JPH1038327A - Ice heat storage device - Google Patents

Ice heat storage device

Info

Publication number
JPH1038327A
JPH1038327A JP19439496A JP19439496A JPH1038327A JP H1038327 A JPH1038327 A JP H1038327A JP 19439496 A JP19439496 A JP 19439496A JP 19439496 A JP19439496 A JP 19439496A JP H1038327 A JPH1038327 A JP H1038327A
Authority
JP
Japan
Prior art keywords
heat storage
ice
water
pipe
supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19439496A
Other languages
Japanese (ja)
Other versions
JP3427628B2 (en
Inventor
Takeo Ueno
武夫 植野
Toshihiro Iijima
俊宏 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP19439496A priority Critical patent/JP3427628B2/en
Publication of JPH1038327A publication Critical patent/JPH1038327A/en
Application granted granted Critical
Publication of JP3427628B2 publication Critical patent/JP3427628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To thaw ice flowing to a circulating passage from a heat storage tank with a simple structure and improve the efficiency of ice making operation. SOLUTION: An ice making device is provided with a refrigerant circulating circuit and a water circulating circuit B. In the ice making device, water taken out of a heat storage tank T by driving a pump P is supercooled by a supercooling heat exchanger 42, and ice nucleus formed in an ice nucleus forming device 46 is mixed into the water to cancel a supercooling state and make ice. The ice making device is provided with a preheater 40 for heating water in the downstream side of the pump P and a return pipeline for returning half of water supplied from the preheater 40 to the upstream side of the pump P.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和装置等に
備えられる氷蓄熱装置に係り、特に、蓄熱タンクから取
出した液相の蓄熱媒体を冷却するための過冷却熱交換器
に対する氷の導入を抑制するための改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage device provided in an air conditioner or the like, and more particularly to the introduction of ice into a supercooling heat exchanger for cooling a liquid heat storage medium taken out of a heat storage tank. The improvement to suppress

【0002】[0002]

【従来の技術】従来より、氷蓄熱型の空気調和装置等に
設けられている氷蓄熱装置として、冷房負荷のピーク時
における電力需要の軽減及びオフピーク時における電力
需要の拡大を図ることに鑑みて、冷房負荷のピーク時に
冷熱として利用するためのスラリー状の氷を冷房負荷の
オフピーク時に生成して蓄熱タンクに貯蔵しておくもの
が知られている。
2. Description of the Related Art Conventionally, as an ice heat storage device provided in an ice storage type air conditioner or the like, in view of reducing power demand during peak cooling load and expanding power demand during off-peak time. In addition, there is known an apparatus in which slurry-like ice to be used as cooling heat at the time of a cooling load peak is generated at the time of a cooling load off-peak and stored in a heat storage tank.

【0003】この種の氷蓄熱装置の一例として、例え
ば、特開平4−251177号公報に開示されているよ
うに、圧縮機、凝縮器、膨張機構及び冷媒熱交換部を冷
媒配管によって順次接続して成る冷媒循環回路と、蓄熱
タンク、上記冷媒熱交換部との間で熱交換可能な蓄熱媒
体熱交換部及び過冷却解消部を水配管によって順次接続
して成る水循環回路とを備えたものが知られている。
As one example of this type of ice heat storage device, as disclosed in Japanese Patent Application Laid-Open No. Hei 4-251177, a compressor, a condenser, an expansion mechanism and a refrigerant heat exchange section are sequentially connected by refrigerant piping. And a water circulation circuit in which a heat storage tank, a heat storage medium heat exchange unit capable of exchanging heat with the refrigerant heat exchange unit, and a supercooling elimination unit are sequentially connected by a water pipe. Are known.

