and a volatile content of not more than 25 wt% to an average particle size of 3 to 20 μm, it is lightly oxidized so as to have an oxygen content of 2 to 8 wt%. The molded body obtained by pressure molding by the isotropic pressure molding method or the embedding molding method is subjected to post-oxidation treatment if necessary, and then 600 ° C. in an inert or self atmosphere.
This is a method for producing carbon or graphite powder for a negative electrode material of a lithium battery, wherein the powder is carbonized and / or graphitized by heating to about 3000 ° C., and then pulverized and sized.

【0011】すなわち本発明においては、原料のバルク
メソフェーズを軽度に酸化処理した後、粉末のまま焼
成、黒鉛化するのではなく、先ず成形体を得たのち焼
成、黒鉛化しこれを粉砕、整粒して略球状の炭素粉末、
黒鉛粉末を製造することを特徴とするものである。以下
に本発明の炭素粉末、黒鉛粉末及びその製造方法につい
て詳細に説明する。
That is, in the present invention, the bulk mesophase of the raw material is not slightly oxidized and then baked and graphitized as it is, but a molded body is first obtained, baked, graphitized, and crushed and sized. A substantially spherical carbon powder,
It is characterized by producing graphite powder. Hereinafter, the carbon powder, the graphite powder and the method for producing the same according to the present invention will be described in detail.

【0012】本発明では出発原料として、偏光顕微鏡観
察下での視野において光学的異方性を示すメソフェーズ
量が80%以上でかつ揮発分が25wt%以下であるバ
ルクメソフェーズピッチを用いる。
In the present invention, a bulk mesophase pitch having an amount of mesophase exhibiting optical anisotropy of 80% or more and a volatile content of 25% by weight or less in a visual field under a polarizing microscope is used as a starting material.

【0013】メソフェーズ量が80%以下では電池化し
た際の容量が低めになる問題があり、揮発分が25%を
越えると、後工程の成形後の焼成時に、膨張変形した
り、小片に割れたりして、好ましくない。このバルクメ
ソフェーズピッチは平均粒子径3〜20μmに粉砕して
用いる。3μm以下では粉体のハンドリング性が変わ
り、取り扱いにくく、20μm以上では最終的に生成さ
れる粉体の粒度分布が広範になり、整粒時の得率が下が
り、それぞれ好ましくない。
When the mesophase amount is less than 80%, there is a problem that the capacity of the battery becomes low, and when the volatile content exceeds 25%, it expands and deforms or breaks into small pieces during firing after molding in a later step. Is not preferred. The bulk mesophase pitch is used after being pulverized to an average particle diameter of 3 to 20 μm. When the particle size is 3 μm or less, the handling property of the powder is changed and it is difficult to handle the particles. When the particle size is 20 μm or more, the particle size distribution of the powder finally produced becomes wide and the yield at the time of sizing is lowered, which is not preferable.

【0014】次に上記のバルクメソフェーズピッチを酸
素含有率が2〜8wt%となるように軽度に酸化処理す
る。この酸化処理は、後に成形体を粉砕して良好な品質
の炭素粉末、黒鉛粉末を得るため重要な工程となる。
Next, the above bulk mesophase pitch is lightly oxidized so that the oxygen content becomes 2 to 8% by weight. This oxidation treatment is an important step for pulverizing the compact later to obtain carbon powder and graphite powder of good quality.

【0015】すなわち軽度に酸化処理することにより、
バルクメソフェーズピッチは不融化され、後に成形体を
焼成、黒鉛化し、粉砕する際に粉末の粒子境界(以下粒
界)部分から比較的簡単に破断し、しかも1次粒子に近
いサイズとなるため、その後の整粒工程における負担も
少なくてすみ、また得られる粉末形状も球状に近く、ま
た比表面積が4m2 /g以下と小さなものが得られる。
That is, by lightly oxidizing,
Since the bulk mesophase pitch is infusibilized, the molded body is later calcined, graphitized, and crushed relatively easily from the particle boundary (hereinafter, grain boundary) portion of the powder when pulverized. The burden on the subsequent sizing step can be reduced, and the powder obtained can be nearly spherical, and the specific surface area can be as small as 4 m 2 / g or less.

