JPH1038410A - Refrigerant circulation type heat transfer device - Google Patents

Refrigerant circulation type heat transfer device

Info

Publication number
JPH1038410A
JPH1038410A JP8194942A JP19494296A JPH1038410A JP H1038410 A JPH1038410 A JP H1038410A JP 8194942 A JP8194942 A JP 8194942A JP 19494296 A JP19494296 A JP 19494296A JP H1038410 A JPH1038410 A JP H1038410A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
pressure
heat exchanger
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8194942A
Other languages
Japanese (ja)
Other versions
JP3828957B2 (en
Inventor
Yoshihiro Sugiyama
由浩 杉山
Katsuyuki Nagura
勝雪 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP19494296A priority Critical patent/JP3828957B2/en
Publication of JPH1038410A publication Critical patent/JPH1038410A/en
Application granted granted Critical
Publication of JP3828957B2 publication Critical patent/JP3828957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a leakage of refrigerant and a damage due to a rise in refrigerant pressure in a high-pressure side refrigerant circuit of a refrigerant circulation type heat transfer device for an air conditioner, etc., and keep the temperature of refrigerant flowing through a compressor from rising abnormally. SOLUTION: A section of a high-pressure side refrigerant circuit between a compressor 8 and a condenser and a section of a low pressure side refrigerant circuit between an expansion valve 38 and an evaporator are connected by bypass lines 20 and 105 provided with on-off control valves 21 and 104. A pressure sensor 101 is provided to detect the pressure in the high-pressure side refrigerant circuit. When the pressure detected by the pressure sensor 101 is high, the bypass lines 20 and 105 are opened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍装置、熱ポン
プ装置、空調装置として使用され、圧縮機、凝縮器、膨
張弁、蒸発器そして圧縮機の順に冷媒を循環させること
により、蒸発器で熱を冷媒に取り込む一方、凝縮器で熱
を冷媒から放出する冷媒循環式熱移動装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used as a refrigerating device, a heat pump device and an air conditioner, and circulates a refrigerant in the order of a compressor, a condenser, an expansion valve, an evaporator and a compressor. The present invention relates to a refrigerant circulation type heat transfer device that takes in heat into a refrigerant and releases heat from the refrigerant in a condenser.

【0002】[0002]

【従来の技術】冷媒循環式熱移動装置において、圧縮機
から膨張弁までの高圧側冷媒回路のうちで圧縮機と凝縮
器の間の部分と、膨張弁から圧縮機までの低圧側冷媒回
路のうちで蒸発器と圧縮機の間の部分とをバイパス路で
連結し、かつ、高圧側冷媒回路の圧力を検知する圧力セ
ンサを配置し、検知圧力が高い場合にバイパス路を導通
させるようにする弁手段を配置したものがある。
2. Description of the Related Art In a refrigerant circulation type heat transfer device, a portion between a compressor and a condenser in a high pressure side refrigerant circuit from a compressor to an expansion valve and a low pressure side refrigerant circuit from an expansion valve to a compressor are provided. A part between the evaporator and the compressor is connected by a bypass passage, and a pressure sensor for detecting the pressure of the high-pressure side refrigerant circuit is arranged. When the detected pressure is high, the bypass passage is conducted. Some have valve means.

【0003】[0003]

【発明が解決しようとする課題】上記の装置によると、
例えば圧縮機が異常に高回転になる場合、凝縮器の能力
がファン異常や作動台数の限定等によってとくに低下す
る場合、膨張弁開度がとくに小さくなる場合等、何らか
の異常により高圧側冷媒回路の圧力が異常に上昇すると
いった事態を防止し、高圧側冷媒回路の各部の冷媒漏れ
や異常圧力上昇に起因する損傷等を防止することができ
る。
According to the above apparatus,
For example, when the compressor abnormally rotates at a high speed, when the capacity of the condenser is particularly reduced due to a fan abnormality or limitation of the number of operating units, or when the opening degree of the expansion valve is particularly small, the abnormality of the high-pressure side refrigerant circuit is caused by some abnormality. It is possible to prevent a situation in which the pressure rises abnormally, and to prevent refrigerant leakage from each part of the high-pressure side refrigerant circuit and damage caused by an abnormal pressure rise.

【0004】しかし、低圧側冷媒回路のうちで蒸発器と
圧縮機の間にバイパスされる冷媒は高温高圧であり、こ
れが再び圧縮機に吸われて圧縮吐出されて高圧側冷媒回
路の冷媒を昇圧する。そして冷媒は圧縮機、高圧側冷媒
回路、バイパス路、低圧側冷媒回路そして圧縮機と循環
し続け、段々昇温する。このため圧縮機の潤滑機能が低
下し、圧縮機が損傷する問題がある。また、圧縮機の温
度が所定以上に上昇する場合、圧縮機を駆動する駆動装
置を緊急停止するものでは、駆動装置が停止してしまう
ことになり、冷媒循環式熱移動装置そのものの継続運転
が不能となってしまう。
However, the refrigerant bypassed between the evaporator and the compressor in the low-pressure side refrigerant circuit has a high temperature and a high pressure, and is sucked into the compressor again, compressed and discharged to increase the pressure of the refrigerant in the high-pressure side refrigerant circuit. I do. Then, the refrigerant continues to circulate through the compressor, the high-pressure side refrigerant circuit, the bypass, the low-pressure side refrigerant circuit, and the compressor, and the temperature gradually increases. Therefore, there is a problem that the lubrication function of the compressor is reduced and the compressor is damaged. In addition, when the temperature of the compressor rises above a predetermined value, if the driving device for driving the compressor is emergency stopped, the driving device will stop, and the continuous operation of the refrigerant circulation type heat transfer device itself will not be possible. It will be impossible.

【0005】本発明は、上記のような点に鑑み、高圧側
冷媒回路の冷媒圧力の上昇に起因する冷媒漏れや損傷を
防止可能とするのみでなく、圧縮機を通過する冷媒温度
が異常に上昇することのないようにすることができる冷
媒循環式熱移動装置を提供することを目的とする。
[0005] In view of the above, the present invention not only prevents the refrigerant from leaking or being damaged due to an increase in the refrigerant pressure in the high-pressure side refrigerant circuit, but also causes the temperature of the refrigerant passing through the compressor to be abnormal. It is an object of the present invention to provide a refrigerant circulation type heat transfer device which can be prevented from rising.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するため、請求項1に記載したように、駆動装置により
圧縮機を作動させ、圧縮機、凝縮器、膨張弁、蒸発器、
圧縮機の順に冷媒を循環させる冷媒循環式熱移動装置に
おいて、圧縮機から凝縮器を経て膨張弁に至る高圧側冷
媒回路のうちで圧縮機と凝縮器の間の部分と、膨張弁か
ら蒸発器を経て圧縮機に至る低圧側冷媒回路のうちで膨
張弁と蒸発器の間の部分とをバイパス路で連結し、か
つ、高圧側冷媒回路の圧力を検知する圧力センサを配置
し、この圧力センサによる検知圧力が高い場合に上記バ
イパス路を導通させるようにする弁手段を配置したこと
を特徴とするものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, according to the present invention, a compressor is operated by a driving device, and a compressor, a condenser, an expansion valve, an evaporator,
In a refrigerant circulation type heat transfer device that circulates refrigerant in the order of a compressor, a portion between a compressor and a condenser in a high pressure side refrigerant circuit from a compressor to a expansion valve through a condenser, and an evaporator from an expansion valve. And a pressure sensor for detecting the pressure of the high-pressure side refrigerant circuit by connecting the portion between the expansion valve and the evaporator in the low-pressure side refrigerant circuit to the compressor via the bypass path, and this pressure sensor The valve means is arranged to make the bypass passage conductive when the detection pressure is high.

【0007】さらにこの冷媒循環式熱移動装置におい
て、請求項2に記載したように、駆動装置を水冷式内燃
機関により構成し、水冷式内燃機関冷却後の温水と冷媒
とを熱交換させる温水冷媒熱交換器で上記蒸発器を構成
したことを特徴とするものである。
Further, in this refrigerant circulation type heat transfer device, the driving device is constituted by a water-cooled internal combustion engine, and the hot-water refrigerant exchanges heat with the hot water after cooling the water-cooled internal combustion engine. The evaporator is constituted by a heat exchanger.

【0008】また、請求項3に記載したように、駆動装
置により圧縮機を作動させ、圧縮機、凝縮器、膨張弁、
蒸発器、圧縮機の順に冷媒を循環させる冷媒循環式熱移
動装置において、駆動装置を水冷式内燃機関により構成
し、膨張弁から蒸発器を経て圧縮機に至る低圧側冷媒回
路に、内燃機関冷却後の温水と冷媒とを熱交換させる温
水冷媒熱交換器を上記蒸発器と並列に配置し、圧縮機か
ら凝縮器を経て膨張弁に至る高圧側冷媒回路のうちで圧
縮機と凝縮器の間の部分と、上記低圧側冷媒回路のうち
で膨張弁と上記蒸発器または上記温水冷媒熱交換器との
間の部分とをバイパス路で連結し、かつ、高圧側冷媒回
路の圧力を検知する圧力センサを配置し、この圧力セン
サによる検知圧力が高い場合に上記バイパス路を導通さ
せるようにする弁手段を配置したことを特徴とするもの
である。
Further, as described in claim 3, the compressor is operated by the driving device, and the compressor, the condenser, the expansion valve,
In a refrigerant circulation type heat transfer device that circulates refrigerant in the order of an evaporator and a compressor, a drive device is constituted by a water-cooled internal combustion engine, and a low-pressure side refrigerant circuit from an expansion valve to a compressor via an evaporator is cooled by an internal combustion engine. A hot water refrigerant heat exchanger for exchanging heat between the hot water and the refrigerant is arranged in parallel with the evaporator, and between the compressor and the condenser in the high pressure side refrigerant circuit from the compressor to the expansion valve through the condenser. And a portion of the low-pressure side refrigerant circuit between the expansion valve and the portion between the evaporator and the hot water refrigerant heat exchanger by a bypass path, and a pressure for detecting the pressure of the high-pressure side refrigerant circuit. A sensor is provided, and valve means for conducting the bypass when the pressure detected by the pressure sensor is high is provided.

【0009】また、請求項4に記載したように、駆動装
置により圧縮機を作動させ、圧縮機、凝縮器、膨張弁、
蒸発器、圧縮機の順に冷媒を循環させる冷媒循環式熱移
動装置において、駆動装置を水冷式内燃機関により構成
し、膨張弁から蒸発器を経て圧縮機に至る低圧側冷媒回
路に、内燃機関冷却後の温水と冷媒とを熱交換させる温
水冷媒熱交換器を上記蒸発器と直列に配置し、圧縮機か
ら凝縮器を経て膨張弁に至る高圧側冷媒回路のうちで圧
縮機と凝縮器の間の部分と、上記温水冷媒熱交換器ある
いは上記蒸発器のうちで下流側となるものと上記膨張弁
との間の部分とをバイパス路で連結し、かつ、高圧側冷
媒回路の圧力を検知する圧力センサを配置し、この圧力
センサによる検知圧力が高い場合に上記バイパス路を導
通させるようにする弁手段を配置したことを特徴とする
ものである。
Further, as described in claim 4, the compressor is operated by the driving device, and the compressor, the condenser, the expansion valve,
In a refrigerant circulation type heat transfer device that circulates refrigerant in the order of an evaporator and a compressor, a drive device is constituted by a water-cooled internal combustion engine, and a low-pressure side refrigerant circuit from an expansion valve to a compressor via an evaporator is cooled by an internal combustion engine. A hot water refrigerant heat exchanger for exchanging heat between the hot water and the refrigerant is arranged in series with the evaporator, and in the high pressure side refrigerant circuit from the compressor to the expansion valve through the condenser, between the compressor and the condenser. And a portion between the downstream side of the hot water refrigerant heat exchanger or the evaporator and the portion between the expansion valve and the expansion valve, and detects the pressure of the high-pressure side refrigerant circuit. A pressure sensor is provided, and valve means for conducting the bypass when the pressure detected by the pressure sensor is high is provided.