【0004】そして、この種の氷蓄熱装置の製氷動作と
しては、蓄熱タンクから水配管へ取出した水(蓄熱媒
体)を、蓄熱媒体熱交換部において冷媒熱交換部の冷媒
と熱交換して過冷却状態まで冷却し、過冷却解消部にお
いてこの過冷却状態を解消してスラリー状の氷を生成す
る。そして、この氷を蓄熱タンクに供給して貯留する。
[0004] In the ice making operation of this type of ice heat storage device, water (heat storage medium) taken out from a heat storage tank to a water pipe is heat-exchanged with a refrigerant in a refrigerant heat exchange unit in a heat storage medium heat exchange unit. Cooling is performed to a cooling state, and the supercooled state is eliminated in the supercooling elimination section to generate slurry ice. Then, the ice is supplied to and stored in the heat storage tank.

【0005】[0005]

【発明が解決しようとする課題】ところが、このような
氷蓄熱装置では、製氷動作時に、蓄熱タンクの取出し口
からの吸引力の作用により蓄熱タンク内の氷が循環路に
流れ出てしまうことがある。そして、このような状況が
発生すると、この循環路に流れ出た氷が蓄熱媒体熱交換
部に達し、該氷の周囲で水の過冷却解消動作が行われ、
過冷却解消部以外の部分で氷が生成され、製氷動作が安
定して行われないばかりでなく、この氷が熱交換部の壁
面に付着して成長することによる該熱交換部の凍結が生
じ、製氷動作が不能になってしまう虞れもある。
However, in such an ice heat storage device, during the ice making operation, ice in the heat storage tank may flow out to the circulation path due to the action of the suction force from the outlet of the heat storage tank. . Then, when such a situation occurs, the ice that has flowed into this circulation path reaches the heat storage medium heat exchange unit, and the supercooling elimination operation of water is performed around the ice,
Ice is generated in portions other than the subcooling elimination portion, and not only the ice making operation is not performed stably, but also the ice is attached to the wall surface of the heat exchange portion and grows, so that the heat exchange portion freezes. In addition, there is a possibility that the ice making operation becomes impossible.

【0006】また、この種の装置では、熱交換部の凍結
が生じた場合には、製氷運転を中止し、氷を融解するた
めの解凍運転を行うようにしているが、熱交換部の凍結
が頻繁に起こる場合、この解凍運転頻度も多くなり、製
氷運転全体としての効率の低下に繋がってしまう。
In this type of apparatus, when the heat exchange section freezes, the ice making operation is stopped and the thawing operation for melting the ice is performed, but the heat exchange section is frozen. Occurs frequently, the frequency of the thawing operation also increases, leading to a decrease in the efficiency of the ice making operation as a whole.

【0007】本発明はかかる点に鑑みてなされたもの
で、その目的とするところは、蓄熱タンクから循環路に
流れ出た氷を、できるだけ簡単な構成で融解可能とし、
製氷運転効率を向上することにある。
[0007] The present invention has been made in view of the above, and an object of the present invention is to make it possible to melt ice flowing out of a heat storage tank into a circulation path with as simple a structure as possible.
It is to improve the ice making operation efficiency.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、蓄熱タンクから循環路に取
出した蓄熱媒体を、そのまま過冷却手段に導入するので
はなく、この蓄熱媒体の一部を圧送手段に戻すことで、
この戻された蓄熱媒体中に含まれている氷の融解を促進
できるようにした。
In order to achieve the above object, according to the first aspect of the present invention, the heat storage medium taken out from the heat storage tank into the circulation path is not directly introduced into the supercooling means, but is stored in the supercooling means. By returning a part of the medium to the pumping means,
The melting of the ice contained in the returned heat storage medium can be promoted.