【0016】もしもバルクメソフェーズピッチを軽度に
酸化処理することなく成形し、焼成、黒鉛化すると、一
度ピッチは溶融してしまい、粒界の維持が不可能になる
ので、粉砕時には粒度分布の制御が困難で、その後の整
粒工程での負担も大きい。
If the bulk mesophase pitch is formed without light oxidation treatment, fired, and graphitized, the pitch melts once, making it impossible to maintain the grain boundaries. It is difficult, and the burden on the subsequent sizing process is large.

【0017】また得られる炭素粉末、黒鉛粉末も鋭いエ
ッジ部を有するものとなり、略球状とすることができ
ず、さらに破断面に微小な凹凸が多数存在し、比表面積
も大きくなる傾向がある。
The obtained carbon powder and graphite powder also have sharp edges, cannot be substantially spherical, and have a large number of minute irregularities on the fractured surface, which tends to increase the specific surface area.

【0018】この場合、過度に酸化処理してしまうと成
形体が得られなくなることがあるので、酸素含有率が2
〜8Wt%となるよう軽度な酸化処理とする。上記のよ
うにバルクメソフェーズピッチを軽度に酸化処理した
後、加圧成形する。この場合の成形法は型込成形、冷間
静水圧成形法であることが必要である。
In this case, if the body is excessively oxidized, a molded product may not be obtained.
A mild oxidation treatment is performed so as to be 88 Wt%. After lightly oxidizing the bulk mesophase pitch as described above, pressure molding is performed. In this case, it is necessary that the molding method is die-molding or cold isostatic pressing.

【0019】この点は、最終的に得られる炭素粉末、黒
鉛粉末が略球状であるようにするために、必要でもし横
押し成形など異方性の強い方法を用いると偏平で充填性
の悪いものしか得られない。上記のように加圧成形して
得られた成形体を、そのままあるいは熱風循環炉中で後
酸化処理した後、焼成炉または黒鉛化炉に詰め、不活性
又は自己雰囲気中で焼成炭素化および/または黒鉛化を
行なう。
This is because if the carbon powder or graphite powder finally obtained is to be substantially spherical, if a method with strong anisotropy such as lateral extrusion is used, it is flat and poor in packing. You can only get things. The molded body obtained by pressure molding as described above is post-oxidized as it is or after being subjected to post-oxidation treatment in a circulating hot air furnace, then packed in a calcining furnace or a graphitizing furnace, and calcined and carbonized in an inert or self atmosphere. Alternatively, it is graphitized.

【0020】この炭素化、黒鉛化の際の炉詰め、炉出し
は、粉体の状態ではなく、成形体としてできるので、粉
体を取り扱うため必要な各種容器類が不要となりコスト
低減につながる。さらに成形体として処理するので、粉
体のままで処理する場合に比べ、単位容積当りの充填重
量が3〜4倍以上となり、生産性が向上し、大量生産に
伴う、新規な設備投資も抑制可能である。
The packing and unloading of the furnace at the time of carbonization and graphitization can be performed not in the form of powder but in the form of a compact, so that various containers required for handling the powder become unnecessary, leading to cost reduction. Furthermore, since it is processed as a molded body, the filling weight per unit volume is 3 to 4 times or more compared to the case where the powder is processed as it is, productivity is improved, and new equipment investment accompanying mass production is suppressed. It is possible.

【0021】上記のようにして炭素化、黒鉛化した成形
体を粉砕、整粒する。この粉砕では、粗粉砕、中粉砕に
ついては、ジョークラッシャー、ハンマーミル、ローラ
ーミルなどの衝撃力による粉砕方式を用いてよいが、最
終の微粉砕工程で、BET比表面積が8m2 /g以下す
なわち表面が平滑な材料を確保できる竪型ジェットミル
の使用が好ましい。
The carbonized and graphitized compact is pulverized and sized. In this pulverization, for coarse pulverization and medium pulverization, a pulverization method using an impact force such as a jaw crusher, a hammer mill, or a roller mill may be used. However, in the final fine pulverization step, the BET specific surface area is 8 m 2 / g or less. It is preferable to use a vertical jet mill that can secure a material having a smooth surface.