【0010】さらに、請求項5に記載したように、駆動
装置により圧縮機を作動させ、暖房時には圧縮機、四方
弁、室内熱交換器、膨張弁、室外熱交換器、四方弁、圧
縮機の順に冷媒を循環させ、冷房時には圧縮機、四方
弁、室外熱交換器、膨張弁、室内熱交換器、四方弁、圧
縮機の順に冷媒を循環させる空調装置からなる冷媒循環
式熱移動装置において、冷媒を循環させる冷媒回路のう
ち、圧縮機から吐出された冷媒が膨張弁に至るまでの間
の高圧側冷媒回路の圧力を検知する圧力センサを配置
し、かつ、暖房運転時用冷媒バイパス手段と冷房運転時
用冷媒バイパス手段とのうちのいずれか一方または両方
を設けたことを特徴とするものである。この構成におい
て、暖房運転時用冷媒バイパス手段は、冷媒回路のうち
圧縮機から四方弁を経て室内熱交換器に至るまでの部分
と膨張弁から室外熱交換器に至るまでの部分とを連結す
るバイパス路と、暖房運転状態において上記圧力センサ
の検知圧力が高い場合に該バイパス路を導通させるよう
にする弁手段とからなる。また、冷房運転時用冷媒バイ
パス手段は、冷媒回路のうち圧縮機から四方弁を経て室
外熱交換器に至るまでの部分と膨張弁から室内熱交換器
に至るまでの部分とを連結するバイパス路と、冷房運転
状態において上記圧力センサの検知圧力が高い場合に該
バイパス路を導通させるようにする弁手段とからなる。
Further, as described in claim 5, the compressor is operated by the driving device, and during heating, the compressor, the four-way valve, the indoor heat exchanger, the expansion valve, the outdoor heat exchanger, the four-way valve, and the compressor are operated. In the refrigerant circulation type heat transfer device consisting of an air conditioner that circulates the refrigerant in the order of the refrigerant, the compressor during cooling, the four-way valve, the outdoor heat exchanger, the expansion valve, the indoor heat exchanger, the four-way valve, and the compressor during cooling, Of the refrigerant circuit that circulates the refrigerant, a pressure sensor that detects the pressure of the high-pressure side refrigerant circuit until the refrigerant discharged from the compressor reaches the expansion valve is arranged, and the refrigerant bypass means for heating operation. One or both of the cooling operation bypass means and the refrigerant bypass means are provided. In this configuration, the refrigerant bypass means for heating operation connects a portion of the refrigerant circuit from the compressor to the indoor heat exchanger via the four-way valve and a portion of the refrigerant circuit from the expansion valve to the outdoor heat exchanger. It comprises a bypass and valve means for conducting the bypass when the pressure detected by the pressure sensor is high in the heating operation state. The refrigerant bypass means for cooling operation is a bypass passage that connects a portion of the refrigerant circuit from the compressor to the outdoor heat exchanger via the four-way valve and a portion of the refrigerant circuit from the expansion valve to the indoor heat exchanger. And valve means for conducting the bypass when the pressure detected by the pressure sensor is high in the cooling operation state.

【0011】さらにまた、上記請求項1乃至5のいずれ
かに記載の冷媒循環式熱移動装置において、請求項6に
記載したように、上記圧縮機または駆動装置の作動回転
数を検知する回転数センサを設け、検知圧力が高い場合
において、検知回転数が所定値以上にときは駆動装置へ
のエネルギー供給量を低下させ、検知回転数が所定値以
下にときは上記バイパス路を導通させるようにしたこと
を特徴とするものである。
Further, in the refrigerant circulation type heat transfer device according to any one of claims 1 to 5, as described in claim 6, a rotation speed for detecting an operation rotation speed of the compressor or the driving device. A sensor is provided so that when the detected pressure is high, the amount of energy supplied to the driving device is reduced when the detected rotational speed is equal to or higher than a predetermined value, and the bypass path is conducted when the detected rotational speed is equal to or lower than the predetermined value. It is characterized by having done.

【0012】[0012]

【作用】上記のような構成の本発明装置によると、バイ
パス路を通過して低圧側冷媒回路に至る高温高圧の冷媒
は、本来は吸熱作用をする蒸発器(もしくは温水冷媒熱
交換器)を通過するとき、放熱して温度が低下し、かつ
圧力低下が起きる。
According to the device of the present invention having the above-described structure, the high-temperature and high-pressure refrigerant that passes through the bypass and reaches the low-pressure side refrigerant circuit passes through the evaporator (or hot-water refrigerant heat exchanger), which essentially absorbs heat. When passing through, heat is dissipated, the temperature drops, and a pressure drop occurs.

【0013】[0013]

【発明の実施の形態】本発明の冷媒循環式熱移動装置の
実施の形態について、図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a refrigerant circulation type heat transfer device of the present invention will be described with reference to the drawings.

【0014】図1は、本発明の冷媒循環式熱移動装置の
一例としての空調装置の概略を示すもので、エンジン1
は、水冷火花点火式のガスエンジンであって、伝動装置
2を介して冷媒の圧縮機8を駆動するものである。この
エンジン1と圧縮機8の間に設けられる伝動装置2は、
エンジン1の出力軸3と圧縮機8の入力軸6のそれぞれ
に固定されたプーリ4,7間にベルト5を掛け渡すこと
によって構成されている。
FIG. 1 schematically shows an air conditioner as an example of a refrigerant circulation type heat transfer device according to the present invention.
Is a water-cooled spark ignition type gas engine that drives the compressor 8 of the refrigerant via the transmission 2. The transmission 2 provided between the engine 1 and the compressor 8 is:
The belt 5 is stretched between pulleys 4 and 7 fixed to the output shaft 3 of the engine 1 and the input shaft 6 of the compressor 8, respectively.

【0015】このエンジン1に対して、圧縮機8により
冷媒を循環させるための冷媒回路10と、エンジン1の
冷却と廃熱の回収を行うための冷却水回路50が設けら
れていて、冷却水回路50には、エンジンの冷却器(冷
却水ジャケット)63と排気管に設けられた排ガス熱交
換器62が、冷却水への廃熱供給部として組み込まれて
いる。
The engine 1 is provided with a refrigerant circuit 10 for circulating refrigerant by a compressor 8 and a cooling water circuit 50 for cooling the engine 1 and recovering waste heat. In the circuit 50, an engine cooler (cooling water jacket) 63 and an exhaust gas heat exchanger 62 provided in an exhaust pipe are incorporated as a waste heat supply unit for cooling water.

【0016】冷媒回路10は、圧縮機8によりフロン等
の冷媒を循環させる回路であって、圧縮機8とオイルセ
パレータ30が管路11により接続され、オイルセパレ
ータ30と四方弁32が管路12により接続され、四方
弁32と二重管熱交換器33が管路13により接続さ
れ、二重管熱交換器33と複数個の室外熱交換器34が
分岐管路14により接続され、室外熱交換器34とディ
ストリビュータ36が複数の管路15により接続され、
ディストリビュータ36と液ガス熱交換器37が管路1
6により接続され、液ガス熱交換器37と複数個の室内
熱交換器40が、分岐部17aにそれぞれ配置された電
子膨張弁38を介して、管路17により接続され、室内
熱交換器40と四方弁32が管路18により集合接続さ
れ、四方弁32と圧縮機8が、液ガス熱交換器37及び
アキュムレータ45を介して、管路19により接続され
ているものである。
The refrigerant circuit 10 is a circuit for circulating refrigerant such as chlorofluorocarbon by the compressor 8, and the compressor 8 and the oil separator 30 are connected by the pipe 11, and the oil separator 30 and the four-way valve 32 are connected by the pipe 12 , The four-way valve 32 and the double-pipe heat exchanger 33 are connected by the pipe 13, the double-pipe heat exchanger 33 and the plurality of outdoor heat exchangers 34 are connected by the branch pipe 14, and the outdoor heat The exchanger 34 and the distributor 36 are connected by a plurality of pipes 15,
Distributor 36 and liquid-gas heat exchanger 37 are connected to line 1
6, the liquid-gas heat exchanger 37 and the plurality of indoor heat exchangers 40 are connected by the pipe line 17 via the electronic expansion valves 38 respectively arranged in the branch portions 17a, and the indoor heat exchanger 40 And the four-way valve 32 are collectively connected by the pipe 18, and the four-way valve 32 and the compressor 8 are connected by the pipe 19 via the liquid-gas heat exchanger 37 and the accumulator 45.

【0017】この冷媒回路10のアキュムレータ45と
圧縮機8の間の管路19には、オイルセパレータ30に
おいて冷媒から分離されたオイルを圧縮機8に戻すため
に、オイルセパレータ3から延びるオイル戻し通路31
が途中の毛細管70を介して接続されている。
An oil return passage extending from the oil separator 3 for returning the oil separated from the refrigerant in the oil separator 30 to the compressor 8 is provided in a pipe 19 between the accumulator 45 of the refrigerant circuit 10 and the compressor 8. 31
Are connected via a capillary tube 70 on the way.

【0018】管路14と管路15の間に配置された室外
熱交換器34には、この室外熱交換器34に対して空気
を吹き付けるためのファン35が設けられており、管路
17と管路18と間に並列に配置された複数個の電子膨
張弁38および室内熱交換器40に対しては、ドライヤ
ー41、ストレーナ42,44がそれぞれ配備されてい
る。
The outdoor heat exchanger 34 disposed between the pipeline 14 and the pipeline 15 is provided with a fan 35 for blowing air to the outdoor heat exchanger 34. A dryer 41 and strainers 42 and 44 are provided for the plurality of electronic expansion valves 38 and the indoor heat exchanger 40 arranged in parallel with the pipe 18.