【0009】具体的には、蓄熱媒体を貯留可能な蓄熱タ
ンク(T) と、圧送手段(P) と、過冷却手段(42)とが循環
配管(45)によって蓄熱媒体の循環が可能に順に接続され
てなる蓄熱循環回路(B) を備えており、上記蓄熱タンク
(T) から取出した液相の蓄熱媒体を圧送手段(P) により
過冷却手段(42)に向って圧送し、該過冷却手段(42)にお
いて過冷却状態まで冷却して、これを過冷却手段(42)か
ら導出した後に、その過冷却状態を解消してスラリー状
の氷を生成し、該氷を蓄熱タンク(T) に回収して貯留す
る氷蓄熱装置を前提としている。そして、上記圧送手段
(P) の上流側と下流側とを接続し、該圧送手段(P) から
過冷却手段(42)に向って圧送される蓄熱媒体の一部を圧
送手段(P) の上流側に戻す戻し配管(49)を設けた構成と
している。 この構成により、製氷時の動作としては、
蓄熱タンク(T) から取出された蓄熱媒体が圧送手段(P)
により過冷却手段(42)へ導入される。そして、この過冷
却手段(42)において過冷却状態まで冷却され、この過冷
却手段(42)から導出した後に過冷却状態が解消されて相
変化して氷となる。そして、この氷は蓄熱タンク(T) に
回収され、蓄冷熱として貯蔵される。このような製氷動
作の際、圧送手段(P) から過冷却手段(42)に向って圧送
される蓄熱媒体の一部は戻し配管(49)により圧送手段
(P) の上流側に戻される。従って、蓄熱媒体中に氷が含
まれている場合、この氷が過冷却手段(42)に導入される
前に、再度圧送手段(P) の上流側に流すことができ、こ
の圧送手段(P) 内部での撹拌作用などによって、過冷却
手段(42)に導入されるまでに、この氷を融解することが
可能となる。
Specifically, a heat storage tank (T) capable of storing a heat storage medium, a pumping means (P), and a supercooling means (42) are sequentially circulated by a circulation pipe (45) so that the heat storage medium can be circulated. A heat storage circulation circuit (B) connected to the heat storage tank
The liquid-phase heat storage medium taken out from (T) is pumped toward the supercooling means (42) by the pumping means (P), and cooled to a supercooled state in the supercooling means (42), which is then supercooled. After being derived from the means (42), it is assumed that the supercooled state is eliminated, ice in the form of slurry is generated, and the ice is stored in the heat storage tank (T) for storage. And the above-mentioned pressure feeding means
(P) is connected upstream and downstream, and a part of the heat storage medium pumped from the pumping means (P) toward the supercooling means (42) is returned to the upstream side of the pumping means (P). The configuration is such that a pipe (49) is provided. With this configuration, the operation during ice making
The heat storage medium taken out of the heat storage tank (T) is
To the supercooling means (42). Then, it is cooled to a supercooled state by the supercooling means (42), and after being derived from the supercooling means (42), the supercooled state is eliminated and the phase changes to ice. Then, this ice is collected in the heat storage tank (T) and stored as cold storage heat. In such an ice making operation, a part of the heat storage medium pumped from the pumping means (P) toward the supercooling means (42) is returned by the return pipe (49).
Returned upstream of (P). Therefore, when ice is contained in the heat storage medium, the ice can be flown again upstream of the pumping means (P) before being introduced into the supercooling means (42). This ice can be melted before it is introduced into the supercooling means (42) due to an internal stirring action or the like.

【0010】請求項2記載の発明は、上記請求項1記載
の氷蓄熱装置において、圧送手段(P) の下流側に、該圧
送手段(P) から圧送された蓄熱媒体を加熱する加熱手段
(40)を設ける。そして、戻し配管(49)の上流端を加熱手
段(40)の下流側に接続した構成としている。
According to a second aspect of the present invention, in the ice heat storage device according to the first aspect, a heating means for heating the heat storage medium pumped from the pumping means (P) downstream of the pumping means (P).
(40) is provided. The upstream end of the return pipe (49) is connected to the downstream side of the heating means (40).