【0022】上記のようにして得られた炭素粉末、黒鉛
粉末は次のような特徴を有する。まず形状は、エッジレ
スで角が丸みを帯び、略球状である。粒子の長径aと短
径bの比a/bが1≦a/b≦3である。
The carbon powder and graphite powder obtained as described above have the following characteristics. First, the shape is substantially spherical, with edgeless, rounded corners. The ratio a / b of the major axis a to the minor axis b of the particles is 1 ≦ a / b ≦ 3.

【0023】かかる略球状であることにより、電池とし
て使用した場合、充填性、ハンドリング性、ペースト化
後のコーティング性においてすぐれたものを提供でき
る。また、表面に微小な凹凸のない平滑なもので、N2
ガス吸着によるBET法比表面積が8m2 /g以下のも
のである。
[0023] By having such a substantially spherical shape, when used as a battery, it is possible to provide an excellent filling property, handling property, and coating property after pasting. In addition, the surface is smooth without fine irregularities, and N 2
BET specific surface area by gas adsorption is 8 m 2 / g or less.

【0024】さらにレーザーラマン分光法測定における
スペクトルで炭素網面の積層構造を示す1580cm-1
付近のピークと乱層構造を示す1360cm-1付近のピ
ークの強度比I1360/I1580で表わされるR値が、励起
波長5145Åを用いた時、0.45以下であり、結晶
構造が発達していて高容量の電池が得られる効果があ
る。
Further, the spectrum measured by laser Raman spectroscopy shows the lamination structure of the carbon net surface at 1580 cm -1.
The R value represented by the intensity ratio I 1360 / I 1580 of the peak near 1360 cm −1 indicating the turbostratic structure was 0.45 or less when the excitation wavelength was 5145 °, and the crystal structure was developed. Therefore, there is an effect that a high-capacity battery can be obtained.

【0025】[0025]

【発明の効果】本発明によると、略球状の炭素粉末、黒
鉛粉末を容易に、安価に、大量に生産することが可能に
なる。すなわち、粉末のまま炭素化、黒鉛化するのでな
く、まず成形体を得て炭素化、黒鉛化して、これを粉砕
する方法なので、炭素化、黒鉛化する際の炉詰め炉出し
が特別な容器や装置を要せず極めて容易にでき、また単
位容積当りの熱処理量が3〜4倍以上になり、生産面、
コスト面でのメリットはきわめて高い。
According to the present invention, it is possible to easily, inexpensively, and mass-produce substantially spherical carbon powder and graphite powder. That is, instead of powdering and carbonizing as it is, it is a method of first obtaining a compact, carbonizing and graphitizing, and pulverizing it. It can be done very easily without the need for any equipment or equipment, and the heat treatment amount per unit volume is 3 to 4 times or more.
The cost advantage is very high.

【0026】また本発明で得られた炭素粉末、黒鉛粉末
は、形状が略球状で、かつ表面が平滑で比表面積が小さ
い。従ってリチウム電池負極材として用いた場合、充填
性、ハンドリング性、ペースト化後のコーティング性に
すぐれ、電池容量の面でもメリットが高い。以上のよう
に、本発明は工業上きわめて有用である。
The carbon powder and graphite powder obtained according to the present invention have a substantially spherical shape, a smooth surface and a small specific surface area. Therefore, when used as a negative electrode material for a lithium battery, it has excellent filling properties, handling properties, and coating properties after pasting, and has a high merit in terms of battery capacity. As described above, the present invention is industrially extremely useful.

