JPH1039009A - Distance detector - Google Patents

Distance detector

Info

Publication number
JPH1039009A
JPH1039009A JP19634296A JP19634296A JPH1039009A JP H1039009 A JPH1039009 A JP H1039009A JP 19634296 A JP19634296 A JP 19634296A JP 19634296 A JP19634296 A JP 19634296A JP H1039009 A JPH1039009 A JP H1039009A
Authority
JP
Japan
Prior art keywords
phase difference
distance
signal
target object
ripple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19634296A
Other languages
Japanese (ja)
Inventor
Jiro Tsuchiya
次郎 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP19634296A priority Critical patent/JPH1039009A/en
Publication of JPH1039009A publication Critical patent/JPH1039009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a distance detector capable of making distance detection with high precision without being influenced by noise generated by multi-reflection of signals by a method wherein reference phase differences of phase difference signals varied are acquired and a distance is calculated form variable cycles and wavelengths of these reference phase differences and phase difference signals. SOLUTION: In a distance detector for detecting phase differences of 2-frequency received signals by a phase difference detecting means M3 and detecting a distance upto a target substance, there are provided a reference value calculating means M4 for calculating reference phase differences being a reference value of phase differences from at least one cycle portion of phase difference signals, reference phase differences calculated by the reference value calculating means; and a distance calculating means M5 for calculating a distance up to a target substance from variable cycles and wavelengths of the phase difference signals. As described above, in order to calculate a distance from the reference phase differences obtained from at least one cycle portion of the phase difference signals and constant variable cycles and wavelengths of the phase difference signals, it is possible to make distance detection with high precision without being influenced by variations of the phase difference signals caused by multi- reflection of signals.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、距離検出装置に関
し、少なくとも異なった2つの周波数の信号を発射し、
対象物で反射した信号を受信して受信信号の位相差から
対象物までの距離を検出する距離検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance detecting device, which emits signals of at least two different frequencies,
The present invention relates to a distance detecting device that receives a signal reflected by an object and detects a distance to the object from a phase difference of the received signal.

【0002】[0002]

【従来の技術】例えば、特開昭47−7271号公報に
は、周波数差のある2周波の連続波を送信し、受信波の
2つのドップラ周波数の位相差から距離を求めることに
より、検知距離を拡大する2周波CWレーダが記載され
ている。
2. Description of the Related Art For example, Japanese Patent Laying-Open No. 47-7271 discloses a method of transmitting a continuous wave of two frequencies having a frequency difference and obtaining a distance from a phase difference between two Doppler frequencies of a received wave. Are described.

【0003】[0003]

【発明が解決しようとする課題】2周波CWレーダを車
両の衝突検知に応用する場合、0m〜数m程度の近距離
の測距ができることが要求される。レーダの送信アンテ
ナから放射された送信波は、目標物体で反射され受信ア
ンテナに到達する。しかし、極近距離では目標物体で反
射された送信波の一部が再度送信アンテナで反射され目
標物体に照射される。つまり、目標物体に照射される送
信波は送信アンテナからの直接波と多重反射による間接
波が合成されたものになる。
When a two-frequency CW radar is applied to vehicle collision detection, it is required that a short distance measurement of about 0 m to several meters can be performed. The transmission wave radiated from the radar transmission antenna is reflected by the target object and reaches the reception antenna. However, at a very short distance, a part of the transmission wave reflected by the target object is reflected again by the transmission antenna and is irradiated on the target object. That is, the transmission wave applied to the target object is a combination of the direct wave from the transmission antenna and the indirect wave due to multiple reflection.

【0004】このため、2周波の位相情報には距離情報
の他に再反射波によるリップル成分が含まれる。このリ
ップルの周期は送信波波長の1/2に相当し、リップル
の振幅は目標物体での反射率と距離とに依存している。
反射率が大きい目標物体では間接波の信号強度が大きく
なるため、検知範囲の近距離側で振幅の大きなリップル
が発生する傾向にある。逆に遠距離側では受信波の信号
強度が低下し、受信回路の規定しているSN比を下回る
と大きいリップルが生じる。つまり検知範囲の中央付近
でリップルは小さくなるものの検知範囲の大部分で大き
なリップルが発生しているため、距離検知の精度が悪化
するという問題があった。
[0004] Therefore, the phase information of the two frequencies includes a ripple component due to a re-reflected wave in addition to the distance information. The period of the ripple corresponds to half of the wavelength of the transmission wave, and the amplitude of the ripple depends on the reflectance and the distance at the target object.
In a target object having a large reflectance, the signal strength of the indirect wave is large, so that a ripple having a large amplitude tends to occur on the short distance side of the detection range. Conversely, on the far side, the signal strength of the received wave decreases, and when the signal strength falls below the SN ratio specified by the receiving circuit, large ripples occur. That is, although the ripple becomes small near the center of the detection range, a large ripple is generated in most of the detection range, so that there is a problem that the accuracy of the distance detection is deteriorated.