【0011】この構成により、圧送手段(P) から圧送さ
れた蓄熱媒体は加熱手段(40)によって加熱され、この蓄
熱媒体中の氷の融解が促進される。そして、この加熱さ
れた蓄熱媒体の一部は、戻し配管(49)により圧送手段
(P) の上流側に戻された後、再び加熱手段(40)によって
加熱されることになり、更に氷の融解が促進される 請求項3記載の発明は、上記請求項2記載の氷蓄熱装置
において、加熱手段(40)と過冷却手段(42)とを接続する
配管(45A) を、戻し配管(49)の接続位置よりも上流側の
第1配管(45a) と、下流側の第2配管(45b) とで成す。
そして、第2配管(45b) の流路面積と戻し配管(49)の流
路面積とを略同一にした構成としている。
With this configuration, the heat storage medium pumped from the pumping means (P) is heated by the heating means (40), and the melting of ice in the heat storage medium is promoted. Then, a part of the heated heat storage medium is supplied by a return pipe (49) by a pumping means.
After being returned to the upstream side of (P), it is heated again by the heating means (40), and the melting of ice is further promoted. In the apparatus, a pipe (45A) connecting the heating means (40) and the supercooling means (42) is connected to a first pipe (45a) upstream of a connection position of the return pipe (49) and a first pipe (45a) downstream. It consists of two pipes (45b).
The passage area of the second pipe (45b) is substantially equal to the passage area of the return pipe (49).

【0012】この構成により、圧送手段(P) から圧送さ
れて第1配管(45a) を流れた蓄熱媒体のうち約半分は過
冷却手段(42)に、その他の約半分は圧送手段(P) の上流
側に夫々流されることになる。つまり、圧送手段(P) の
圧送量に対し、実際の蓄熱循環回路(B) での循環量は約
半分に設定されることになる。
With this configuration, about half of the heat storage medium that has been pressure-fed from the pressure feeding means (P) and has flowed through the first pipe (45a) is supplied to the supercooling means (42), and the other half is supplied to the pressure feeding means (P). Will be flown to the upstream side respectively. That is, the actual circulation amount in the heat storage circulation circuit (B) is set to about half of the pumping amount of the pumping means (P).

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は本実施形態に係る氷蓄熱式空気調和
装置に備えられた冷媒循環回路(A)の全体構成を示して
いる。また、図2は蓄熱循環回路としての水循環回路
(B) を示している。
FIG. 1 shows the overall configuration of a refrigerant circuit (A) provided in an ice storage type air conditioner according to this embodiment. FIG. 2 shows a water circulation circuit as a heat storage circulation circuit.
(B) is shown.

【0015】冷媒循環回路(A) は、圧縮機(1) 、室外熱
交換器(3) 、第1室外電動膨張弁(5) 、縦型のシェルア
ンドチューブ式の熱交換器で成る過冷却手段としての過
冷却熱交換器(42)、第2室外電動膨張弁(52a) 、二重管
構造の熱交換器で成る予熱器(40)、室内電動膨張弁(6)
及び室内熱交換器(7) が冷媒配管(8) によって接続され
ている。そして、四路切換弁(2) によって、圧縮機(1)
の吐出側を室外熱交換器(3) に接続し且つ吸入側を室内
熱交換器(7) に接続する状態(図1に実線で示す状態)
と、圧縮機(1) の吐出側を室内熱交換器(7) に接続し且
つ吸入側を室外熱交換器(3) に接続する状態(図1に破
線で示す状態)とで切換え可能となっている。
The refrigerant circuit (A) includes a compressor (1), an outdoor heat exchanger (3), a first outdoor electric expansion valve (5), and a subcooling system comprising a vertical shell and tube heat exchanger. A supercooling heat exchanger (42) as a means, a second outdoor electric expansion valve (52a), a preheater (40) comprising a double-pipe heat exchanger, and an indoor electric expansion valve (6)
And an indoor heat exchanger (7) are connected by a refrigerant pipe (8). The compressor (1) is operated by the four-way switching valve (2).
With the discharge side connected to the outdoor heat exchanger (3) and the suction side connected to the indoor heat exchanger (7) (the state shown by the solid line in FIG. 1)
And a state in which the discharge side of the compressor (1) is connected to the indoor heat exchanger (7) and the suction side is connected to the outdoor heat exchanger (3) (the state shown by the broken line in FIG. 1). Has become.