【0027】[0027]

【実施例および比較例】[Examples and Comparative Examples]

【実施例1】偏光顕微鏡による観察で光学的異方性を示
すメソフェース量が95wt%,軟化点300℃で揮発
分18wt%のバルクメソフェーズを平均粒子径10μ
mに粉砕した。 この原料粉末の酸素含有率は0.7w
t%であった。これを転動式乾燥炉に投入し、最終的に
250℃で空気雰囲気中で熱処理することにより、酸素
と反応させて酸素含有率3.5wt%とした。ついで、
冷間静水圧成形法により嵩密度1.0g/cm3 の多孔
質成形体を得た。更に、この多孔質成形体を1000℃
にて焼成した後、アチソン式黒鉛化炉に炉詰めし、黒鉛
化処理を行った。
Example 1 A bulk mesophase having a mesophase amount of 95 wt% showing optical anisotropy as observed by a polarizing microscope and a softening point of 300 ° C. and a volatile matter content of 18 wt% was converted to an average particle diameter of 10 μm.
m. The oxygen content of this raw material powder is 0.7w
t%. This was put into a tumbling drying furnace, and finally heat-treated at 250 ° C. in an air atmosphere to react with oxygen to obtain an oxygen content of 3.5 wt%. Then
A porous molded body having a bulk density of 1.0 g / cm 3 was obtained by cold isostatic pressing. Further, the porous molded body is heated at 1000 ° C.
, And then packed in an Acheson-type graphitization furnace for graphitization.

【0028】1000℃における焼成後も、アチソン式
黒鉛化炉における黒鉛化後においても成形体は崩れるこ
ともなく、ハンドリング上の問題は起きなかった。黒鉛
化後の多孔質成形体の嵩密度は1.4g/cm3 であっ
た。これを粗粉砕、中粉砕、微粉砕を行い、更に整粒す
ることによって、平均粒子径9.2μm、最大粒子径3
2μm、比表面積2.3m2 /g、a/b=2、及びラ
マン分光光度法におけるR値0.28の黒鉛粉体を得
た。
After firing at 1000 ° C. and after graphitization in an Acheson-type graphitization furnace, the compact did not collapse and no handling problems occurred. The bulk density of the porous formed body after graphitization was 1.4 g / cm 3 . This is subjected to coarse pulverization, medium pulverization, fine pulverization and further sizing to obtain an average particle diameter of 9.2 μm and a maximum particle diameter of 3 μm.
A graphite powder having a particle size of 2 μm, a specific surface area of 2.3 m 2 / g, a / b = 2, and an R value of 0.28 in Raman spectrophotometry was obtained.

【0029】[0029]

【実施例2】偏光顕微鏡による観察で光学的異方性を示
すメソフェーズ量が80wt%,軟化点350℃で揮発
分24wt%のバルクメソフェーズピッチを平均粒子径
7μに粉砕した。 この原料粉末の酸素含有率は1.4
wt%であった。これを実施例1の方法で酸化処理を行
い、最終的に320℃で処理し、酸素含有率を5.6w
t%とした。次いで、型込め成形により、嵩密度0.8
g/cm3 の多孔質成形体を得、さらにこの成形体を熱
風循環炉中に投入して、エージング(後酸化)を行い、
酸素含有率を9.3wt%とした。
Example 2 A bulk mesophase pitch having a mesophase amount of 80 wt% showing optical anisotropy as observed by a polarizing microscope, a softening point of 350 ° C. and a volatile content of 24 wt% was pulverized to an average particle diameter of 7 μm. This raw material powder has an oxygen content of 1.4.
wt%. This is oxidized by the method of Example 1, and finally processed at 320 ° C. to reduce the oxygen content to 5.6 watts.
t%. Next, the bulk density was 0.8
g / cm 3 , and the molded body was placed in a hot-air circulating furnace and subjected to aging (post-oxidation).
The oxygen content was 9.3 wt%.

【0030】この後、この成形体を焼成することなく直
接アチソン式黒鉛化炉に炉詰めして黒鉛化処理を行っ
た。黒鉛化された成形体は、特に崩れることもなく、炉
出し可能で、嵩密度1.38g/cm3 であつた。つい
で、粉砕、整粒処理することによって平均粒子径6.5
μm、最大粒子径30μm、比表面積3.3m2 /g、
a/b=1.8及びレーザーラマン値R値0.40の黒
鉛粉体を得た。
Thereafter, the molded body was directly packed in an Acheson-type graphitization furnace without firing and subjected to a graphitization treatment. The graphitized molded product was able to be removed from the furnace without any particular collapse, and had a bulk density of 1.38 g / cm 3 . Then, the particles are pulverized and sized to obtain an average particle diameter of 6.5.
μm, maximum particle diameter 30 μm, specific surface area 3.3 m 2 / g,
A graphite powder having a / b = 1.8 and a laser Raman value R value of 0.40 was obtained.