【0005】ところで、送信アンテナと目標物体との距
離をRとし、直接波をVtp,間接波をVtsとし、間接波
の距離Rの関数である再反射係数をγ(0<γ<1)と
すると目標物体に照射される送信波Vtは次式で表わさ
れる。 Vt =Vtp+Vts=cos ωt+γωcos (t−τ) ここで、遅延時間τ:τ=2R/c (c:光速) =cos ωt+γcos ωτcos ωt+γsin ωτsin ωt =cos ωt・(1+γcos ωτ)+sin ωt・γsin ωτ ここで、Acos ψ=1+γcos ωτ,Asin ψ=γsin ωτとすると、 =Acos ωtcos ψ+Asin ωtsin ψ =Acos (ωt−ψ) となり、A=(1+γ2 +2γcos ωτ)1/2 ψ=tan -1〔γsin ωτ/(1+γcos ωτ)〕 により、 =(1+γ2 +2γcos ωτ)1/2cos 〔tan -1〔ωt−γsin ωτ/(1+γ cos ωτ)〕〕 0<γ≦1の時、 Vt =(1+γcos ωτ)cos (ωt−γsin ωτ) となり、送信波は遅延時間τを変数とする振幅変調及び
位相変調された信号となる。
By the way, the distance between the transmitting antenna and the target object is R, the direct wave is Vtp, the indirect wave is Vts, and the re-reflection coefficient as a function of the distance R of the indirect wave is γ (0 <γ <1). Then, the transmission wave Vt applied to the target object is expressed by the following equation. Vt = Vtp + Vts = cos ωt + γωcos (t−τ) Here, delay time τ: τ = 2R / c (c: speed of light) = cos ωt + γcos ωτcos ωt + γsin ωτsin ωt = cos ωt · (1 + γcos ωt ωτsine) , Acos ψ = 1 + γcos ωτ , When Asin ψ = γsin ωτ, = Acos ωtcos ψ + Asin ωtsin ψ = Acos (ωt-ψ) next, a = (1 + γ 2 + 2γcos ωτ) 1/2 ψ = tan -1 [γsin ωτ / (1 + γ cos ωτ)], then: (1 + γ 2 + 2γ cos ωτ) 1/2 cos [tan −1 [ωt−γ sin ωτ / (1 + γ cos ωτ)]] When 0 <γ ≦ 1, Vt = (1 + γcos ωτ) cos (Ωt−γsinωτ), and the transmission wave becomes a signal subjected to amplitude modulation and phase modulation using the delay time τ as a variable.

【0006】ここで、2周波CW方式による距離計測へ
の影響を検討する。送信角周波数をω1 ,ω2 とする
と、送信波は Vt1 =(1+γcos ω1 τ)cos (ω1 t−γsin ω1 τ) Vt2 =(1+γcos ω2 τ)cos (ω2 t−γsin ω2 τ) となる。この2波による受信波は、 Vr1 =k(1+γcos ω1 τ)cos 〔ω1 (t−τ’)−γsin ω1 τ〕 Vr2 =k(1+γcos ω2 τ)cos 〔ω2 (t−τ’)−γsin ω2 τ〕 と表される。ここで、τ’=2R/c,kは受信振幅で
ある。ローカル信号を、 Vl1 =cos ω2 t Vl2 =cos ω2 t としたときのホモダイン検波出力は、 Vb1 =k/2(1+γcos ω1 τ)cos (ω1 τ’+γsin ω1 τ) Vb2 =k/2(1+γcos ω2 τ)cos (ω2 τ’+γsin ω2 τ) となる。よって、Vb1 ,Vb2 の位相差Δφは次のよ
うに表わされる。
Here, the influence on the distance measurement by the two-frequency CW method will be examined. Assuming that the transmission angular frequencies are ω 1 and ω 2 , the transmission wave is Vt 1 = (1 + γ cos ω 1 τ) cos (ω 1 t−γ sin ω 1 τ) Vt 2 = (1 + γ cos ω 2 τ) cos (ω 2 t− γ sin ω 2 τ). Vr 1 = k (1 + γ cos ω 1 τ) cos [ω 1 (t−τ ′) − γ sin ω 1 τ] Vr 2 = k (1 + γ cos ω 2 τ) cos [ω 2 (t −τ ′) − γ sin ω 2 τ]. Here, τ ′ = 2R / c, k is the reception amplitude. When the local signal is Vl 1 = cos ω 2 t Vl 2 = cos ω 2 t, the homodyne detection output is Vb 1 = k / 2 (1 + γ cos ω 1 τ) cos (ω 1 τ ′ + γ sin ω 1 τ) Vb 2 = k / 2 (1 + γ cos ω 2 τ) cos (ω 2 τ ′ + γ sin ω 2 τ) Therefore, the phase difference Δφ between Vb 1 and Vb 2 is expressed as follows.

【0007】ω1 =ω2 ,ω1 −ω2 =Δω,ω0
(ω1 +ω2 )/2として、 Δφ=(ω1 −ω2 )τ’+γ(sin ω1 τ−sin ω2 τ) =(ω1 −ω2 )τ’−2γsin 〔(ω1 −ω2 )/2〕τsin 〔(ω1 +ω2 )/2〕τ =Δωτ’−2γsin (Δωτ/2)sin ω0 τ =2ΔωR/c−2γsin (ΔωR/c)sin (2Rω0 /2) … (1) (1)式の右辺第1項は距離に比例する位相量を表わし
ている。右辺第2項は反射波の再反射によるリップル成
分を表わしている。リップル成分の周期は2Rω0 /c
=2πから送信波の波長λの1/2の波長となる。
Ω 1 = ω 2 , ω 1 −ω 2 = Δω, ω 0 =
As (ω 1 + ω 2 ) / 2, Δφ = (ω 1 −ω 2 ) τ ′ + γ (sin ω 1 τ−sin ω 2 τ) = (ω 1 −ω 2 ) τ′−2γ sin [(ω 1 − omega 2) / 2] τsin [(ω 1 + ω 2) / 2 ] τ = Δωτ'-2γsin (Δωτ / 2) sin ω 0 τ = 2ΔωR / c-2γsin (ΔωR / c) sin (2Rω 0/2) (1) The first term on the right side of the equation (1) represents a phase amount proportional to the distance. The second term on the right side represents a ripple component due to re-reflection of the reflected wave. The period of the ripple component is 2Rω 0 / c
= 2π, the wavelength is の of the wavelength λ of the transmission wave.