【0016】また、第1室外電動膨張弁(5) と蓄熱熱交
換器(42)との間の2箇所には第1及び第2の三方電磁弁
(CRV-1,CRV-2) が設けられている。各電磁弁(CRV-1,CRV
-2)について説明すると、第1室外電動膨張弁(5) 側に
位置する第1三方電磁弁(CRV-1) は、3つのポートのう
ち第1ポート(P-1) が室外熱交換器(3) 側に、第2ポー
ト(P-2) が第2三方電磁弁(CRV-2) 側に、第3ポート(P
-3) が第1バイパス管(8a)を介して予熱器(40)と室内電
動膨張弁(6) との間に夫々接続されている。また、蓄熱
熱交換器(42)側に位置する第2三方電磁弁(CRV-2) は、
3つのポートのうち第1ポート(P-1) が第1三方電磁弁
(CRV-1) 側に、第2ポート(P-2) が蓄熱熱交換器(42)側
に、第3ポート(P-3) が第2バイパス管(8b)を介して室
内熱交換器(7) と四路切換弁(2) との間に夫々接続され
ている。
Further, first and second three-way solenoid valves are provided at two places between the first outdoor electric expansion valve (5) and the heat storage heat exchanger (42).
(CRV-1, CRV-2). Each solenoid valve (CRV-1, CRV
Explaining -2), the first three-way solenoid valve (CRV-1) located on the side of the first outdoor electric expansion valve (5) has the first port (P-1) of the three ports connected to the outdoor heat exchanger. On the (3) side, the second port (P-2) is on the second three-way solenoid valve (CRV-2) side, and on the third port (P-2).
-3) are connected between the preheater (40) and the indoor electric expansion valve (6) via the first bypass pipe (8a). The second three-way solenoid valve (CRV-2) located on the side of the heat storage heat exchanger (42)
The first port (P-1) of the three ports is the first three-way solenoid valve
On the (CRV-1) side, the second port (P-2) is on the heat storage heat exchanger (42) side, and the third port (P-3) is on the indoor heat exchanger via the second bypass pipe (8b). Each is connected between (7) and the four-way switching valve (2).

【0017】次に、本形態に係る水循環回路(B) につい
て説明する。図2に示すように、本形態に係る水循環回
路(B) は、蓄熱タンク(T) 、圧送手段としてのポンプ
(P) 、加熱手段としての予熱器(40)、過冷却熱交換器(4
2)及び過冷却解消器(43)が水配管(45)によって水の循環
(図2における実線の矢印参照)が可能に順に接続され
ている。また、過冷却解消器(43)には氷核生成器(46)が
一体的に設けられている。この氷核生成器(46)は、後述
する冷蓄熱運転時に、上記冷媒配管(8) を流れる冷媒の
一部(例えば第2室外電動膨張弁(52a) によって減圧さ
れた冷媒の一部)が導入され、この冷媒と過冷却解消器
(43)内の水との熱交換により、水を冷却して小粒子状の
氷核を生成し、この氷核の周囲で過冷却水の過冷却解消
動作を行うようにしている。つまり、過冷却解消器(43)
の内部において氷核の生成と過冷却解消とが共に行われ
るようになっている。
Next, the water circulation circuit (B) according to this embodiment will be described. As shown in FIG. 2, the water circulation circuit (B) according to the present embodiment includes a heat storage tank (T), a pump as a pumping means.
(P), preheater (40) as heating means, subcooling heat exchanger (4
2) and the supercooler (43) are connected in order by a water pipe (45) so that water circulation (see solid arrows in FIG. 2) is possible. Further, an ice nucleus generator (46) is provided integrally with the subcooling canceller (43). The ice nucleus generator (46) removes part of the refrigerant flowing through the refrigerant pipe (8) (for example, part of the refrigerant depressurized by the second outdoor electric expansion valve (52a)) during a cold heat storage operation described later. Introduced this refrigerant and supercooler
By exchanging heat with the water in (43), the water is cooled to generate ice nuclei in the form of small particles, and the operation of eliminating supercooling of the supercooled water is performed around the ice nuclei. In other words, the supercooler (43)
Inside, the formation of ice nuclei and the elimination of supercooling are both performed.