【0031】[0031]

【比較例1】実施例1で用いた平均粒子径10μmとし
たバルクメソフェーズピツチを酸化処理せずに型込め成
形し、嵩密度1.0g/cm3 とした成形体を焼成し
て、1000℃処理したところ、発泡膨張し、成形体の
形が大きく変型し、かつピッチが一度溶融してから炭化
したために、当初の粒界が維持できなくなり、初期の形
態での仕上げは不可能となった。
Comparative Example 1 The bulk mesophase pitch having an average particle size of 10 μm used in Example 1 was molded without being subjected to oxidation treatment, and the molded product having a bulk density of 1.0 g / cm 3 was fired at 1000 ° C. After the treatment, it expanded and expanded, the shape of the molded article was greatly deformed, and the pitch was once melted and carbonized, so that the initial grain boundaries could not be maintained, and finishing in the initial form was impossible .

【0032】[0032]

【比較例2】偏光顕微鏡下でのメソフエーズ量60wt
%,軟化点280℃,揮発分38wt%のバルクメソフ
ェーズピッチを粉砕し、平均粒子径10μmに粉砕し
た。その酸素含有率は1.2wt%であった。これを実
施例1と同様の方法で酸化処理し、最終的に230℃で
処理した。酸素含有率は5.2wt%であった。実施例
1に従って 冷間静水圧成形し、嵩密度0.8g/cm
3 の多孔質体を得、1000℃にて焼成を行ったとこ
ろ、揮発分(低分子量成分で酸化処理を施しても架橋反
応が進行しにくい成分)の残留が多かったため、クラッ
クが多数発生し、焼成品は多くの小片に分れてしまっ
た。
Comparative Example 2 Mesophase amount under a polarizing microscope: 60 wt
%, A softening point of 280 ° C. and a volatile content of 38 wt% were pulverized to a mean particle diameter of 10 μm. Its oxygen content was 1.2 wt%. This was oxidized in the same manner as in Example 1 and finally processed at 230 ° C. The oxygen content was 5.2 wt%. Cold isostatic pressing according to Example 1 and bulk density 0.8 g / cm
When the porous body of No. 3 was obtained and baked at 1000 ° C., a large number of cracks were generated due to a large amount of volatile components (a component which does not easily undergo a cross-linking reaction even when subjected to oxidation treatment with a low molecular weight component). However, the fired product was divided into many small pieces.

【0033】[0033]

【実施例3】実施例1,2で得られた黒鉛粉末を用いて
以下のようにして電池を作成して特性を評価した。本来
は炭素材料は、負極として用いるが、本試験では対極に
リチウム金属を用いたために、Li金属を負極とし、炭
素材料は正極として評価した。電極の製造は、調整され
た炭素材料90重量部と、ポリフッ化ビニリデン10重
量部にN−メチル−2−ピロリドンを併せて三本ロール
にて練り、ペースト化し、これをコーターを用いて銅箔
上に塗工し、乾燥させた。
Example 3 A battery was prepared using the graphite powders obtained in Examples 1 and 2 in the following manner, and the characteristics were evaluated. Originally, the carbon material was used as the negative electrode. However, in this test, since lithium metal was used for the counter electrode, Li metal was used as the negative electrode, and the carbon material was evaluated as the positive electrode. The electrode was manufactured by kneading 90 parts by weight of the prepared carbon material and 10 parts by weight of polyvinylidene fluoride with N-methyl-2-pyrrolidone by using a three-roll mill, and forming a paste. Coated on top and dried.