【0008】本発明は、上記の点に鑑みなされたもの
で、変動する位相差信号の基準位相差を求め、この基準
位相差と位相差信号の変動周期及び波長から距離を算出
することにより、信号の多重反射により生じるノイズの
影響を受けることがなく高精度の距離検知が可能な距離
検出装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and obtains a reference phase difference of a fluctuating phase difference signal, and calculates a distance from the reference phase difference, a fluctuation cycle of the phase difference signal, and a wavelength. It is an object of the present invention to provide a distance detection device capable of detecting a distance with high accuracy without being affected by noise caused by multiple reflections of a signal.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の発明
は、図1に示す如く、送信手段M1から少なくとも異な
った2つの周波数の信号を送信して目標物体M0で反射
された信号を受信手段M2で受信し、位相差検出手段M
3で該受信信号の位相差を検出し、検出した位相差信号
から上記目標物体までの距離を検出する距離検出装置に
おいて、上記送信信号の周期に応じた周期で変動する上
記位相差信号の少なくとも1周期分から位相差の基準値
である基準位相差を算出する基準値算出手段M4と、上
記基準値算出手段で算出された基準位相差と、上記位相
差信号の変動周期及び波長とから上記目標物体までの距
離を算出する距離算出手段M5とを有する。
According to the first aspect of the present invention, as shown in FIG. 1, a signal having at least two different frequencies is transmitted from a transmitting means M1 and a signal reflected by a target object M0 is received. The phase difference detecting means M
In a distance detecting device for detecting a phase difference of the received signal at 3 and detecting a distance from the detected phase difference signal to the target object, at least the phase difference signal fluctuating at a cycle corresponding to the cycle of the transmission signal. The reference value calculating means M4 for calculating a reference phase difference that is a reference value of the phase difference from one cycle, the reference phase difference calculated by the reference value calculating means, the fluctuation cycle and the wavelength of the phase difference signal, and the target And a distance calculating means M5 for calculating a distance to the object.

【0010】このように位相差信号の少なくとも1周期
分から得た基準位相差と、位相差信号の一定の変動周期
及び波長から距離を算出するため、信号の多重反射に起
因する位相差信号の変動の影響を受けることがなく高精
度の距離検出を行うことができる。
[0010] Since the distance is calculated from the reference phase difference obtained from at least one cycle of the phase difference signal and the constant fluctuation cycle and wavelength of the phase difference signal, the fluctuation of the phase difference signal caused by the multiple reflection of the signal. The distance can be detected with high accuracy without being affected by the distance.

【0011】[0011]

【発明の実施の形態】図2は本発明装置の一実施例のブ
ロック図を示す。同図中、送信回路(送信手段)10で
生成された2つの周波数f1,f2(f1−f2=Δ
F)を混合した信号は送信アンテナ12から送信波とし
て空間に放射され、目標物体14に照射される。目標物
体14の表面で反射された送信波は受信アンテナ16で
受信され受信回路(受信手段)18で周波数f1’,f
2’のベースバンド信号に周波数変換される。バンドパ
スフィルタ(BPF)20,24は例えばセラミックフ
ィルタで構成され、周波数f1’,f2’夫々のベース
バンド信号を分離して位相差検出回路24に供給する。
FIG. 2 is a block diagram showing an embodiment of the apparatus according to the present invention. In the figure, two frequencies f1 and f2 (f1−f2 = Δ) generated by a transmission circuit (transmission means) 10 are used.
The signal mixed with F) is radiated into the space from the transmission antenna 12 as a transmission wave, and is irradiated on the target object 14. The transmitted wave reflected by the surface of the target object 14 is received by the receiving antenna 16 and received by the receiving circuit (receiving means) 18 at frequencies f1 ′ and f1 ′.
The frequency is converted to a 2 'baseband signal. The band-pass filters (BPFs) 20 and 24 are composed of, for example, ceramic filters, and separate baseband signals of frequencies f1 ′ and f2 ′ and supply the signals to the phase difference detection circuit 24.

【0012】位相差検出回路(位相差検出手段)24で
は異なる2つの周波数f1’,f2’の位相比較を行う
ために、周波数(f1’+f2’)/2の局部発振信号
を用いて上記2つのベースバンド信号を周波数変換して
同一周波数(f1’−f2’)/2とした後、両ベース
バンド信号の位相比較を行う。これによって得られた位
相差信号はA/D変換器26でディジタル化されてマイ
クロコンピュータ30に供給されると共に、波形整形回
路28でパルス化されてマイクロコンピュータ30に供
給される。上記の位相差信号は電波が送信アンテナ10
から目標物体14に到り、更に受信アンテナ16に到る
までの伝搬距離に比例した成分と、リップル成分からな
る。
The phase difference detecting circuit (phase difference detecting means) 24 uses the local oscillation signal of frequency (f1 '+ f2') / 2 to compare the phases of two different frequencies f1 'and f2'. After one baseband signal is frequency-converted to have the same frequency (f1′−f2 ′) / 2, the phases of both baseband signals are compared. The phase difference signal thus obtained is digitized by the A / D converter 26 and supplied to the microcomputer 30, and is pulsed by the waveform shaping circuit 28 and supplied to the microcomputer 30. The above-mentioned phase difference signal is transmitted by the transmitting antenna 10
From the target object 14 to the receiving antenna 16 and a ripple component.