【0018】また、予熱器(40)及び過冷却熱交換器(42)
では、冷媒循環回路(A) の冷媒と水循環回路(B) の水と
の間で熱交換が行われるようになっている。詳しくは、
予熱器(40)は、上述した如く二重管構造の熱交換器で成
り、二重管の内部に水が、その外部に冷媒が流れて、こ
の両者間で熱交換可能となっている。過冷却熱交換器(4
2)は、ケーシング内に複数本の伝熱管(42b) が配設さ
れ、その内部に水が流れ、その外側の空間(42a) には冷
媒が満液状態で流れるようになっており、伝熱管(42b)
の壁面を介して、この両者間で熱交換可能となってい
る。
Further, a preheater (40) and a supercooling heat exchanger (42)
In this configuration, heat exchange is performed between the refrigerant in the refrigerant circuit (A) and the water in the water circuit (B). For more information,
The preheater (40) is a heat exchanger having a double tube structure as described above, and water flows inside the double tube and refrigerant flows outside the double tube, so that heat can be exchanged between the two. Subcooling heat exchanger (4
In (2), a plurality of heat transfer tubes (42b) are provided in a casing, water flows inside the heat transfer tubes, and the refrigerant flows in a space outside the space (42a) in a full state. Heat tube (42b)
Heat can be exchanged between the two via the wall surface.

【0019】尚、図2における(48)は、過冷却熱交換器
(42)から流出した水を過冷却解消器(43)及び蓄熱タンク
(T) をバイパスしてポンプ(P) の上流側にバイパスする
バイパス配管である。そして、このバイパス配管(48)の
下流側端の水配管(45)との接続部分には比例制御弁で成
る三路切換え弁(CRV) が設けられている。この三路切換
え弁(CRV) は、ポンプ(P) の上流側を、蓄熱タンク(T)
に連通させる第1の切換え状態と、バイパス配管(48)に
連通させる第2の切換え状態(過冷却解消器(43)及び蓄
熱タンク(T) をバイパスする切換え状態)とに切換え可
能となっている。
Incidentally, (48) in FIG. 2 is a subcooling heat exchanger.
Supercooler (43) and heat storage tank for water flowing out of (42)
This is a bypass pipe that bypasses (T) and upstream of the pump (P). A three-way switching valve (CRV), which is a proportional control valve, is provided at a portion of the bypass pipe (48) connected to the water pipe (45) at the downstream end. This three-way switching valve (CRV) connects the upstream side of the pump (P) with the heat storage tank (T).
And a second switching state communicating with the bypass pipe (48) (a switching state bypassing the subcooling canceller (43) and the heat storage tank (T)). I have.

【0020】そして、本形態の特徴として、予熱器(40)
から流出した水の一部をポンプ(P)の上流側に戻す戻し
配管(49)が設けられている。この戻し配管(49)は、上流
端が、上記予熱器(40)と過冷却熱交換器(42)との間に、
下流端が、水配管(45)におけるバイパス配管(48)の下流
端の接続位置とポンプ(P) との間に夫々接続されてい
る。そして、予熱器(40)と過冷却熱交換器(42)とを接続
する水配管(45A) は、戻し配管(49)の接続位置よりも上
流側の第1配管(45a) と、下流側の第2配管(45b) とで
成っている。そして、これら配管(45a,45b) 及び戻し配
管(49)の流路面積について説明すると、第2配管(45b)
の流路面積と、戻し配管(49)の流路面積とは略同一に設
定されている。また、第1配管(45a) の流路面積は、上
記第2配管(45b) の流路面積と戻し配管(49)の流路面積
との和に略等しくなっている。これにより、予熱器(40)
から流出し、第1配管(45a) を経た水が、第2配管(45
b) 及び戻し配管(49)に略均等に分流されるようになっ
ている。つまり、予熱器(40)から流出した水の約半分は
戻し配管(49)によりポンプ(P) の上流側に戻される構成
となっている。
As a feature of this embodiment, a preheater (40)
A return pipe (49) is provided for returning a part of the water flowing out of the pump to the upstream side of the pump (P). The return pipe (49) has an upstream end located between the preheater (40) and the supercooling heat exchanger (42).
The downstream end is connected between the connection position of the downstream end of the bypass pipe (48) in the water pipe (45) and the pump (P). A water pipe (45A) connecting the preheater (40) and the subcooling heat exchanger (42) is connected to a first pipe (45a) upstream of the connection position of the return pipe (49) and a downstream pipe. And the second pipe (45b). The flow path area of these pipes (45a, 45b) and return pipe (49) will be described.
And the flow path area of the return pipe (49) are set to be substantially the same. The flow passage area of the first pipe (45a) is substantially equal to the sum of the flow passage area of the second pipe (45b) and the flow passage area of the return pipe (49). With this, the preheater (40)
Water flowing out of the first pipe (45a) and flowing through the second pipe (45a).
b) and the return pipe (49) is almost equally diverted. That is, about half of the water flowing out of the preheater (40) is returned to the upstream side of the pump (P) by the return pipe (49).