【0019】管路11の途中には可撓管100が配置さ
れ、また管路11を通過する冷媒温度を検知する高圧側
温度センサ103と、圧縮機8から電子膨張弁38の間
の高圧側冷媒回路の冷媒圧力を検知する高圧側圧力セン
サ101が配置される。高圧側冷媒回路は、冷房時には
管路11、オイルセパレータ30、管路12、四方弁3
2、管路13、二重管熱交換器33、管路14、室外熱
交換器34、管路15、管路16、液ガス熱交換器37
及び管路17で構成され、暖房時には管路11、オイル
セパレータ30、管路12、四方弁32及び管路18で
構成される。そして、圧縮機8には圧縮機温度センサ1
06が、管路19の途中には可撓管100がそれぞれ配
置される。また、電子膨張弁38から圧縮機8までの間
の低圧側冷媒回路の冷媒圧力を検知する低圧側圧力セン
サ102が管路19に配置される。低圧側冷媒回路は、
冷房時には管路18、四方弁32、及び、途中に液ガス
熱交換器37とアキュムレータ45が配置された管路1
9で構成され、暖房時には管路17、液ガス熱交換器3
3、管路16、管路15、室外熱交換器34、管路1
4、二重管熱交換器33、管路13、四方弁32及び管
路19で構成される。
A flexible pipe 100 is disposed in the middle of the pipe 11, and a high-pressure side temperature sensor 103 for detecting the temperature of the refrigerant passing through the pipe 11, and a high-pressure side sensor between the compressor 8 and the electronic expansion valve 38. A high-pressure side pressure sensor 101 for detecting a refrigerant pressure of the refrigerant circuit is provided. At the time of cooling, the high-pressure side refrigerant circuit includes a pipe 11, an oil separator 30, a pipe 12, and a four-way valve 3.
2, pipe 13, double pipe heat exchanger 33, pipe 14, outdoor heat exchanger 34, pipe 15, pipe 16, liquid-gas heat exchanger 37
And a pipe 17, and at the time of heating, the pipe 11, the oil separator 30, the pipe 12, the four-way valve 32, and the pipe 18. The compressor 8 has a compressor temperature sensor 1
06, a flexible tube 100 is arranged in the middle of the pipeline 19, respectively. Further, a low-pressure side pressure sensor 102 for detecting a refrigerant pressure in a low-pressure side refrigerant circuit between the electronic expansion valve 38 and the compressor 8 is disposed in the pipe 19. The low pressure side refrigerant circuit is
At the time of cooling, the pipeline 1, the four-way valve 32, and the pipeline 1 in which the liquid-gas heat exchanger 37 and the accumulator 45 are arranged on the way.
9 during heating, the pipeline 17 and the liquid-gas heat exchanger 3
3, line 16, line 15, outdoor heat exchanger 34, line 1
4. It is composed of a double pipe heat exchanger 33, a pipe 13, a four-way valve 32 and a pipe 19.

【0020】また、上記冷媒回路10には、オイルセパ
レータ30と四方弁32とを接続する管路12の途中
と、四方弁32と圧縮機8を接続する管路19のアキュ
ムレータ45より手前の部分との間に、冷媒バイパス路
20が設けられており、この冷媒バイパス路20の途中
には、迂回する冷媒の流量を調節するための流量制御弁
兼開閉弁となる開閉制御弁21が設置されている。
In the refrigerant circuit 10, a portion of the pipe 12 connecting the oil separator 30 and the four-way valve 32 and a portion of the pipe 19 connecting the four-way valve 32 and the compressor 8 which is located before the accumulator 45. A refrigerant bypass passage 20 is provided between the refrigerant bypass passage 20 and an opening / closing control valve 21 serving as a flow control valve and an opening / closing valve for adjusting the flow rate of the bypassed refrigerant. ing.

【0021】さらに、高圧側冷媒回路のうちの圧縮機、
凝縮器間の部分と低圧側冷媒回路のうちの膨張弁、蒸発
器間の部分とを連結するバイパス路として、上記バイパ
ス路20の途中から分岐した第2のバイパス路105が
設けられ、その下流端が管路16に接続されている。こ
の第2のバイパス路105にも開閉制御弁104が設け
られている。
Further, the compressor in the high pressure side refrigerant circuit,
As a bypass connecting the portion between the condenser and the portion between the expansion valve and the evaporator in the low-pressure side refrigerant circuit, a second bypass 105 branching from the middle of the bypass 20 is provided. The end is connected to the conduit 16. The second bypass passage 105 is also provided with an opening / closing control valve 104.

【0022】一方、冷却水回路50は、水ポンプ61に
排ガス熱交換器62が管路51により接続され、エンジ
ンの排気管に設けられた排ガス熱交換器62と冷却水ジ
ャケット63が管路52により接続され、冷却水ジャケ
ット63と切換弁64が管路53により接続され、切換
弁64と室外ラジエータ65が管路54により接続さ
れ、室外ラジエータ65と水タンク67が管路55によ
り接続され、管路55の途中と水ポンプ61が管路57
により接続され、管路57と切換弁64が、二重管熱交
換器33を介して管路56により接続され、排ガス熱交
換器62と管路54が管路58により接続され、管路5
8と水タンク67が細管路59により接続されているも
のである。
On the other hand, in a cooling water circuit 50, an exhaust gas heat exchanger 62 is connected to a water pump 61 by a pipe 51, and an exhaust gas heat exchanger 62 provided in an exhaust pipe of the engine and a cooling water jacket 63 are connected to a pipe 52. The cooling water jacket 63 and the switching valve 64 are connected by the pipe 53, the switching valve 64 and the outdoor radiator 65 are connected by the pipe 54, and the outdoor radiator 65 and the water tank 67 are connected by the pipe 55, In the middle of the pipe 55 and the water pump 61
The pipe 57 and the switching valve 64 are connected by the pipe 56 via the double pipe heat exchanger 33, the exhaust gas heat exchanger 62 and the pipe 54 are connected by the pipe 58, and the pipe 5
8 and a water tank 67 are connected by a thin tube 59.

【0023】管路58には絞り弁68が設けられてお
り、管路58,59は空気抜き用の通路として使用さ
れ、管路55は、冷却水の補給用の通路として使用され
るとともに、室外ラジエータ65から水ポンプに向けて
冷却水を循環させる通路として使用される。室外ラジエ
ータ65には、このラジエータ65に対して空気を吹き
付けるためのファン66が設けられている。
The conduit 58 is provided with a throttle valve 68, the conduits 58 and 59 are used as passages for venting air, and the conduit 55 is used as a passage for supplying cooling water, It is used as a passage for circulating cooling water from the radiator 65 toward the water pump. The outdoor radiator 65 is provided with a fan 66 for blowing air to the radiator 65.

【0024】なお、上記の冷媒回路10と冷却水回路5
0に渡って設けられている二重管熱交換器33は、両回
路を流れる冷媒と冷却水の間で熱交換を行うためのもの
である。
The above-described refrigerant circuit 10 and cooling water circuit 5
The double-pipe heat exchanger 33 provided for 0 is for exchanging heat between the refrigerant flowing through both circuits and the cooling water.

【0025】また、エンジン1には吸気管117が接続
され、吸気管117の上流部にはエアクリーナ118が
配置され、吸気管117の下流部にはガス燃料を混合す
る混合器119とその下流のスロットル弁120とが配
置されている。スロットル弁120はステップモータか
ら構成されるスロットル弁開度制御アクチュエータ11
1により開閉制御される。混合器119のベンチュリ部
にはガス吐出口が設けられ、この吐出口には、途中に燃
料ガス流量制御弁112、減圧調整弁113、2つの開
閉弁114を有して燃料ガス供給源115と連結された
ガス供給管路116が接続されている。さらに、エンジ
ン1には排気管123が接続され、その途中に設けられ
た排ガス熱交換器62を介して大気に排気ガスを排出可
能としている。エンジン1にはエンジン回転数を検知す
るエンジン回転数センサ110が配置されている。
Further, an intake pipe 117 is connected to the engine 1, an air cleaner 118 is disposed upstream of the intake pipe 117, and a mixer 119 for mixing gas fuel and a downstream of the mixer 119 are provided downstream of the intake pipe 117. A throttle valve 120 is provided. The throttle valve 120 is a throttle valve opening control actuator 11 composed of a step motor.
1 is controlled to open and close. A gas outlet is provided in the venturi portion of the mixer 119, and the outlet has a fuel gas flow control valve 112, a pressure reducing valve 113, and two opening / closing valves 114 in the middle thereof. The connected gas supply line 116 is connected. Further, an exhaust pipe 123 is connected to the engine 1, and exhaust gas can be discharged to the atmosphere via an exhaust gas heat exchanger 62 provided in the middle of the exhaust pipe 123. The engine 1 is provided with an engine speed sensor 110 for detecting the engine speed.

【0026】図2は当実施形態の制御ブロック図であ
り、CPU140にはエンジン回転数センサ110、高
圧側圧力センサ101、高圧側温度センサ103、低圧
側圧力センサ102及び圧縮機に取り付けられた温度セ
ンサ106から、回転数情報、高圧側圧力情報、高圧側
温度情報、低圧側圧力情報及び温度情報が入力される。
CPU140はメモリ141中のプログラム及び記憶デ
ータと、各センサからの情報に基づき、開閉制御弁21
からなるガスバイパス弁を開閉制御するガスバイパス弁
1開閉制御アクチュエータ21a、開閉制御弁104か
らなるガスバイパス弁を開閉制御するガスバイパス弁2
開閉制御アクチュエータ104a、電子膨張弁38を開
閉制御する電子膨張弁開閉制御アクチュエータ38a、
室内熱交換器ファン駆動アクチュエータ40a、室外熱
交換器ファン駆動アクチュエータ35a、切換弁64あ
るいは後述のようなリニア三方弁を駆動するリニア三方
弁駆動アクチュエータ64a、燃料ガス流量制御弁駆動
アクチュエータ112a、スロットル弁開度制御アクチ
ュエータ111a、点火回路113をそれぞれ制御す
る。
FIG. 2 is a control block diagram of this embodiment. The CPU 140 has an engine speed sensor 110, a high pressure side pressure sensor 101, a high pressure side temperature sensor 103, a low pressure side pressure sensor 102, and a temperature attached to the compressor. From the sensor 106, rotation speed information, high pressure side pressure information, high pressure side temperature information, low pressure side pressure information and temperature information are input.
The CPU 140 determines the open / close control valve 21 based on the program and stored data in the memory 141 and information from each sensor.
A gas bypass valve 1 for controlling the opening and closing of a gas bypass valve consisting of: an opening / closing control actuator 21a;
An opening / closing control actuator 104a, an electronic expansion valve opening / closing control actuator 38a for controlling opening / closing of the electronic expansion valve 38,
The indoor heat exchanger fan drive actuator 40a, the outdoor heat exchanger fan drive actuator 35a, the switching valve 64 or a linear three-way valve drive actuator 64a for driving a linear three-way valve as described below, the fuel gas flow control valve drive actuator 112a, the throttle valve The opening control actuator 111a and the ignition circuit 113 are controlled respectively.

【0027】上記のような構造を有する当実施形態の空
調装置の作用について以下に説明する。
The operation of the air conditioner of this embodiment having the above-described structure will be described below.

【0028】まず、冷却水回路50では、水ポンプ61
から吐出される冷却水は、エンジンの排気管に設けられ
た排ガス熱交換器62から排ガスの熱を吸収して加熱さ
れた後、冷却水ジャケット63に供給され、冷却水ジャ
ケット63を通ってさらに加熱された冷却水は、管路5
3を通して切換弁64に案内される。
First, in the cooling water circuit 50, a water pump 61
Is discharged from the exhaust gas heat exchanger 62 provided in the exhaust pipe of the engine, and is heated and then supplied to the cooling water jacket 63. The heated cooling water passes through line 5
It is guided to the switching valve 64 through 3.

【0029】切換弁64は、サーモスタット弁であり、
冷却水の温度が78°C以下の時には、管路54を閉じ
て管路56に向けて冷却水を流し、管路57を介して、
冷却水を再び水ポンプ61に供給するように作動する。
The switching valve 64 is a thermostat valve,
When the temperature of the cooling water is equal to or lower than 78 ° C., the pipe 54 is closed and the cooling water is caused to flow toward the pipe 56.
It operates to supply the cooling water to the water pump 61 again.