【0013】マイクロコンピュータ30は後述の処理に
よって、ディジタル位相差信号を基に目標物体14まで
の距離を算出する。これと共にパルス化された位相差信
号の周期を計測し、目標物体14との相対速度を算出す
る。ここで得られた目標物体14までの距離及び相対速
度は衝突予知部32に供給され、ここで、目標物体14
が自車両に衝突する危険性があるか否かが判定され、衝
突の危険性がある場合には衝突予知信号が生成される。
乗員保護装置34はこの衝突予知信号と、衝突センサ3
6の衝突検出信号とを供給されており、衝突の予知又は
検出に応じてエアバッグ等を作動させて乗員保護を行
う。
The microcomputer 30 calculates the distance to the target object 14 based on the digital phase difference signal by the processing described later. At the same time, the cycle of the pulsed phase difference signal is measured, and the relative speed with respect to the target object 14 is calculated. The distance and relative speed to the target object 14 obtained here are supplied to the collision prediction unit 32, where the target object 14
It is determined whether there is a risk of collision with the own vehicle. If there is a risk of collision, a collision prediction signal is generated.
The occupant protection device 34 outputs the collision prediction signal and the collision sensor 3
The collision detection signal of No. 6 is supplied, and an occupant is protected by operating an airbag or the like in accordance with the prediction or detection of the collision.

【0014】ここで、位相差検出回路24の出力する位
相差信号は図3(A),(B)に示す如く、送信波の波
長λの1/2波長のリップルが現われる。図3(A)は
電波の反射強度が大きい目標物体(例えば車両ボディの
金属板等)での位相差信号の出力例である。この場合、
比較的距離が小さい領域では振幅の大きいリップルが発
生するが、距離が大きい領域ではリップルの振幅が縮小
傾向にある。
Here, as shown in FIGS. 3A and 3B, the phase difference signal output from the phase difference detection circuit 24 has a ripple having a half wavelength of the wavelength λ of the transmission wave. FIG. 3A is an example of the output of a phase difference signal from a target object (for example, a metal plate of a vehicle body) having a high radio wave reflection intensity. in this case,
Ripple with a large amplitude occurs in a region where the distance is relatively small, but the amplitude of the ripple tends to be reduced in a region where the distance is large.

【0015】図3(B)は電波の反射強度が小さい目標
物体(例えばポールや電柱等)での位相差信号の出力例
である。この場合、距離が大きくなるに従ってリップル
の振幅が大きくなる。これは距離が大きくなり受信回路
18に供給される受信電力が低下して位相差検出回路2
4内で必要なSN比を下まわることにより、リップルの
振幅の増大を引き起こしている。
FIG. 3B shows an example of the output of a phase difference signal from a target object (for example, a pole or a utility pole) having a small radio wave reflection intensity. In this case, the amplitude of the ripple increases as the distance increases. This is because the distance increases and the received power supplied to the receiving circuit 18 decreases, and the phase difference detecting circuit 2
When the required S / N ratio falls below 4, the ripple amplitude increases.

【0016】図4はマイクロコンピュータ30が実行す
る距離算出処理のフローチャートを示す。同図中、ステ
ップS10では基準位相差補正モード及び基準位相差設
定モードのフラグFLAG1,FLAG2夫々の初期化
を行うために各々0をセットする。なお、基準位相差補
正モードはフラグFLAG1=1で表わされ、基準位相
差設定モードはフラグFLAG2=1で表わされる。ま
た、このステップでは位相差θ1にレーダの最大検知距
離(例えば4m)である初期値θINTをセットする。
次にステップS12でA/D変換器26より供給される
位相差信号θをリップル1周期分のデータ数だけ読み込
む。なお、リップルは目標物体14までの距離が変化し
ているときにだけ発生し、距離が一定のときは発生しな
い。またリップルの波長は送信波の波長λの1/2であ
り、サンプリング間隔が決定されればリップル1周期分
のデータ数は決定される。
FIG. 4 shows a flowchart of the distance calculation processing executed by the microcomputer 30. In FIG. 10, in step S10, 0 is set to initialize each of the flags FLAG1 and FLAG2 in the reference phase difference correction mode and the reference phase difference setting mode. Note that the reference phase difference correction mode is represented by a flag FLAG1 = 1, and the reference phase difference setting mode is represented by a flag FLAG2 = 1. In this step, an initial value θINT which is the maximum detection distance of the radar (for example, 4 m) is set to the phase difference θ1.
Next, in step S12, the phase difference signal θ supplied from the A / D converter 26 is read by the number of data for one cycle of the ripple. Note that ripple occurs only when the distance to the target object 14 is changing, and does not occur when the distance is constant. Further, the wavelength of the ripple is 1 / of the wavelength λ of the transmission wave, and if the sampling interval is determined, the number of data for one cycle of the ripple is determined.

【0017】次にステップS14で位相差信号θのリッ
プルの振幅を閾値θTH2と比較する。この閾値θTH
2は例えば最大検知距離Rmax におけるコンクリート製
電柱から得られるリップルの振幅程度の値とする。位相
差信号θの振幅が閾値θTH2より大きい場合は目標物
体が検知領域外にあるとしてステップS16に進み、こ
こでフラグFLAG1,FLAG2夫々に0をセット
し、位相差θ1に初期値θINTをセットしてステップ
S12に進む。また、位相差信号θの振幅が閾値θTH
2以下の場合はステップS18に進む。
Next, in step S14, the amplitude of the ripple of the phase difference signal θ is compared with a threshold value θTH2. This threshold θTH
2 is, for example, a value about the amplitude of a ripple obtained from a concrete telephone pole at the maximum detection distance Rmax. If the amplitude of the phase difference signal θ is larger than the threshold value θTH2, it is determined that the target object is outside the detection area, and the process proceeds to step S16, where 0 is set in each of the flags FLAG1 and FLAG2, and the initial value θINT is set in the phase difference θ1. To step S12. The amplitude of the phase difference signal θ is equal to the threshold value θTH.
If it is less than 2, the process proceeds to step S18.