【0034】まずここまでの段階で、ペースト状物質の
銅箔への塗工性について、外観検査、密着性を確認し
た。その結果、ハンドリング性、塗工性共に良好であっ
た。乾燥後、銅箔より剥離させ、3cm2 の面積になる
ように円形に打ち抜き、SUS鋼と共に加圧成形して正
極とした。対極としてLi金属を用いて電解液として1
MLiCl4 −EC/DEC(体積比1:1)を用い
て、二極式試験セルを構成して、定電流で充放電サイク
ル試験を行った。測定条件は電圧範囲0〜1.5V,電
流密度0.1A/cm2 、温度30℃である。試験結果
を表1にまとめて示す。
First, at the stage up to this point, the applicability of the paste-like substance to the copper foil was examined by visual inspection and adhesion. As a result, both the handling property and the coating property were good. After drying, it was peeled off from the copper foil, punched out in a circular shape so as to have an area of 3 cm 2 , and pressure-formed together with SUS steel to obtain a positive electrode. Li metal as the counter electrode and 1 as the electrolyte
A bipolar test cell was constructed using MLiCl 4 -EC / DEC (volume ratio 1: 1), and a charge / discharge cycle test was performed at a constant current. The measurement conditions are a voltage range of 0 to 1.5 V, a current density of 0.1 A / cm 2 , and a temperature of 30 ° C. The test results are summarized in Table 1.

【表1】 [Table 1]

【0035】[0035]

【比較例3】偏光顕微鏡下の観察におけるメソェーズ量
が40%,軟化点が280℃、揮発分25wt%のメソ
フェーズピッチを実施例1と同様に処理を行って、酸素
含有率3.3wt%としたものを冷間静水圧加圧法にて
成形後、粉砕し、平均粒径10.2μm、最大粒子径3
5μm、比表面積4.2m2 /g、a/b=2及びR値
0.49の黒鉛粉末を得た。これを実施例3の方法に従
い、テストセルを作り充放電試験を行ったところ、容量
が270mAh/gと実施例1,2に比べて低くなっ
た。なお塗工性については、実施例1,2と同様特に問
題なかった。
Comparative Example 3 A mesophase pitch having a mesophase amount of 40%, a softening point of 280 ° C., and a volatile content of 25 wt% as observed under a polarizing microscope was treated in the same manner as in Example 1 to obtain an oxygen content of 3.3 wt%. The resulting mixture was formed by cold isostatic pressing and then pulverized to an average particle size of 10.2 μm and a maximum particle size of 3.
A graphite powder having a particle size of 5 μm, a specific surface area of 4.2 m 2 / g, a / b = 2 and an R value of 0.49 was obtained. A test cell was prepared according to the method of Example 3 and a charge / discharge test was performed. As a result, the capacity was 270 mAh / g, which was lower than those of Examples 1 and 2. In addition, about application property, there was no problem similarly to Examples 1 and 2.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C10C 3/10 C10C 3/10 H01M 4/02 H01M 4/02 D ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location C10C 3/10 C10C 3/10 H01M 4/02 H01M 4/02 D