【0030】冷却水温度が78°Cを越える時には、切
換弁64を介して管路54に向けて冷却水の一部を流
し、室外ラジエータ65からファン66により吹き付け
られる外気より熱を放出してから、冷却された水を管路
55から管路57を通して水ポンプ61に案内するとと
もに、切換弁64から冷却水の一部を二重管熱交換器3
3に向けて流し、冷媒の加熱も同時に行うこととなる。
When the temperature of the cooling water exceeds 78 ° C., a part of the cooling water flows toward the pipe 54 via the switching valve 64 to release heat from the outside air blown by the fan 66 from the outdoor radiator 65. From the pipe 55 to the water pump 61 through the pipe 57 and a part of the cooling water from the switching valve 64 to the double pipe heat exchanger 3.
3, and the refrigerant is heated at the same time.

【0031】さらに、冷却水の温度が86°Cを越える
と、切換弁64は二重熱交換器33に対する管路56を
閉じて管路54を全開し、高温となった冷却水の全てを
室外ラジエータ65に向けて流し、冷却水の冷却を強力
に行うこととなり、この時には、二重管熱交換器33に
冷却水は送られないので、二重管熱交換器33における
冷却水と冷媒との間での熱交換が停止される。
Further, when the temperature of the cooling water exceeds 86 ° C., the switching valve 64 closes the pipe 56 to the double heat exchanger 33 and fully opens the pipe 54, so that all of the high-temperature cooling water is removed. It flows toward the outdoor radiator 65 and cools the cooling water strongly. At this time, since the cooling water is not sent to the double pipe heat exchanger 33, the cooling water and the refrigerant in the double pipe heat exchanger 33 And the heat exchange between them is stopped.

【0032】このようなものでは、冷房運転時には、圧
縮器8から高温高圧の冷媒が管路13を通って二重管熱
交換器33に流れてくるので、二重管熱交換器33での
冷却水と冷媒との間での熱交換は行われにくいため、冷
却水温度は78°C以上になり易く、冷却水温度が86
°Cを越えると、上記のように切換弁64により冷却水
の全てが管路54からラジエータ65に向けて流れて、
外気に熱を放出してから管路57を介して水ポンプ61
に向けて送られることとなる。
In such a configuration, during the cooling operation, high-temperature and high-pressure refrigerant flows from the compressor 8 to the double-tube heat exchanger 33 through the pipe 13, Since heat exchange between the cooling water and the refrigerant is difficult to be performed, the temperature of the cooling water is likely to be 78 ° C. or more, and the temperature of the cooling water is 86 ° C.
When the temperature exceeds ° C, all of the cooling water flows from the pipe 54 toward the radiator 65 by the switching valve 64 as described above,
After releasing heat to the outside air, the water pump 61
Will be sent to

【0033】なお、切換弁64をリニア三方弁とし、こ
れに冷却水温度センサ、運転状態検知機器、及びリニア
三方弁駆動制御機器を配置して、二重熱管交換器33お
よび室外ラジエータ65に流す冷却水割合を制御するよ
うにしてもよい。
The switching valve 64 is a linear three-way valve, in which a cooling water temperature sensor, an operation state detecting device, and a linear three-way valve drive control device are disposed, and the switching valve 64 is supplied to the double heat tube exchanger 33 and the outdoor radiator 65. The cooling water ratio may be controlled.

【0034】その場合には、例えば、暖房運転時で複数
台設けられている室内熱交換器40の全部が運転されて
いる時には、冷却水の全てを管路56を通して二重管熱
交換器33に流すことにより、膨張弁38で低温低圧化
されて室外熱交換器34で吸熱された冷媒中の未気化の
部分に、冷却水によってエンジン廃熱の全てが伝熱され
ることとなって、暖房効率が高められることとなる。
In this case, for example, when all of the plurality of indoor heat exchangers 40 are operated during the heating operation, all of the cooling water is supplied through the pipe 56 to the double pipe heat exchanger 33. In this case, all of the engine waste heat is transferred by the cooling water to the non-evaporated portion of the refrigerant that has been lowered in temperature and pressure by the expansion valve 38 and absorbed by the outdoor heat exchanger 34 by the expansion valve 38, and Efficiency will be increased.

【0035】但し、冷却水温度が高すぎる時、あるい
は、各室内熱交換器40の放熱量が少なくなる時には、
室外ラジエータ65に冷却水を多く循環させて、エンジ
ンを充分冷却できるよう、冷却水温度を低下させるよう
にする。
However, when the cooling water temperature is too high, or when the amount of heat radiated from each indoor heat exchanger 40 decreases,
A large amount of cooling water is circulated through the outdoor radiator 65 to lower the temperature of the cooling water so that the engine can be sufficiently cooled.

【0036】上記のような冷却水回路50に対して、冷
媒回路10では、冷房運転時には、四方弁32が図に破
線で示すように切り換えられ、管路12と管路13が接
続され、管路18と管路19が接続されて、圧縮機8か
ら排出される高圧の冷媒は、図中に破線矢印で示すよう
に、管路11,12,13から二重管熱交換器33と室
外熱交換器34を通り、管路15,16,17を経て、
膨張弁38から室内熱交換器40に案内され、室内を冷
房してから管路18,19を経て圧縮機8に戻される。
In the refrigerant circuit 10, the four-way valve 32 is switched as shown by a broken line in the cooling operation in the refrigerant circuit 10 as shown in FIG. The high-pressure refrigerant discharged from the compressor 8 after the passage 18 and the conduit 19 are connected to each other is supplied from the conduits 11, 12, and 13 to the double-tube heat exchanger 33 and the outdoor After passing through the heat exchanger 34, via the pipes 15, 16, 17,
The refrigerant is guided from the expansion valve 38 to the indoor heat exchanger 40, cools the room, and is returned to the compressor 8 via the pipes 18 and 19.

【0037】すなわち、冷房運転時には、圧縮機8から
排出される高温、高圧の冷媒は、高温のため二重熱交換
器33で冷却水により加熱されることが少なく、室外熱
交換器34で外気により冷却され、凝縮熱を放出して液
化された後、液ガス熱交換器37で残熱を吸収され、そ
の後に膨張弁38で急激に膨張されてから、室内熱交換
器40で外気から蒸発熱を奪って気化する。
That is, during the cooling operation, the high-temperature and high-pressure refrigerant discharged from the compressor 8 is hardly heated by the cooling water in the double heat exchanger 33 because of the high temperature. And then liquefied by releasing the heat of condensation, after which the residual heat is absorbed by the liquid-gas heat exchanger 37 and then rapidly expanded by the expansion valve 38 before being evaporated from the outside air by the indoor heat exchanger 40 Take away heat and vaporize.

【0038】なお、液ガス熱交換器37については、主
に冷房運転時に、室外熱交換器34で液化した冷媒の残
熱を、室内熱交換器40で気化した冷媒に吸収させるこ
とによって冷房効率を高めるためのものであって、暖房
時には熱交換機能が低いものである。
The liquid-gas heat exchanger 37 mainly absorbs the residual heat of the refrigerant liquefied in the outdoor heat exchanger 34 during the cooling operation to the refrigerant vaporized in the indoor heat exchanger 40 to thereby improve the cooling efficiency. The heat exchange function is low during heating.

【0039】一方、暖房運転時には、四方弁32が図に
実線で示すように切換えられ、管路12と管路18が接
続され、管路13と管路19が接続されて、圧縮機8か
ら排出される高圧の冷媒は、図中に実線矢印で示すよう
に、管路11,12,18を通り、ストレーナ44を通
って室内熱交換器40に案内され、室内熱交換器で凝縮
熱を放出して液化することにより室内を暖房する。
On the other hand, during the heating operation, the four-way valve 32 is switched as shown by the solid line in the figure, the pipes 12 and 18 are connected, and the pipes 13 and 19 are connected. The high-pressure refrigerant discharged is guided to the indoor heat exchanger 40 through the strainers 44 through the pipes 11, 12, and 18, as indicated by solid arrows in the drawing, and the condensed heat is removed by the indoor heat exchanger. The room is heated by discharging and liquefying.

【0040】そして、室内熱交換器40で液化した高圧
の冷媒は、膨張弁38において減圧されてから、管路1
7から液ガス熱交換器37を通り、管路16からディス
トリビュータ36および管路15を通って室外熱交換器
34に案内され、外気から蒸発熱を奪って気化してか
ら、管路14を通って二重管熱交換器33に案内され、
二重管熱交換器33で冷却水によりエンジン廃熱を受け
取ってから、管路13,19を通って圧縮機18に案内
され、圧縮機8で再び圧縮されて管路11に吐出され
る。
After the high-pressure refrigerant liquefied in the indoor heat exchanger 40 is decompressed by the expansion valve 38, the refrigerant
7 through the liquid-gas heat exchanger 37, from the pipe 16 to the outdoor heat exchanger 34 through the distributor 36 and the pipe 15, and take the evaporation heat from the outside air to vaporize and then pass through the pipe 14. And guided to the double tube heat exchanger 33,
After receiving the engine waste heat with the cooling water in the double pipe heat exchanger 33, the waste heat is guided to the compressor 18 through the pipes 13 and 19, compressed again by the compressor 8 and discharged to the pipe 11.

【0041】ところで、上記冷媒回路10において、暖
房運転時に室内熱交換器40の作動台数が少ない場合に
は、作動しない室内機の室内ファンが停止され、電子膨
張弁38の開度が全閉寸前まで絞られているため、電子
膨張弁38を通過できる冷媒重量が減少することとな
る。
When the number of the indoor heat exchangers 40 operating in the refrigerant circuit 10 is small during the heating operation, the indoor fans of the indoor units that do not operate are stopped, and the opening degree of the electronic expansion valve 38 is reduced to just before closing. As a result, the weight of the refrigerant that can pass through the electronic expansion valve 38 is reduced.

【0042】そして、例え作動する室内機の電子膨張弁
38の開度を全開としても、電子膨張弁38の上流側と
なる高圧側冷媒圧力が上昇してしまう。なお、作動する
室内機の電子膨張弁38の開度を全開とすると、室内熱
交換器40を流れる冷媒量が過大となり暖房過多となる
ので、作動する室内機の電子膨張弁の開度は適度に絞る
必要があり、高圧側冷媒圧力が上昇し過ぎることとな
る。
Even if the electronic expansion valve 38 of the operating indoor unit is fully opened, the pressure of the high-pressure side refrigerant upstream of the electronic expansion valve 38 increases. If the opening degree of the electronic expansion valve 38 of the operating indoor unit is fully opened, the amount of refrigerant flowing through the indoor heat exchanger 40 becomes excessive and heating becomes excessive, so that the opening degree of the electronic expansion valve of the operating indoor unit is moderate. And the pressure of the high-pressure side refrigerant is excessively increased.