【0018】ステップS18では位相差信号θの振幅が
閾値θTH1と比較する。この閾値θTH1は例えば距
離Rmax /2におけるコンクリート製電柱から得られる
リップルの振幅程度の値とする。また、リップルの最大
振幅をπ/2〔rad 〕とすると次の関係がある。
In step S18, the amplitude of the phase difference signal θ is compared with a threshold value θTH1. The threshold value .theta.TH1 is, for example, a value on the order of the amplitude of a ripple obtained from a concrete telephone pole at a distance Rmax / 2. If the maximum amplitude of the ripple is π / 2 [rad], the following relationship is obtained.

【0019】π>θTH2>θTH1 ステップS18で位相差信号θの振幅がθTH1以上の
ときはステップS20に進み、フラグFLAG2が1に
セットされて基準位相差設定モードであるかどうかを判
別する。FLAG2≠1であればステップS22でフラ
グFLAG2に1をセットして基準位相差設定モードで
あることを示す。そしてステップS24で次式により基
準位相差θREFを演算して設定する。
Π>θTH2> θTH1 If the amplitude of the phase difference signal θ is equal to or larger than θTH1 in step S18, the process proceeds to step S20, where the flag FLAG2 is set to 1 to determine whether or not the mode is the reference phase difference setting mode. If FLAG2 ≠ 1, the flag FLAG2 is set to 1 in step S22 to indicate that the mode is the reference phase difference setting mode. Then, in step S24, the reference phase difference θREF is calculated and set by the following equation.

【0020】θREF={Σ(θ×dt)}/N 但し、dtはサンプリング間隔、Nはリップル1周期分
のサンプリング回数(ステップS12で読み込んだデー
タ数)である。次にステップS25で位相差θ1に基準
位相差θREFをセットし、この位相差θ1を用いて次
の(2)式により目標物体14までの距離Rを演算す
る。
ΘREF = {(θ × dt)} / N where dt is a sampling interval, and N is the number of samplings for one cycle of the ripple (the number of data read in step S12). Next, in step S25, the reference phase difference θREF is set to the phase difference θ1, and the distance R to the target object 14 is calculated by the following equation (2) using the phase difference θ1.

【0021】 R=θ1×c/(4π×ΔF) … (2) 但し、cは光速、ΔFは2つの周波数f1,f2の差周
波数である。このステップS25を実行した後、ステッ
プS12に進む。つまり、目標物体14が検知領域に入
り、位相差信号θの振幅が小さくなって閾値θTH2以
下となり、フラグFLAG2が0から1にセットされる
と、位相差信号θのリップル1周期分のデータの総加平
均をとって基準位相差θREFとしている。
R = θ1 × c / (4π × ΔF) (2) where c is the speed of light and ΔF is the difference frequency between the two frequencies f1 and f2. After performing step S25, the process proceeds to step S12. That is, when the target object 14 enters the detection area, the amplitude of the phase difference signal θ decreases to become equal to or smaller than the threshold value θTH2, and the flag FLAG2 is set from 0 to 1, the data of one cycle of the ripple of the phase difference signal θ The total phase average is taken as the reference phase difference θREF.

【0022】一方、ステップS20でFLAG2=1の
場合にはステップS26に進み、位相差信号θがリップ
ル1波長分変化しているかどうかを判別する。ここで、
リップル1波長分変化していなければステップS12に
進む。また、リップル1波長分変化していればステップ
S28で目標物体の相対速度が正(接近方向)か否かを
判別する。相対速度が正であればステップS30に進
み、次式により基準位相差θREFにリップル1波長分
の位相差を減算して位相差θ1を求め、この位相差θ1
を用いて(2)式で目標物体14までの距離を演算す
る。
On the other hand, if FLAG2 = 1 in step S20, the flow advances to step S26 to determine whether or not the phase difference signal θ has changed by one ripple wavelength. here,
If it has not changed by one wavelength of the ripple, the process proceeds to step S12. If it has changed by one wavelength of the ripple, it is determined in step S28 whether or not the relative speed of the target object is positive (approaching direction). If the relative speed is positive, the process proceeds to step S30, in which the phase difference for one wavelength of the ripple is subtracted from the reference phase difference θREF by the following equation to obtain a phase difference θ1, and the phase difference θ1 is obtained.
Is used to calculate the distance to the target object 14 by the equation (2).

【0023】[0023]

【数1】 (Equation 1)

【0024】この式の意味について説明すると、(2)
式において位相差θ1=πであるときの最大距離をRma
x とすると、Rmax =c/(4・Δf)となる。従って
リップル1波長に相当する位相差Δφは次式で表わされ
る。
Explaining the meaning of this equation, (2)
In the equation, the maximum distance when the phase difference θ1 = π is Rma
Assuming that x, Rmax = c / (4 · Δf). Therefore, the phase difference Δφ corresponding to one ripple wavelength is represented by the following equation.

【0025】[0025]

【数2】 (Equation 2)

【0026】また、相対速度が正でなければステップS
32に進み、次式により基準位相差θREFにリップル
1波長分の位相差を加算して位相差θ1を求め、この位
相差θ1を用いて(2)式で目標物体14までの距離を
演算する。
If the relative speed is not positive, step S
32, the phase difference of one wavelength of the ripple is added to the reference phase difference θREF by the following equation to obtain a phase difference θ1, and the distance to the target object 14 is calculated by the equation (2) using the phase difference θ1. .