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 メソフェーズ量が80wt%以上でかつ
揮発分が25wt%以下であるバルクメソフェーズピッ
チを平均粒子径3〜20μmに粉砕した後、酸素含有率
が2〜8wt%となるよう軽度に酸化処理し、該バルク
メソフェーズピッチを30〜50℃に加温し、等方圧成
形法または型込め成形法で加圧成形して得た成形体を、
必要に応じ酸化処理をした後、不活性または自己雰囲気
中で600℃〜3000℃に加熱して炭素化または黒鉛
化した後、粉砕・整粒することを特徴とするリチウム電
池負極材用炭素または黒鉛粉末の製造法。
1. A bulk mesophase pitch having a mesophase amount of 80% by weight or more and a volatile content of 25% by weight or less is pulverized to an average particle diameter of 3 to 20 μm, and then lightly oxidized so as to have an oxygen content of 2 to 8% by weight. Treated, the bulk mesophase pitch is heated to 30 to 50 ° C., and a molded product obtained by pressure molding by an isotropic pressure molding method or a molding method is provided.
After oxidizing as required, carbonization or graphitization by heating to 600 ° C to 3000 ° C in an inert or self-atmosphere, pulverization and sizing is performed, Manufacturing method of graphite powder.
【請求項2】 N2 ガス吸着によるBET法比表面積
が、8m2 /g以下で粉体粒子形状がエッジレスで角が
丸みを帯び、かつ粒子の長径aと短径bの比a/bが1
≦a/b≦3であるような、請求項1のリチウムイオン
電池電極材料の炭素または黒鉛粉末。
2. The BET specific surface area by N 2 gas adsorption is 8 m 2 / g or less, the shape of the powder particles is edgeless, the corners are rounded, and the ratio a / b of the major axis a to the minor axis b of the particles is 2. 1
The carbon or graphite powder of the electrode material for a lithium ion battery according to claim 1, wherein ≤a / b≤3.
【請求項3】 レザーラマン分光法測定におけるスペク
トルで炭素網面の積層構造を示す1580cm-1付近の
ピークと乱層構造を示す1360cm-1付近のピークの
強度比I1360/I1580で表わされるR値が励起波長51
45Åを用いた時0.45以下であるような請求項1の
リチウムイオン電池電極材料用炭素または黒鉛粉末。
Represented by 3. A leather Raman spectroscopy peak intensity ratio of around 1360 cm -1 which shows a peak with turbostratic structure in the vicinity of 1580 cm -1 indicating the layered structure of carbon net plane in the spectrum in the measurement I 1360 / I 1580 R value is excitation wavelength 51
2. The carbon or graphite powder for an electrode material of a lithium ion battery according to claim 1, which has a value of 0.45 or less when 45 ° is used.
JP17439996A 1996-06-14 1996-06-14 Carbon or graphite powder for negative electrode material of lithium battery and method for producing the same Expired - Lifetime JP3153471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17439996A JP3153471B2 (en) 1996-06-14 1996-06-14 Carbon or graphite powder for negative electrode material of lithium battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17439996A JP3153471B2 (en) 1996-06-14 1996-06-14 Carbon or graphite powder for negative electrode material of lithium battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH103922A true JPH103922A (en) 1998-01-06
JP3153471B2 JP3153471B2 (en) 2001-04-09

Family

ID=15977907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17439996A Expired - Lifetime JP3153471B2 (en) 1996-06-14 1996-06-14 Carbon or graphite powder for negative electrode material of lithium battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3153471B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998034291A1 (en) * 1997-02-04 1998-08-06 Mitsubishi Chemical Corporation Lithium ion secondary battery
JP2001316105A (en) * 2000-04-28 2001-11-13 Sumitomo Metal Ind Ltd Manufacturing method of graphite powder
US6447956B2 (en) 1996-08-08 2002-09-10 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
KR100529068B1 (en) * 1999-11-18 2005-11-16 삼성에스디아이 주식회사 Negative active material for lithium ion secondary battery and method of preparing the same
KR100793691B1 (en) 2003-07-16 2008-01-10 간사이네쯔카가꾸가부시끼가이샤 Material for negative electrode of lithium ion secondary battery, process for manufacturing the same, and negative electrode using the same and lithium ion secondary battery using the negative electrode
JP2008226854A (en) * 2008-05-07 2008-09-25 Sony Corp Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode material
JP2009539746A (en) * 2006-06-07 2009-11-19 コノコフィリップス カンパニー Method for producing carbonaceous negative electrode material and method for using the same
JP2011084429A (en) * 2009-10-15 2011-04-28 Osaka Gas Co Ltd Carbon material, and method for producing carbon material and graphite material
WO2014168170A1 (en) * 2013-04-09 2014-10-16 株式会社クレハ Method for manufacturing non-aqueous electrolyte secondary battery negative electrode material
CN104201343A (en) * 2014-08-27 2014-12-10 宁夏共享新能源材料有限公司 Method for reducing specific surface area of spherical graphite