【0043】高圧側冷媒圧力が上昇し過ぎると、高圧側
冷媒回路の各部に冷媒漏れや高圧力に起因する損傷が発
生し易くなるという問題がある。また、室内機の作動台
数が少ないのに合わせて、室外熱交換器34の吸熱量を
減少させていない場合には、アキュムレータ45を経て
圧縮機8に吸入される冷媒の温度が加熱ぎみとなり、圧
縮機8の温度が上昇し、圧縮機8の潤滑機能が低下して
圧縮機8の耐久性を低下させる問題が発生する。また、
室内熱交換器40の放熱量に比べて室外熱交換器34の
吸熱量が過大になると、例えエンジン回転数を低下させ
ても高圧側冷媒圧力を低くしにくく、作動する室内機の
部屋は暖房過多気味となる問題もある。
If the pressure of the high-pressure side refrigerant is excessively increased, there is a problem in that each part of the high-pressure side refrigerant circuit is liable to be damaged by refrigerant leakage or high pressure. In addition, if the amount of heat absorbed by the outdoor heat exchanger 34 is not reduced in accordance with the small number of operating indoor units, the temperature of the refrigerant sucked into the compressor 8 via the accumulator 45 becomes too hot, The temperature of the compressor 8 rises, and the lubricating function of the compressor 8 deteriorates, causing a problem that the durability of the compressor 8 decreases. Also,
If the amount of heat absorbed by the outdoor heat exchanger 34 is excessive compared to the amount of heat released by the indoor heat exchanger 40, even if the engine speed is reduced, it is difficult to lower the high-pressure side refrigerant pressure, and the room of the operating indoor unit is heated. There are also problems that are overkill.

【0044】なお、上記のように高圧側冷媒圧力の正常
域を越えての上昇は、上記以外に電子膨張弁38の作動
不良、エンジン1の回転数制御不良、二重管熱交換器3
3での吸熱過多、室外熱交換器34のファン35の回転
低下不良等によっても発生する。
In addition, as described above, the rise of the high-pressure side refrigerant pressure beyond the normal range may be caused by a malfunction of the electronic expansion valve 38, a malfunction of the rotation speed of the engine 1, a failure of the double pipe heat exchanger 3, and the like.
3 and excessive rotation of the fan 35 of the outdoor heat exchanger 34.

【0045】このような問題に対処するために、室内熱
交換器40と電子膨張弁38を迂回するバイパス路20
の開閉制御弁21の開度を大きくすることがなされる。
これにより、電子膨張弁38の開度不足が解消されて高
圧側冷媒回路の圧力が低下するとともに、バイパス路2
0に冷媒が流れる分、作動する室内機に見合った量の冷
媒が室内熱交換器40に流入するので、室内機を作動さ
せる部屋が暖房過多になることがない。
In order to cope with such a problem, the bypass passage 20 bypassing the indoor heat exchanger 40 and the electronic expansion valve 38 is used.
The opening degree of the opening / closing control valve 21 is increased.
As a result, the insufficient degree of opening of the electronic expansion valve 38 is eliminated, the pressure of the high-pressure side refrigerant circuit decreases, and the bypass passage 2
Since the amount of the refrigerant flowing to zero flows into the indoor heat exchanger 40 in an amount corresponding to the operating indoor unit, the room in which the indoor unit operates is not overheated.

【0046】しかし、バイパス路20の途中には放熱部
がないので、これだけでは高温のガス冷媒がそのまま圧
縮機8に吸われることになり、圧縮機8の温度が上昇す
る問題は解決できない。また、低圧側冷媒回路に高圧の
ガス冷媒がバイパスされるので、低圧側の圧力が上昇し
てしまう。このため、エンジン1の回転数を低下させな
い限り、圧縮機8により昇圧される結果、高圧側冷媒回
路の圧力が再び上昇することになり、結果としてバイパ
ス路20に冷媒を流しても高圧側冷媒回路の圧力を低下
させることも、圧縮機8の温度を低下させることも効果
的に実施できない。
However, since there is no heat radiating part in the middle of the bypass passage 20, high temperature gas refrigerant is sucked into the compressor 8 as it is, and the problem that the temperature of the compressor 8 rises cannot be solved. In addition, since the high-pressure gas refrigerant is bypassed to the low-pressure refrigerant circuit, the pressure on the low-pressure side increases. As a result, unless the rotational speed of the engine 1 is reduced, the pressure of the high-pressure side refrigerant circuit is increased again as a result of the pressure increase by the compressor 8. Neither the pressure of the circuit nor the temperature of the compressor 8 can be effectively reduced.

【0047】そこで、当実施形態においては、前記のよ
うに第2のバイパス路105が設けられ、高圧側冷媒回
路の圧力が所定値以上の場合、開閉制御弁104を開と
し、高圧側圧力検知値が大きくなるほど開度を大として
いる。このため、暖房時、管路12から管路13にバイ
パスする高圧の冷媒は、暖房時本来は蒸発器として機能
する室外熱交換器34を通過するとき冷却され、圧力及
び温度が低下された後、液ガス熱交換器37でさらに冷
されアキュムレータ45を経て圧縮機8に吸われる。こ
れにより圧縮機8の温度上昇が防止されるとともに、高
圧側冷媒回路の過大圧力も低下される。
Therefore, in the present embodiment, the second bypass passage 105 is provided as described above, and when the pressure of the high-pressure side refrigerant circuit is equal to or higher than a predetermined value, the opening / closing control valve 104 is opened to detect the high-pressure side pressure. The opening increases as the value increases. For this reason, at the time of heating, the high-pressure refrigerant that is bypassed from the pipe 12 to the pipe 13 is cooled when passing through the outdoor heat exchanger 34 that originally functions as an evaporator at the time of heating, and after the pressure and the temperature are reduced. The liquid is further cooled by the liquid-gas heat exchanger 37 and sucked into the compressor 8 via the accumulator 45. This prevents the temperature of the compressor 8 from rising, and also reduces the excessive pressure in the high-pressure side refrigerant circuit.

【0048】なお、電子膨張弁38が室内機側に配置さ
れず、室外機側である管路16の途中のA部に配置され
る場合には、冷房時において高圧側圧力センサの検知値
が所定値以上である場合開閉制御弁104を開とする。
これにより高温高圧の冷媒は第2のバイパス路105を
通過し、管路17から冷房時本来は蒸発器として機能す
る室内熱交換器40を通過するとき放熱し、圧縮機8の
温度上昇や高圧配管の損傷を防止できる。
When the electronic expansion valve 38 is not disposed on the indoor unit side but is disposed on the part A in the middle of the conduit 16 on the outdoor unit side, the detected value of the high pressure side pressure sensor during cooling is not sufficient. If the value is equal to or more than the predetermined value, the open / close control valve 104 is opened.
As a result, the high-temperature and high-pressure refrigerant passes through the second bypass passage 105, radiates heat from the pipe 17 when passing through the indoor heat exchanger 40 which normally functions as an evaporator during cooling, and increases the temperature of the compressor 8 and the high pressure. Piping damage can be prevented.

【0049】図3は当実施形態の装置における制御のフ
ローチャートである。
FIG. 3 is a flowchart of the control in the apparatus of this embodiment.

【0050】当実施形態では暖房運転状態において開閉
制御弁104の開閉制御が実施され、起動後、ステップ
S1において空調装置の停止信号の有無を判断し、停止
信号があれば、燃料ガス流量制御弁112を全閉、ある
いはさらに点火回路113を失火状態にする停止処理を
ステップS2において実施する。一方、停止信号がなけ
れば、ステップS3において吐出圧力すなわち高圧側圧
力センサの検知値が目標圧力の上限値より高いかどうか
を判断する。目標圧力上限値より検知値が高ければ、ス
テップS4に進み、エンジン回転数が目標エンジン回転
域の下限値以下であるかどうかを判断する。ここで、N
Oとなる場合にはステップS5に進み、スロットル弁1
20を絞るかあるいはさらに燃料ガス流量制御弁112
を絞ることにより、エンジン回転数を低下させる。
In this embodiment, the opening / closing control of the opening / closing control valve 104 is performed in the heating operation state. After starting, it is determined in step S1 whether or not a stop signal of the air conditioner is present. A stop process for completely closing 112 or further causing the ignition circuit 113 to misfire is performed in step S2. On the other hand, if there is no stop signal, it is determined in step S3 whether the discharge pressure, that is, the detection value of the high pressure side pressure sensor is higher than the upper limit of the target pressure. If the detected value is higher than the target pressure upper limit, the process proceeds to step S4, and it is determined whether the engine speed is equal to or lower than the lower limit of the target engine speed range. Where N
If it becomes O, the process proceeds to step S5, where the throttle valve 1
20 or further reduce the fuel gas flow control valve 112
By reducing the engine speed.

【0051】すなわち、検知値が目標圧力上限値より高
い状態では圧縮機8の効率が低下したり、凝縮器(暖房
状態では室内熱交換器40)での放熱効率が低下したり
する不具合があるので、この不具合を解消すべく圧力低
下させるため、エンジン回転数を低下させるか、開閉制
御弁21あるいはさらに開閉制御弁104を開とする必
要がある。ステップS5はステップS4でエンジン回転
数を下げ得る余裕があることを検知した後であり、この
ステップでは開閉弁21,104の開作動に先行して、
まずエンジン回転数を低下させる。
That is, when the detected value is higher than the target pressure upper limit, the efficiency of the compressor 8 is reduced, and the heat radiation efficiency in the condenser (in the heating state, the indoor heat exchanger 40) is reduced. Therefore, in order to reduce the pressure in order to solve this problem, it is necessary to lower the engine speed or open the open / close control valve 21 or the open / close control valve 104. Step S5 is after detecting that there is room to reduce the engine speed in step S4. In this step, prior to opening the on-off valves 21 and 104,
First, the engine speed is reduced.

【0052】ステップS4においてエンジン回転数が目
標エンジン回転域の下限値以下である場合は、エンジン
回転数をこれ以上に低下させることができず、開閉弁2
1,104の開動作の準備のためステップS6に進む。
このステップにおいてガスバイパス弁すなわち開閉制御
弁21,104の開閉状態を判断し、閉状態であること
を検知するとステップS7に進み、ガスバイパス弁すな
わち開閉制御弁21,104を開とする。一方、エンジ
ン回転数が目標エンジン回転域の下限値以下であること
がステップS4で既に検知されており、この状態は天候
の急変等の外乱があった場合や運転者が運転条件を急変
させた場合等に対して充分追従させるだけの余裕がない
ので、エンジン回転数を高めておく必要がある。当実施
形態では、本ステップにおいて、室内側への冷媒循環量
が減少しない回転数まで高めるため、スロットル弁12
0をわずかに開けるか、あるいはさらに燃料ガス流量制
御弁112をわずかに開けるようにしている。
If the engine speed is equal to or lower than the lower limit value of the target engine speed range in step S4, the engine speed cannot be reduced further and the on-off valve 2
The process proceeds to step S6 in preparation for the opening operation of steps 1 and 104.
In this step, the open / close state of the gas bypass valves, that is, the open / close control valves 21 and 104, is determined. On the other hand, it is already detected in step S4 that the engine speed is equal to or lower than the lower limit value of the target engine speed range. It is necessary to increase the engine speed because there is no room to sufficiently follow the case. In the present embodiment, in this step, in order to increase the rotation speed at which the refrigerant circulation amount to the indoor side does not decrease, the throttle valve 12
0 is slightly opened, or the fuel gas flow control valve 112 is slightly opened.