【0027】[0027]

【数3】 (Equation 3)

【0028】上記のステップS30又はS32で実行後
はステップS12に進む。このように、位相差信号θが
リップル1波長分変化している場合には相対速度の極性
に応じて基準位相差θREFにリップル1波長分の位相
差Δφを加減算することによって位相差θ1を高精度に
求めることができ、この位相差θ1から目標物体14ま
での距離Rを正確に算出できる。
After the execution in step S30 or S32, the process proceeds to step S12. As described above, when the phase difference signal θ changes by one ripple wavelength, the phase difference θ1 is increased by adding or subtracting the phase difference Δφ for one ripple wavelength to the reference phase difference θREF in accordance with the polarity of the relative speed. The distance R from the phase difference θ1 to the target object 14 can be calculated accurately.

【0029】ところで、ステップS18で位相差信号θ
のリップルの振幅が閾値θTH1未満の場合はステップ
S34に進み、フラグFLAG1が1で基準位相差補正
モードか否かを判別する。FLAG1=1の場合はステ
ップS26に進み、前述のステップS26〜S32を実
行する。
Incidentally, in step S18, the phase difference signal θ
If the amplitude of the ripple is smaller than the threshold value θTH1, the process proceeds to step S34, and if the flag FLAG1 is 1, it is determined whether or not the mode is the reference phase difference correction mode. If FLAG1 = 1, the process proceeds to step S26, and the above-described steps S26 to S32 are executed.

【0030】FLAG1=0の場合はステップS36で
FLAG1に1をセットし、ステップS38で次式によ
り新基準位相差θREF(NEW)を演算する。 θREF(NEW)={Σ(θ×dt)}/N そして、ステップS40で次式により新基準位相差θR
EF(NEW)を用いて位相差θ1を更新し、この位相
差θ1を用いて(2)式で距離を演算して、ステップS
12に進む。
If FLAG1 = 0, FLAG1 is set to 1 in step S36, and a new reference phase difference θREF (NEW) is calculated by the following equation in step S38. θREF (NEW) = {(θ × dt)} / N Then, in step S40, the new reference phase difference θR is obtained by the following equation.
The phase difference θ1 is updated using EF (NEW), and the distance is calculated by the equation (2) using the phase difference θ1, and step S
Proceed to 12.

【0031】上記のステップS24,S38が基準値算
出手段M4に対応し、ステップS25,S30,S3
2,S40が距離算出手段M5に対応する。図5
(A),(B)は位相差信号θの振幅が閾値θTH2未
満の場合の位相差θ1と、位相差信号θ夫々の波形を示
す。この場合、目標物体が検知領域に入ってきたとき基
準位相差θREFには最大検知距離に対応する初期値θ
INTがセットされる。この後、フラグFLAG2が0
のときに位相差信号θのリップル1周期分の総加平均に
よって基準位相差θREFが求められ、リップルの半周
期の変化がある毎にこの基準位相差θREFにλ/2が
加減算されて位相差θ1が得られる。
Steps S24 and S38 correspond to the reference value calculating means M4, and steps S25, S30, S3
2 and S40 correspond to the distance calculating means M5. FIG.
(A) and (B) show the waveforms of the phase difference signal θ1 and the phase difference signal θ when the amplitude of the phase difference signal θ is smaller than the threshold value θTH2. In this case, when the target object enters the detection area, the reference phase difference θREF includes an initial value θ corresponding to the maximum detection distance.
INT is set. Thereafter, the flag FLAG2 becomes 0
, The reference phase difference θREF is obtained by the total averaging of one cycle of the ripple of the phase difference signal θ, and every time there is a change in the half cycle of the ripple, λ / 2 is added to or subtracted from the reference phase difference θREF to obtain the phase difference. θ1 is obtained.

【0032】図6(A),(B)は位相差信号θの振幅
が閾値θTH1未満の場合の位相差θ1と位相差信号θ
夫々の波形を示す。この場合は、目標物体14が安定し
て検出され、高精度の距離測定が可能であるため、フラ
グFLAG1が0のときに基準位相差θREFを位相差
信号θのリップル1周期分の総加平均によって求めた新
基準位相差θREF(NEW)で更新する。このように
して基準位相差θREFを精度の高い新基準位相差θR
EF(NEW)に置き換えることによりその後の位相差
θ1を高精度なものとすることができる。
FIGS. 6A and 6B show the phase difference θ1 and the phase difference signal θ when the amplitude of the phase difference signal θ is smaller than the threshold value θTH1.
The respective waveforms are shown. In this case, since the target object 14 is stably detected and a highly accurate distance measurement is possible, when the flag FLAG1 is 0, the reference phase difference θREF is calculated by the total arithmetic mean of one cycle of the ripple of the phase difference signal θ. Is updated with the new reference phase difference θREF (NEW) obtained by In this way, the reference phase difference θREF is changed to a new reference phase difference θR with high accuracy.
By replacing with EF (NEW), the subsequent phase difference θ1 can be made highly accurate.

【0033】なお、基準位相差θREF,新基準位相差
θREF(NEW)はリップルの複数周期分の総加平均
を用いても良い。図7はマイクロコンピュータ30が実
行する相対速度算出処理のフローチャートを示す。同図
中、ステップS50では位相差信号θをリップル1周期
分読み込んで、図8に示す位相差の勾配を演算する。図
8は目標物体14が接近している場合の位相差信号波形
を示している。次にステップS52で勾配Δθが0か否
かを判別し、Δθ≠0の場合ステップS54で勾配Δθ
が0を越えているか否かを判別する。
As the reference phase difference θREF and the new reference phase difference θREF (NEW), a total arithmetic mean of a plurality of cycles of the ripple may be used. FIG. 7 shows a flowchart of the relative speed calculation process executed by the microcomputer 30. In the figure, in step S50, the phase difference signal θ is read for one cycle of the ripple, and the gradient of the phase difference shown in FIG. 8 is calculated. FIG. 8 shows a phase difference signal waveform when the target object 14 is approaching. Next, it is determined in step S52 whether or not the gradient Δθ is 0. If Δθ ≠ 0, the gradient Δθ is determined in step S54.
Is determined whether or not exceeds 0.