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7410727B2 (en) 1996-08-08 2008-08-12 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US8129051B2 (en) 1996-08-08 2012-03-06 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US8802297B2 (en) 1996-08-08 2014-08-12 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US6953640B2 (en) 1996-08-08 2005-10-11 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US8580437B2 (en) 1996-08-08 2013-11-12 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7288342B2 (en) 1996-08-08 2007-10-30 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7947395B2 (en) 1996-08-08 2011-05-24 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7335447B2 (en) 1996-08-08 2008-02-26 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7378191B2 (en) 1996-08-08 2008-05-27 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7700239B2 (en) 1996-08-08 2010-04-20 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US6447956B2 (en) 1996-08-08 2002-09-10 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US9508980B2 (en) 1996-08-08 2016-11-29 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative
US7399553B2 (en) 1996-08-08 2008-07-15 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
WO1998034291A1 (en) * 1997-02-04 1998-08-06 Mitsubishi Chemical Corporation Lithium ion secondary battery
KR100529068B1 (en) * 1999-11-18 2005-11-16 삼성에스디아이 주식회사 Negative active material for lithium ion secondary battery and method of preparing the same
JP2001316105A (en) * 2000-04-28 2001-11-13 Sumitomo Metal Ind Ltd Manufacturing method of graphite powder
KR100793691B1 (en) 2003-07-16 2008-01-10 간사이네쯔카가꾸가부시끼가이샤 Material for negative electrode of lithium ion secondary battery, process for manufacturing the same, and negative electrode using the same and lithium ion secondary battery using the negative electrode
JP2009539746A (en) * 2006-06-07 2009-11-19 コノコフィリップス カンパニー Method for producing carbonaceous negative electrode material and method for using the same
KR101425915B1 (en) * 2006-06-07 2014-08-12 파이로텍, 인크. Method of preparing carbonaceous anode materials and using same
JP2008226854A (en) * 2008-05-07 2008-09-25 Sony Corp Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode material
JP2011084429A (en) * 2009-10-15 2011-04-28 Osaka Gas Co Ltd Carbon material, and method for producing carbon material and graphite material
WO2014168170A1 (en) * 2013-04-09 2014-10-16 株式会社クレハ Method for manufacturing non-aqueous electrolyte secondary battery negative electrode material
CN104201343A (en) * 2014-08-27 2014-12-10 宁夏共享新能源材料有限公司 Method for reducing specific surface area of spherical graphite

Also Published As

Publication number Publication date
JP3153471B2 (en) 2001-04-09

Similar Documents

Publication Publication Date Title
JP4915687B2 (en) Method for producing negative electrode material for lithium ion secondary battery
KR101598236B1 (en) Anode powders for batteries
TWI623138B (en) Composite powder for use in an anode of a lithium ion battery, method for manufacturing a composite powder and lithium ion battery
KR20190019430A (en) Method for manufacturing negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same
US20130337334A1 (en) Electrode material having a high capacity
EP1906472A1 (en) Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
JP3153471B2 (en) Carbon or graphite powder for negative electrode material of lithium battery and method for producing the same
EP3718968B1 (en) Method of manufacturing composite anode material
JP4403327B2 (en) Graphite powder for negative electrode of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
CN105990568B (en) The recovery method of silicon particle and the preparation method of cathode materials of aqueous solution
KR20190054045A (en) Method for manufacturing negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same
WO2019218504A1 (en) Composite carbon material, and preparation method therefor and application thereof
CN115050932A (en) Composite negative electrode material, preparation method thereof and lithium ion battery
JPH09231974A (en) Carbon for lithium battery negative electrode material
Esper et al. SiO2–GeO2 Glass–Ceramic Flakes as an Anode Material for High‐Performance Lithium‐Ion Batteries
CN108807903B (en) Preparation method of composite modified lithium battery negative electrode material for lithium battery
JP2000123876A (en) Manufacture of lithium ion battery material
WO2012161055A1 (en) Production method for material employed in energy device and/or electrical storage device, and material employed in energy device and/or electrical storage device
CN110690442B (en) Preparation method of ordered mesoporous metal oxide @ carbon lithium ion battery cathode material
CN112713264A (en) Artificial graphite negative electrode material, preparation method, application and battery
CN114725318B (en) High-magnification lithium iron phosphate positive electrode material, preparation method thereof, positive electrode and battery
JP3309701B2 (en) Method for producing carbon powder for negative electrode of lithium ion secondary battery
CN114653302A (en) Granulation method of artificial graphite, granulated material, artificial graphite, preparation method and application of artificial graphite, and secondary battery
CN107732207B (en) Preparation method of chromium titanium-based lithium ion battery multi-stage structure cathode material
JP2008179846A (en) Method for producing metal powder, metal powder, electrode, and secondary battery using lithium ion

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010116

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term