【0053】上記ステップS6でガスバイパス弁すなわ
ち開閉制御弁21,104の開状態を検知すれば、ステ
ップS8に進み、高圧側圧力センサの検知値が異常判定
値(高圧側冷媒回路の漏れその他の損傷の発生を防止す
るために直ちに圧力低下が必要と判断させる値)以上か
どうかが判断され、異常判定値以上の場合はステップS
9に進み、エンジン1を停止させる。このとき、燃料ガ
ス流量制御弁112及び両開閉弁114を全閉とする。
ステップS8において高圧側圧力センサの検知値が異常
判定値より小さい場合はステップS10に進み、開閉制
御弁21,104が開状態に保持されるとともに、エン
ジン回転数が目標エンジン回転域の下限値以下であるこ
とが既にステップS4で検知されており、この状態に保
持する。
If the open state of the gas bypass valves, that is, the open / close control valves 21 and 104 is detected in step S6, the process proceeds to step S8, where the detection value of the high pressure side pressure sensor is determined to be an abnormality determination value (for example, leakage of the high pressure side refrigerant circuit or other leakage). It is determined whether or not the pressure drop is immediately determined to be necessary in order to prevent the occurrence of damage.
Proceed to 9 to stop the engine 1. At this time, the fuel gas flow control valve 112 and both on-off valves 114 are fully closed.
If the detected value of the high-pressure side pressure sensor is smaller than the abnormality determination value in step S8, the process proceeds to step S10, in which the open / close control valves 21 and 104 are kept open, and the engine speed is equal to or less than the lower limit value of the target engine speed range. Has already been detected in step S4, and this state is maintained.

【0054】ステップS3において、目標圧力上限値よ
り検知値が小さければ、ステップS11に進み、検知値
が目標圧力下限値より低いかどうかを判断する。検知値
が目標圧力下限値より低い場合は、膨張弁による差圧が
小さくなり冷媒循環量が大きくとれず、能力が低下する
等の問題が発生するので、検知値を目標圧力の下限値よ
り高めるためエンジン回転数を増加させる制御を実施す
る。そのため、ステップS12においてエンジン回転数
が目標エンジン回転域の上限値以上かどうかを判断す
る。この判断の結果がNOの場合は、エンジン回転数を
増加させ得るので、ステップS13にてエンジン回転数
を上げるべくスロットル弁の開度を増加させるか、ある
いはさらに燃料ガス流量制御弁112の開度を増加させ
る。このとき、ガスバイパス弁すなわち開閉制御弁2
1,104の開閉状態は変化させない。
In step S3, if the detected value is smaller than the target pressure upper limit, the process proceeds to step S11, and it is determined whether the detected value is lower than the target pressure lower limit. If the detected value is lower than the lower limit of the target pressure, the pressure difference due to the expansion valve becomes smaller, the amount of refrigerant circulated cannot be increased, and a problem such as a decrease in capacity occurs. Therefore, control to increase the engine speed is performed. Therefore, it is determined in step S12 whether the engine speed is equal to or higher than the upper limit value of the target engine speed range. If the result of this determination is NO, the engine speed can be increased. Therefore, in step S13, the opening of the throttle valve is increased to increase the engine speed, or the opening of the fuel gas flow control valve 112 is further increased. Increase. At this time, the gas bypass valve, that is, the on-off control valve 2
The open / close state of 1,104 is not changed.

【0055】ステップS12における判断の結果がYE
Sの場合は、エンジン回転数を増加させることができ
ず、ステップS14にてガスバイパス弁すなわち開閉制
御弁21,104の開閉状態を判断する。この判断にお
いてガスバイパス弁が開である場合には、ステップS1
5に進み、両開閉制御弁21,104を閉とする。両開
閉制御弁21,104を閉とすると高圧側冷媒回路の圧
力は上昇し、室内機への冷媒循環量が増加する。これに
よりエンジン回転数を減少させることが可能となる。こ
のため当実施形態ではステップS15において、室内機
への冷媒循環量が両開閉制御弁21,104を閉とする
前の量と同程度となるまで、エンジン回転数を減少させ
る。
If the result of the determination in step S12 is YE
In the case of S, the engine speed cannot be increased, and the open / closed state of the gas bypass valves, that is, the open / close control valves 21 and 104, is determined in step S14. If the gas bypass valve is open in this determination, step S1
Proceeding to 5, the both open / close control valves 21 and 104 are closed. When both open / close control valves 21 and 104 are closed, the pressure of the high-pressure side refrigerant circuit increases, and the amount of refrigerant circulating to the indoor unit increases. This makes it possible to reduce the engine speed. For this reason, in this embodiment, in step S15, the engine speed is reduced until the amount of refrigerant circulated to the indoor unit becomes substantially equal to the amount before the two on-off control valves 21 and 104 are closed.

【0056】ステップS14での判断において両開閉制
御弁21,104が閉である場合には、開閉制御弁2
1,104の制御によって高圧側冷媒圧力を上昇させる
ことも、エンジン回転数を上限値より下げることも不可
能となるので、スロットル弁120の開度、燃料ガス流
量制御弁112の開度及びガスバイパス弁すなわち開閉
制御弁21,104の開度を不変とする(ステップS1
6)。なお、高圧側冷媒回路の圧力を増加させるには、
電子膨張弁38を絞ることや、暖房時において二重管熱
交換器33へのエンジン温水の循環量を増加させること
等によって可能ではある。
If it is determined in step S14 that both the open / close control valves 21 and 104 are closed, the open / close control valve 2
Since it is impossible to increase the high-pressure side refrigerant pressure or to lower the engine speed below the upper limit value by the control of 1, 104, the opening degree of the throttle valve 120, the opening degree of the fuel gas flow control valve 112, The opening degree of the bypass valves, that is, the opening / closing control valves 21 and 104, is not changed (step S1).
6). In order to increase the pressure of the high pressure side refrigerant circuit,
This is possible by restricting the electronic expansion valve 38, increasing the amount of circulating engine hot water to the double pipe heat exchanger 33 during heating, and the like.

【0057】ステップS11での判断において目標圧力
下限値より検知値の方が大きければ、高圧側冷媒圧力が
適正状態にあることになるので、スロットル弁120の
開度、燃料ガス流量制御弁112の開度及びガスバイパ
ス弁すなわち開閉制御弁21,104の開度を不変とす
る(ステップS17)。
If it is determined in step S11 that the detected value is larger than the target pressure lower limit value, the high-pressure refrigerant pressure is in an appropriate state, so that the opening degree of the throttle valve 120 and the fuel gas flow control valve 112 The opening degree and the opening degree of the gas bypass valves, that is, the opening / closing control valves 21 and 104, are not changed (step S17).

【0058】図4は、本発明が適用されるエンジン駆動
式冷凍機の一実施形態を示すシステムズである。本図に
おいてエンジン1の吸気系、排気系の構成は図1の空調
装置のものと同じである。エンジン1で冷却系は管路5
1,52,53等からなる冷却水回路50と、冷却水回
路50の途中に配置される水ポンプ61、排ガス熱交換
器62、冷却水ジャケット63、サーモスタット71、
リニア三方弁72、アキュムレータ45内の温水冷媒熱
交換器73と、サーモスタット71から分岐する分岐水
路74と、リニア三方弁72から分岐する分岐水路75
と、分岐水路75の途中に配置されるラジエータ65に
より構成される。暖機時にはサーモスタット71から分
岐水路74に冷却水を循環させる。また、リニア三方弁
72は、蒸発器として機能するアキュムレータ45の必
要吸熱量に応じた温水流量I1を流す一方、水ポンプ6
1の吐出量Iから上記温水流量I1を差し引いた量に相
当する温水流量I2をラジエータ65に流す。
FIG. 4 shows systems showing an embodiment of an engine-driven refrigerator to which the present invention is applied. In this figure, the configuration of the intake system and exhaust system of the engine 1 is the same as that of the air conditioner of FIG. Cooling system is line 5 in engine 1
A cooling water circuit 50 composed of 1, 52, 53, etc., a water pump 61, an exhaust gas heat exchanger 62, a cooling water jacket 63, a thermostat 71 disposed in the middle of the cooling water circuit 50;
A linear three-way valve 72, a hot water refrigerant heat exchanger 73 in the accumulator 45, a branch water passage 74 branched from the thermostat 71, and a branch water passage 75 branched from the linear three-way valve 72.
And a radiator 65 arranged in the middle of the branch water channel 75. During warm-up, cooling water is circulated from the thermostat 71 to the branch water passage 74. Further, the linear three-way valve 72 allows the hot water flow I1 according to the required heat absorption of the accumulator 45 functioning as an evaporator to flow, while the water pump 6
The hot water flow rate I2 corresponding to an amount obtained by subtracting the hot water flow rate I1 from the discharge amount I of 1 is supplied to the radiator 65.

【0059】冷媒回路は圧縮機8から電子膨張弁38ま
での高圧側冷媒回路125と、電子膨張弁38から圧縮
機8に至る低圧側冷媒回路126とからなる。上記高圧
側冷媒回路125は、圧縮機8から凝縮器130までの
高圧側上流部125aと、凝縮器130から電子膨張弁
38までの高圧側下流部125bとからなる。一方、上
記低圧側冷媒回路126は、電子膨張弁38から蒸発器
131までの低圧側上流部126aと、蒸発器131か
ら圧縮機8までの低圧側下流部126bとからなる。低
圧側下流部126bには第2の蒸発器として機能する温
水冷媒熱交換器73を備えたアキュムレータ45が配置
されている。高圧側上流部125aと低圧側上流部12
6aとの間には開閉制御弁104が配置されたバイパス
路105が配置されている。当実施形態においても、高
圧側冷媒圧力センサの検知圧力が所定値以上となる場合
に開閉制御弁104が開とされ、バイパス路を105を
通過する高温高圧の冷媒は本来は吸熱作用をする蒸発器
131で放熱される。
The refrigerant circuit includes a high-pressure side refrigerant circuit 125 from the compressor 8 to the electronic expansion valve 38 and a low-pressure side refrigerant circuit 126 from the electronic expansion valve 38 to the compressor 8. The high-pressure side refrigerant circuit 125 includes a high-pressure side upstream portion 125a from the compressor 8 to the condenser 130, and a high-pressure side downstream portion 125b from the condenser 130 to the electronic expansion valve 38. On the other hand, the low pressure side refrigerant circuit 126 includes a low pressure side upstream portion 126a from the electronic expansion valve 38 to the evaporator 131 and a low pressure side downstream portion 126b from the evaporator 131 to the compressor 8. An accumulator 45 provided with a hot water refrigerant heat exchanger 73 functioning as a second evaporator is disposed in the low pressure side downstream portion 126b. High pressure side upstream section 125a and low pressure side upstream section 12
A bypass passage 105 in which the open / close control valve 104 is disposed is disposed between the bypass passage 105 and the bypass passage 6a. Also in the present embodiment, when the detection pressure of the high-pressure side refrigerant pressure sensor becomes equal to or higher than a predetermined value, the opening / closing control valve 104 is opened, and the high-temperature and high-pressure refrigerant passing through the bypass 105 is originally an evaporating agent having an endothermic effect. The heat is radiated by the vessel 131.