【0034】ステップS54でΔθ<0の場合はステッ
プS56で相対速度の極性POLに−1をセットし、Δ
θ>0の場合はステップS58で相対速度の極性POL
に1をセットする。この後、ステップS60に進み、次
式により相対速度Vを演算する。
If .DELTA..theta. <0 in step S54, the polarity POL of the relative speed is set to -1 in step S56, and .DELTA.
If θ> 0, the polarity POL of the relative speed is determined in step S58.
Is set to 1. Thereafter, the process proceeds to step S60, and the relative speed V is calculated by the following equation.

【0035】V=POL×c/(2×f×Td) 但し、cは光速、fは送信波の周波数、Tdはパルス周
期である。上記のステップS60を実行するとステップ
S50に進んで処理を繰り返す。また、ステップS52
でΔθ=0の場合はステップS62で相対速度Vを0と
してステップS50に進み、処理を繰り返す。
V = POL × c / (2 × f × Td) where c is the speed of light, f is the frequency of the transmission wave, and Td is the pulse period. After the execution of step S60, the process proceeds to step S50, and the process is repeated. Step S52
If Δθ = 0, the relative speed V is set to 0 in step S62, the process proceeds to step S50, and the process is repeated.

【0036】ところで、パルス周期Tdは図9に示す割
込み処理で計測する。図9の処理は波形整形回路28か
ら供給されるパルス化された位相差信号の立上りエッジ
又は立下りエッジ時点で割込み実行される。ステップS
70ではマイクロコンピュータ30の内蔵タイマによっ
てパルス化された位相差信号の周期、つまり次の立上り
エッジ又は立下りエッジまでの時間が計測される。
Incidentally, the pulse period Td is measured by the interrupt processing shown in FIG. The processing in FIG. 9 is interrupted at the rising edge or the falling edge of the pulsed phase difference signal supplied from the waveform shaping circuit 28. Step S
At 70, the period of the pulsed phase difference signal by the built-in timer of the microcomputer 30, that is, the time until the next rising edge or falling edge is measured.

【0037】[0037]

【発明の効果】上述の如く、請求項1に記載の発明は、
送信手段から少なくとも異なった2つの周波数の信号を
送信して目標物体で反射された信号を受信手段で受信
し、該受信信号の位相差を検出し、検出した位相差信号
から上記目標物体までの距離を検出する距離検出装置に
おいて、上記送信信号の周期に応じた周期で変動する上
記位相差信号の少なくとも1周期分から位相差の基準値
である基準位相差を算出する基準値算出手段と、上記基
準値算出手段で算出された基準位相差と、上記位相差信
号の変動周期及び波長とから上記目標物体までの距離を
算出する距離算出手段とを有する。
As described above, the first aspect of the present invention provides
The transmitting means transmits signals of at least two different frequencies, receives the signal reflected by the target object by the receiving means, detects the phase difference of the received signal, and detects the phase difference signal from the detected phase difference signal to the target object. A distance detection device that detects a distance; a reference value calculation unit that calculates a reference phase difference that is a reference value of a phase difference from at least one cycle of the phase difference signal that fluctuates at a cycle corresponding to a cycle of the transmission signal; And a distance calculating means for calculating a distance to the target object from the reference phase difference calculated by the reference value calculating means and a fluctuation cycle and a wavelength of the phase difference signal.

【0038】このように位相差信号の少なくとも1周期
分から得た基準位相差と、位相差信号の一定の変動周期
及び波長から距離を算出するため、信号の多重反射に起
因する位相差信号の変動の影響を受けることがなく高精
度の距離検出を行うことができる。
As described above, since the distance is calculated from the reference phase difference obtained from at least one cycle of the phase difference signal and the constant fluctuation cycle and wavelength of the phase difference signal, the fluctuation of the phase difference signal caused by the multiple reflection of the signal. The distance can be detected with high accuracy without being affected by the distance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理図である。FIG. 1 is a principle diagram of the present invention.

【図2】本発明装置のブロック図である。FIG. 2 is a block diagram of the device of the present invention.

【図3】位相差信号を説明するための図である。FIG. 3 is a diagram for explaining a phase difference signal.

【図4】距離算出処理のフローチャートである。FIG. 4 is a flowchart of a distance calculation process.

【図5】本発明を説明するための図である。FIG. 5 is a diagram for explaining the present invention.

【図6】本発明を説明するための図である。FIG. 6 is a diagram for explaining the present invention.

【図7】相対速度算出処理のフローチャートである。FIG. 7 is a flowchart of a relative speed calculation process.

【図8】図7の処理を説明するための図である。FIG. 8 is a diagram for explaining the process of FIG. 7;

【図9】割込みルーチンのフローチャートである。FIG. 9 is a flowchart of an interrupt routine.