【0060】図中、130aは凝縮器130に対して設
けられたファン、131aは蒸発器131に対して設け
られたファン、121は電磁クラッチである。なお、当
実施形態におけるバイパス路105の代りに、途中に開
閉制御弁104´及び放熱器132を設けたバイパス路
105´を配置し、開閉制御弁104´を高圧側冷媒圧
力センサ101の検知圧力が所定値以上となる場合、あ
るいは圧縮機8の温度センサ106による検知温度所定
以上となる場合に開としてもよい。
In the figure, 130a is a fan provided for the condenser 130, 131a is a fan provided for the evaporator 131, and 121 is an electromagnetic clutch. Note that, instead of the bypass passage 105 in this embodiment, a bypass passage 105 ′ provided with an on-off control valve 104 ′ and a radiator 132 is provided in the middle, and the on-off control valve 104 ′ is detected by the detection pressure of the high-pressure side refrigerant pressure sensor 101. May be opened when the temperature exceeds a predetermined value or when the temperature detected by the temperature sensor 106 of the compressor 8 becomes higher than a predetermined value.

【0061】また、当実施形態において、エンジン1の
代りに電動モータで圧縮機8を駆動するようにしてもよ
い。この場合には、アキュムレータ45は単に液冷媒が
圧縮機に流出するのを防止するためのものとし、アキュ
ムレータ45内の熱交換器73は廃止される。
In this embodiment, the compressor 8 may be driven by an electric motor instead of the engine 1. In this case, the accumulator 45 is merely for preventing the liquid refrigerant from flowing out to the compressor, and the heat exchanger 73 in the accumulator 45 is eliminated.

【0062】また、図5に示す別の実施形態のように、
図4に示す実施形態に対して、アキュムレータ(図示省
略)は熱交換器を廃止したものとする一方、蒸発器13
1と並列に冷媒回路126cを設け、この冷媒回路12
6cに二重管熱交換器133を配置し、エンジンの温水
を循環するようにしてもよい。
Also, as in another embodiment shown in FIG.
The accumulator (not shown) is different from the embodiment shown in FIG.
1 is provided in parallel with the refrigerant circuit 126c.
A double-tube heat exchanger 133 may be arranged at 6c to circulate hot water of the engine.

【0063】また、図6に示すさらに別の実施形態のよ
うに、図5に示す実施形態に対して、冷媒回路126c
を廃止する一方、蒸発器131とアキュムレータ45と
の間に二重管熱交換器134を配置し、エンジン1の温
水を循環するようにしてもよい。また、バイパス路10
5´は低圧側下流部126bにおける蒸発器131と二
重管熱交換器134の中間部に接続するようにしてもよ
い。高温高圧のガス冷媒温度が温水の温度より高い場合
に、冷媒の温度を低下させることができる。
Further, as in still another embodiment shown in FIG. 6, the refrigerant circuit 126c differs from the embodiment shown in FIG.
, The double-pipe heat exchanger 134 may be arranged between the evaporator 131 and the accumulator 45 to circulate the hot water of the engine 1. The bypass 10
5 'may be connected to an intermediate portion between the evaporator 131 and the double tube heat exchanger 134 in the low pressure side downstream portion 126b. When the temperature of the high-temperature and high-pressure gas refrigerant is higher than the temperature of the hot water, the temperature of the refrigerant can be reduced.

【0064】なお、図6に示す実施形態において、蒸発
器131を廃止するようにしてもよい。
In the embodiment shown in FIG. 6, the evaporator 131 may be omitted.

【0065】図7は、本発明が適用されるエンジン駆動
式空調装置の別の実施形態を示すシステム図である。本
図において、圧縮機8から吐出された冷媒は管路11に
よりオイルセパレータ30に送られ、オイルセパレータ
30から管路12によりさらに四方弁32に送られる。
暖房運転時には、実線矢印方向に冷媒が流れ、四方弁3
2から管路18を通って室内熱交換器40に冷媒が供給
され、室内熱交換器40からの冷媒は管路17aから膨
張弁38及び管路17を通って室外熱交換器34に送ら
れ、さらに管路13、四方弁32、管路19を経て圧縮
機8に吸込まれる。また、冷媒供給回路には暖房運転時
用冷媒バイパス手段として、管路12と管路17を結ぶ
管路200,201及び開閉制御弁203か、あるいは
管路18と管路17を結ぶ管路204及び開閉制御弁2
05かのいずれか一方が配置され、高圧側圧力センサ1
01の検知値が所定値以上の場合に、開閉制御弁203
または開閉制御弁205が開とされる。なお、管路19
にエンジンの冷却水を循環する二重管熱交換器210を
配置している。
FIG. 7 is a system diagram showing another embodiment of the engine driven air conditioner to which the present invention is applied. In this figure, the refrigerant discharged from the compressor 8 is sent to an oil separator 30 via a pipe 11, and further sent from the oil separator 30 to a four-way valve 32 via a pipe 12.
During the heating operation, the refrigerant flows in the direction of the solid arrow, and the four-way valve 3
The refrigerant is supplied to the indoor heat exchanger 40 from the pipe 2 through the pipe 18, and the refrigerant from the indoor heat exchanger 40 is sent from the pipe 17 a to the outdoor heat exchanger 34 through the expansion valve 38 and the pipe 17. Then, the air is sucked into the compressor 8 through the pipe 13, the four-way valve 32, and the pipe 19. In the refrigerant supply circuit, as the refrigerant bypass means for the heating operation, the pipes 200 and 201 connecting the pipes 12 and 17 and the open / close control valve 203 or the pipe 204 connecting the pipes 18 and 17 are provided. And open / close control valve 2
05 and the high-pressure side pressure sensor 1
01 is greater than or equal to a predetermined value, the opening / closing control valve 203
Alternatively, the opening / closing control valve 205 is opened. The pipe 19
A double-pipe heat exchanger 210 for circulating cooling water for the engine is disposed at the bottom.

【0066】冷房運転時、破線矢印方向に冷媒が流れ、
四方弁32から管路13を通って室外熱交換器34に冷
媒が供給され、室外熱交換器34からの冷媒は管路17
から膨張弁及び管路17aを通って室内熱交換器40へ
送られ、さらに管路18、四方弁32、管路19を経て
圧縮機18に吸込まれる。また、冷媒供給回路には冷房
運転時用冷媒バイパス手段として、管路12と管路17
aを結ぶ管路200,206及び開閉制御弁207か、
あるいは管路13と管路17aを結ぶ管路208及び開
閉制御弁209かのいずれか一方が配置され、高圧側圧
力センサ101の検知値が所定値以上の場合に、開閉制
御弁207または開閉制御弁209が開とされる。
During the cooling operation, the refrigerant flows in the direction of the dashed arrow,
The refrigerant is supplied from the four-way valve 32 to the outdoor heat exchanger 34 through the pipe 13, and the refrigerant from the outdoor heat exchanger 34 is supplied to the pipe 17.
Is sent to the indoor heat exchanger 40 through the expansion valve and the pipe 17a, and is further sucked into the compressor 18 through the pipe 18, the four-way valve 32, and the pipe 19. In the refrigerant supply circuit, pipes 12 and 17 are provided as refrigerant bypass means for cooling operation.
a, the pipelines 200, 206 and the open / close control valve 207 connecting
Alternatively, one of the pipe 208 connecting the pipe 13 and the pipe 17a and the opening / closing control valve 209 is provided, and when the detection value of the high pressure side pressure sensor 101 is equal to or more than a predetermined value, the opening / closing control valve 207 or the opening / closing control valve 207 is provided. Valve 209 is opened.

【0067】当実施形態によると、冷暖房の両運転状態
において高圧側冷媒回路が所定値以上となることがない
ようにすることができる。
According to the present embodiment, it is possible to prevent the high-pressure side refrigerant circuit from exceeding a predetermined value in both the cooling and heating operation states.

【0068】なお、上記暖房運転時用冷媒バイパス手段
または冷房運転時用冷媒バイパス手段のいずれか一方を
設けておいてもよい。
It is to be noted that either one of the refrigerant bypass means for the heating operation and the refrigerant bypass means for the cooling operation may be provided.

【0069】[0069]

【発明の効果】本発明の構成により、バイパス路を通過
して低圧側冷媒回路に至る高温高圧の冷媒は、本来は吸
熱作用をする蒸発器を通過する時、放熱して温度が低下
し、かつ、圧力低下が起きる。これにより、圧縮機が可
動に昇温することがなくなるとともに、高圧側冷媒回路
の圧力を低下させることができる。
According to the structure of the present invention, the high-temperature and high-pressure refrigerant that passes through the bypass and reaches the low-pressure side refrigerant circuit radiates heat when it passes through the evaporator that normally absorbs heat, and the temperature decreases. In addition, a pressure drop occurs. This prevents the compressor from movably raising the temperature and reduces the pressure of the high-pressure side refrigerant circuit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される空調装置の一実施形態を示
すシステム図である。
FIG. 1 is a system diagram showing an embodiment of an air conditioner to which the present invention is applied.

【図2】空調装置の制御系統を示すブロック図である。FIG. 2 is a block diagram illustrating a control system of the air conditioner.

【図3】制御の一例を示すフローチャートである。FIG. 3 is a flowchart illustrating an example of control.

【図4】本発明が適用されるエンジン駆動式冷凍機の一
実施形態を示すシステム図である。
FIG. 4 is a system diagram showing an embodiment of an engine-driven refrigerator to which the present invention is applied.

【図5】本発明が適用されるエンジン駆動式冷凍機の別
の実施形態を示すシステム図である。
FIG. 5 is a system diagram showing another embodiment of the engine-driven refrigerator to which the present invention is applied.

【図6】本発明が適用されるエンジン駆動式冷凍機のさ
らに別の実施形態を示すシステム図である。
FIG. 6 is a system diagram showing still another embodiment of the engine-driven refrigerator to which the present invention is applied.

【図7】本発明が適用される空調装置の別の実施形態を
示すシステム図である。
FIG. 7 is a system diagram showing another embodiment of an air conditioner to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 エンジン 8 圧縮機 10 冷媒回路 32 四方弁 34 室外熱交換器 38 膨張弁 40 室内熱交換器 45 アキュムレータ 20,105 バイパス路 21,104 開閉制御弁 DESCRIPTION OF SYMBOLS 1 Engine 8 Compressor 10 Refrigerant circuit 32 Four-way valve 34 Outdoor heat exchanger 38 Expansion valve 40 Indoor heat exchanger 45 Accumulator 20, 105 Bypass path 21, 104 Open / close control valve