【符号の説明】[Explanation of symbols]

10 送信回路 12 送信アンテナ 14,M0 目標物体 16 受信アンテナ 18 受信回路 20,22 バンドパスフィルタ 24 位相差検出回路 26 A/D変換器 28 波形整形回路 30 マイクロコンピュータ 32 衝突予知部 34 乗員保護装置 36 衝突センサ M1 送信手段 M2 受信手段 M3 位相差検出手段 M4 基準値算出手段 M5 距離算出手段 Reference Signs List 10 transmission circuit 12 transmission antenna 14, M0 target object 16 reception antenna 18 reception circuit 20, 22 bandpass filter 24 phase difference detection circuit 26 A / D converter 28 waveform shaping circuit 30 microcomputer 32 collision prediction unit 34 occupant protection device 36 Collision sensor M1 Transmitting means M2 Receiving means M3 Phase difference detecting means M4 Reference value calculating means M5 Distance calculating means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 送信手段から少なくとも異なった2つの
周波数の信号を送信して目標物体で反射された信号を受
信手段で受信し、該受信信号の位相差を検出し、検出し
た位相差信号から上記目標物体までの距離を検出する距
離検出装置において、 上記送信信号の周期に応じた周期で変動する上記位相差
信号の少なくとも1周期分から位相差の基準値である基
準位相差を算出する基準値算出手段と、 上記基準値算出手段で算出された基準位相差と、上記位
相差信号の変動周期及び波長とから上記目標物体までの
距離を算出する距離算出手段とを有することを特徴とす
る距離検出装置。
1. A signal transmitted from a transmitting unit having at least two different frequencies, a signal reflected by a target object is received by a receiving unit, a phase difference of the received signal is detected, and a phase difference signal is detected from the detected phase difference signal. In a distance detecting device for detecting a distance to the target object, a reference value for calculating a reference phase difference that is a reference value of a phase difference from at least one cycle of the phase difference signal that fluctuates at a cycle corresponding to a cycle of the transmission signal. Calculating means for calculating a distance to the target object from the reference phase difference calculated by the reference value calculating means, and a fluctuation cycle and a wavelength of the phase difference signal. Detection device.
JP19634296A 1996-07-25 1996-07-25 Distance detector Pending JPH1039009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19634296A JPH1039009A (en) 1996-07-25 1996-07-25 Distance detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19634296A JPH1039009A (en) 1996-07-25 1996-07-25 Distance detector

Publications (1)

Publication Number Publication Date
JPH1039009A true JPH1039009A (en) 1998-02-13

Family

ID=16356244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19634296A Pending JPH1039009A (en) 1996-07-25 1996-07-25 Distance detector

Country Status (1)

Country Link
JP (1) JPH1039009A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197626A (en) * 1996-12-20 1998-07-31 Thomson Csf Obstacle detecting radar for, particularly, automobile
US6157339A (en) * 1998-07-07 2000-12-05 Nec Corporation Radar for enabling accurate determination of false image of target
WO2003036326A1 (en) * 2001-10-19 2003-05-01 Optex Co., Ltd. Microwave sensor
KR100960336B1 (en) 2009-09-28 2010-05-28 에스아이티(주) Amplitude modulation radar based rear sensing device for vehicle
JP2013120127A (en) * 2011-12-07 2013-06-17 Mitsubishi Electric Corp Target tracking device
JP2014032625A (en) * 2012-08-06 2014-02-20 Hino Motors Ltd In-cabin situation observation device and in-cabin accident prevention device
US11277142B2 (en) 2020-03-04 2022-03-15 Kabushiki Kaisha Toshiba Phase correcting device, distance measuring device, phase fluctuation detecting device and phase correction method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197626A (en) * 1996-12-20 1998-07-31 Thomson Csf Obstacle detecting radar for, particularly, automobile
US6157339A (en) * 1998-07-07 2000-12-05 Nec Corporation Radar for enabling accurate determination of false image of target
WO2003036326A1 (en) * 2001-10-19 2003-05-01 Optex Co., Ltd. Microwave sensor
GB2397454A (en) * 2001-10-19 2004-07-21 Optex Co Ltd Microwave sensor
GB2397454B (en) * 2001-10-19 2005-04-27 Optex Co Ltd Microwave sensor
US7119737B2 (en) 2001-10-19 2006-10-10 Optex Co., Ltd. Microwave sensor
KR100960336B1 (en) 2009-09-28 2010-05-28 에스아이티(주) Amplitude modulation radar based rear sensing device for vehicle
JP2013120127A (en) * 2011-12-07 2013-06-17 Mitsubishi Electric Corp Target tracking device
JP2014032625A (en) * 2012-08-06 2014-02-20 Hino Motors Ltd In-cabin situation observation device and in-cabin accident prevention device
US11277142B2 (en) 2020-03-04 2022-03-15 Kabushiki Kaisha Toshiba Phase correcting device, distance measuring device, phase fluctuation detecting device and phase correction method
US11569825B2 (en) 2020-03-04 2023-01-31 Kabushiki Kaisha Toshiba Phase correcting device, distance measuring device, phase fluctuation detecting device and phase correction method

Similar Documents

Publication Publication Date Title
EP0348900B1 (en) Delay time measuring device
US6888494B2 (en) FMCW radar system
EP1808671B1 (en) Time difference measuring device, measuring method, distance measuring device, and distance measuring method
US5400034A (en) Digital phase lock detector
EP1275979A2 (en) Radar apparatus
CN102169176A (en) Observation signal processing apparatus
US20040174292A1 (en) Radar apparatus equipped with abnormality detection function
JP2001524207A (en) Sensor device operating method and sensor device
US4658648A (en) Method of and apparatus for the ultrasonic measurement of the thickness of test articles
JPH1039009A (en) Distance detector
JP2000338229A (en) Radar device
US4905207A (en) Measuring distances using a plurality of frequencies
JP2019023577A (en) System and method for moving target detection
JP2001517301A (en) Simulator for testing anti-collision radar systems
US20030151544A1 (en) Radar
JP3060790B2 (en) Intermittent frequency modulation radar device
JPH1164507A (en) Range finder method
JPH11271433A (en) Radar apparatus
JP2864159B2 (en) Intermittent FM-CW radar
JP2001056371A (en) Radio-wave ranging system
JP3415472B2 (en) Radio altimeter
JPH09178839A (en) Distance detecting device
US4045797A (en) Radar doppler frequency measuring apparatus
JP2762143B2 (en) Intermittent FM-CW radar device
JP2001004741A (en) Relative distance measuring apparatus