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 駆動装置により圧縮機を作動させ、圧縮
機、凝縮器、膨張弁、蒸発器、圧縮機の順に冷媒を循環
させる冷媒循環式熱移動装置において、圧縮機から凝縮
器を経て膨張弁に至る高圧側冷媒回路のうちで圧縮機と
凝縮器の間の部分と、膨張弁から蒸発器を経て圧縮機に
至る低圧側冷媒回路のうちで膨張弁と蒸発器の間の部分
とをバイパス路で連結し、かつ、高圧側冷媒回路の圧力
を検知する圧力センサを配置し、この圧力センサによる
検知圧力が高い場合に上記バイパス路を導通させるよう
にする弁手段を配置したことを特徴とする冷媒循環式熱
移動装置。
1. A refrigerant circulation type heat transfer device in which a compressor is operated by a driving device and a refrigerant is circulated in the order of a compressor, a condenser, an expansion valve, an evaporator, and a compressor. The part between the compressor and the condenser in the high pressure side refrigerant circuit leading to the valve, and the part between the expansion valve and the evaporator in the low pressure side refrigerant circuit from the expansion valve through the evaporator to the compressor. A pressure sensor for detecting the pressure of the high-pressure side refrigerant circuit connected by a bypass passage is disposed, and valve means for conducting the bypass passage when a pressure detected by the pressure sensor is high is disposed. Refrigerant heat transfer device.
【請求項2】 駆動装置を水冷式内燃機関により構成
し、水冷式内燃機関冷却後の温水と冷媒とを熱交換させ
る温水冷媒熱交換器で上記蒸発器を構成したことを特徴
とする請求項1記載の冷媒循環式熱移動装置。
2. The evaporator according to claim 1, wherein the drive unit comprises a water-cooled internal combustion engine, and the evaporator comprises a hot water refrigerant heat exchanger for exchanging heat between the hot water and the refrigerant after cooling the water-cooled internal combustion engine. 2. The refrigerant circulation type heat transfer device according to 1.
【請求項3】 駆動装置により圧縮機を作動させ、圧縮
機、凝縮器、膨張弁、蒸発器、圧縮機の順に冷媒を循環
させる冷媒循環式熱移動装置において、駆動装置を水冷
式内燃機関により構成し、膨張弁から蒸発器を経て圧縮
機に至る低圧側冷媒回路に、内燃機関冷却後の温水と冷
媒とを熱交換させる温水冷媒熱交換器を上記蒸発器と並
列に配置し、圧縮機から凝縮器を経て膨張弁に至る高圧
側冷媒回路のうちで圧縮機と凝縮器の間の部分と、上記
低圧側冷媒回路のうちで膨張弁と上記蒸発器または上記
温水冷媒熱交換器との間の部分とをバイパス路で連結
し、かつ、高圧側冷媒回路の圧力を検知する圧力センサ
を配置し、この圧力センサによる検知圧力が高い場合に
上記バイパス路を導通させるようにする弁手段を配置し
たことを特徴とする冷媒循環式熱移動装置。
3. A refrigerant circulation type heat transfer device in which a compressor is operated by a driving device and a refrigerant is circulated in the order of a compressor, a condenser, an expansion valve, an evaporator, and a compressor, wherein the driving device is driven by a water-cooled internal combustion engine. In the low pressure side refrigerant circuit from the expansion valve through the evaporator to the compressor, a hot water refrigerant heat exchanger for exchanging heat between the hot water and the refrigerant after cooling the internal combustion engine is arranged in parallel with the evaporator, A portion between the compressor and the condenser in the high-pressure side refrigerant circuit reaching the expansion valve through the condenser, and an expansion valve and the evaporator or the hot water refrigerant heat exchanger in the low-pressure side refrigerant circuit. And a pressure sensor for detecting the pressure of the high-pressure side refrigerant circuit, and a valve means for conducting the bypass when the pressure detected by the pressure sensor is high. Characterized by being arranged Medium circulation type heat transfer device.
【請求項4】 駆動装置により圧縮機を作動させ、圧縮
機、凝縮器、膨張弁、蒸発器、圧縮機の順に冷媒を循環
させる冷媒循環式熱移動装置において、駆動装置を水冷
式内燃機関により構成し、膨張弁から蒸発器を経て圧縮
機に至る低圧側冷媒回路に、内燃機関冷却後の温水と冷
媒とを熱交換させる温水冷媒熱交換器を上記蒸発器と直
列に配置し、圧縮機から凝縮器を経て膨張弁に至る高圧
側冷媒回路のうちで圧縮機と凝縮器の間の部分と、上記
温水冷媒熱交換器あるいは上記蒸発器のうちで下流側と
なるものと上記膨張弁との間の部分とをバイパス路で連
結し、かつ、高圧側冷媒回路の圧力を検知する圧力セン
サを配置し、この圧力センサによる検知圧力が高い場合
に上記バイパス路を導通させるようにする弁手段を配置
したことを特徴とする冷媒循環式熱移動装置。
4. A refrigerant circulation type heat transfer device in which a compressor is operated by a driving device and a refrigerant is circulated in the order of a compressor, a condenser, an expansion valve, an evaporator, and a compressor, wherein the driving device is driven by a water-cooled internal combustion engine. In the low pressure side refrigerant circuit from the expansion valve to the compressor via the evaporator, a hot water refrigerant heat exchanger for exchanging heat between the hot water and the refrigerant after cooling the internal combustion engine is arranged in series with the evaporator, The part between the compressor and the condenser in the high-pressure side refrigerant circuit from the condenser to the expansion valve through the condenser, and the expansion valve and the downstream one of the hot water refrigerant heat exchanger or the evaporator A pressure sensor for detecting the pressure of the high-pressure side refrigerant circuit, and a valve means for conducting the bypass when the pressure detected by the pressure sensor is high. Characterized by the arrangement of Refrigerant circulation type heat transfer device.
【請求項5】 駆動装置により圧縮機を作動させ、暖房
時には圧縮機、四方弁、室内熱交換器、膨張弁、室外熱
交換器、四方弁、圧縮機の順に冷媒を循環させ、冷房時
には圧縮機、四方弁、室外熱交換器、膨張弁、室内熱交
換器、四方弁、圧縮機の順に冷媒を循環させる空調装置
からなる冷媒循環式熱移動装置において、冷媒を循環さ
せる冷媒回路のうち、圧縮機から吐出された冷媒が膨張
弁に至るまでの間の高圧側冷媒回路の圧力を検知する圧
力センサを配置し、かつ、次の暖房運転時用冷媒バイパ
ス手段と冷房運転時用冷媒バイパス手段とのうちのいず
れか一方または両方を設けたことを特徴とする冷媒循環
式熱移動装置。暖房運転時用冷媒バイパス手段:冷媒回
路のうち圧縮機から四方弁を経て室内熱交換器に至るま
での部分と膨張弁から室外熱交換器に至るまでの部分と
を連結するバイパス路と、暖房運転状態において上記圧
力センサの検知圧力が高い場合に該バイパス路を導通さ
せるようにする弁手段とからなる。冷房運転時用冷媒バ
イパス手段:冷媒回路のうち圧縮機から四方弁を経て室
外熱交換器に至るまでの部分と膨張弁から室内熱交換器
に至るまでの部分とを連結するバイパス路と、冷房運転
状態において上記圧力センサの検知圧力が高い場合に該
バイパス路を導通させるようにする弁手段とからなる。
5. A compressor is actuated by a driving device, and refrigerant is circulated in the order of a compressor, a four-way valve, an indoor heat exchanger, an expansion valve, an outdoor heat exchanger, a four-way valve, and a compressor during heating, and compressed during cooling. Machine, a four-way valve, an outdoor heat exchanger, an expansion valve, an indoor heat exchanger, a four-way valve, and a refrigerant circulation type heat transfer device including an air conditioner that circulates refrigerant in the order of a compressor. A pressure sensor for detecting the pressure of the high-pressure side refrigerant circuit until the refrigerant discharged from the compressor reaches the expansion valve is arranged, and the following refrigerant bypass means for heating operation and refrigerant bypass means for cooling operation And / or both are provided. Refrigerant bypass means for heating operation: a bypass path connecting a part of the refrigerant circuit from the compressor to the indoor heat exchanger via the four-way valve and a part of the refrigerant circuit from the expansion valve to the outdoor heat exchanger; Valve means for conducting the bypass when the pressure detected by the pressure sensor is high in the operating state. Cooling operation bypass means: a bypass path connecting a portion of the refrigerant circuit from the compressor to the outdoor heat exchanger via the four-way valve and a portion of the refrigerant circuit from the expansion valve to the indoor heat exchanger; Valve means for conducting the bypass when the pressure detected by the pressure sensor is high in the operating state.
【請求項6】 上記圧縮機または駆動装置の作動回転数
を検知する回転数センサを設け、検知圧力が高い場合に
おいて、検知回転数が所定値以上にときは駆動装置への
エネルギー供給量を低下させ、検知回転数が所定値以下
にときは上記バイパス路を導通させるようにしたことを
特徴とする請求項1乃至5のいずれかに記載の冷媒循環
式熱移動装置。
6. A rotational speed sensor for detecting an operating rotational speed of the compressor or the driving device is provided, and when a detected pressure is high, an energy supply amount to the driving device is reduced when the detected rotational speed is a predetermined value or more. The refrigerant circulation type heat transfer device according to any one of claims 1 to 5, wherein when the detected rotation speed is equal to or less than a predetermined value, the bypass path is made conductive.
JP19494296A 1996-07-24 1996-07-24 Refrigerant circulation type heat transfer device Expired - Lifetime JP3828957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19494296A JP3828957B2 (en) 1996-07-24 1996-07-24 Refrigerant circulation type heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19494296A JP3828957B2 (en) 1996-07-24 1996-07-24 Refrigerant circulation type heat transfer device

Publications (2)

Publication Number Publication Date
JPH1038410A true JPH1038410A (en) 1998-02-13
JP3828957B2 JP3828957B2 (en) 2006-10-04

Family

ID=16332902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19494296A Expired - Lifetime JP3828957B2 (en) 1996-07-24 1996-07-24 Refrigerant circulation type heat transfer device

Country Status (1)

Country Link
JP (1) JP3828957B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243285A (en) * 2001-02-14 2002-08-28 Daikin Ind Ltd Refrigeration unit
JP2002318025A (en) * 2001-04-19 2002-10-31 Yanmar Diesel Engine Co Ltd Control device and control method for engine heat pump
CN1332165C (en) * 1998-09-08 2007-08-15 东芝株式会社 Refrigerator
JP2016510392A (en) * 2013-03-14 2016-04-07 三菱電機株式会社 Air conditioning system and controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332165C (en) * 1998-09-08 2007-08-15 东芝株式会社 Refrigerator
JP2002243285A (en) * 2001-02-14 2002-08-28 Daikin Ind Ltd Refrigeration unit
JP2002318025A (en) * 2001-04-19 2002-10-31 Yanmar Diesel Engine Co Ltd Control device and control method for engine heat pump
JP2016510392A (en) * 2013-03-14 2016-04-07 三菱電機株式会社 Air conditioning system and controller

Also Published As

Publication number Publication date
JP3828957B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
JP5030344B2 (en) Gas heat pump type air conditioner, engine cooling water heating device, and operation method of gas heat pump type air conditioner
JPH05223357A (en) Air conditioning device
JP2010065543A (en) Vehicular cooling system
JP2001260640A (en) Heating device for vehicle
KR100511242B1 (en) Air conditioner
JP6358424B2 (en) Intake air temperature control system
KR20210100461A (en) Air conditioning apparatus
KR20210085443A (en) An air conditioning apparatus
EP2581689A1 (en) Engine-driven hot water supply circuit, and engine-driven hot water supply system using same
JP3828957B2 (en) Refrigerant circulation type heat transfer device
JPH11182972A (en) Engine waste heat recovery unit
KR100199325B1 (en) Engine driven heat pump apparatus
JP2000211345A (en) Vehicle air-conditioner
KR20050001387A (en) Air conditioner
JP2001330341A (en) Air conditioner
JP3600906B2 (en) Air conditioner
JP3637106B2 (en) Gas engine driven air conditioner
JP2002234335A (en) Vehicular air conditioner
JP3746471B2 (en) Engine-driven heat pump type air conditioner equipped with hot water supply / heating unit and operation control method thereof
KR100445445B1 (en) Refrigerator
JPH11294872A (en) Refrigerant circuit of air conditioner
JPH07151413A (en) Separate type air conditioner
JP3776489B2 (en) Engine driven air conditioner
JP3809625B2 (en) Engine-driven heat pump device
JP3467294B2 (en) Engine driven heat pump device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term