【0021】尚、上述したような水の循環状態や、後述
する各運転動作のような冷媒の循環状態が得られるよう
に、必要に応じて電磁弁が設けられたり、各配管の管径
が設定される。
In order to obtain the above-described water circulation state and the refrigerant circulation state as in each operation described later, an electromagnetic valve is provided as necessary, or the pipe diameter of each pipe is reduced. Is set.

【0022】−運転動作− 次に、上述の如く構成された空気調和装置の運転動作に
ついて説明する。本空気調和装置の運転モードとして
は、通常冷房運転、冷蓄熱運転、解凍運転及び冷蓄熱利
用冷房運転がある。
-Operation- Next, the operation of the air conditioner configured as described above will be described. The operation modes of the present air conditioner include a normal cooling operation, a cold storage operation, a thawing operation, and a cooling operation using cold storage.

【0023】以下、各運転モードにおける冷媒循環動作
について説明する。
Hereinafter, the refrigerant circulation operation in each operation mode will be described.

【0024】−通常冷房運転− この通常冷房運転時には、四路切換弁(2) が図3中実線
側に切換わり、第1三方電磁弁(CRV-1) が、第1ポート
(P-1) と第3ポート(P-3) とを連通させる切換え状態と
なる。また、第1室外電動膨張弁(5) が全開状態に、室
内電動膨張弁(6) が所定開度に制御(室内熱交換器(7)
出口側の過熱度一定制御)される。
-Normal Cooling Operation- During the normal cooling operation, the four-way switching valve (2) is switched to the solid line side in FIG. 3, and the first three-way solenoid valve (CRV-1) is connected to the first port.
(P-1) is switched to the third port (P-3). In addition, the first outdoor electric expansion valve (5) is controlled to a fully opened state, and the indoor electric expansion valve (6) is controlled to a predetermined opening (the indoor heat exchanger (7)).
The superheat degree control at the outlet side is performed.

【0025】この状態で圧縮機構(1) が駆動すると、圧
縮機(1) から吐出された冷媒は図3に矢印で示すよう
に、四路切換弁(2) を経て室外熱交換器(3) に導入さ
れ、該室外熱交換器(3) において外気との間で熱交換を
行って凝縮する。その後、この冷媒は第1バイパス管(8
a)を経た後、室内電動膨張弁(6) で減圧され、室内熱交
換器(7) において室内空気との間で熱交換を行い蒸発し
て室内空気を冷却する。そして、このガス冷媒は四路切
換弁(2) を経て圧縮機(1) の吸入側に戻される。このよ
うな冷媒の循環動作を行うことにより室内の冷房が行わ
れる。
When the compression mechanism (1) is driven in this state, the refrigerant discharged from the compressor (1) passes through the four-way switching valve (2) and passes through the outdoor heat exchanger (3) as shown by an arrow in FIG. ), And exchanges heat with the outside air in the outdoor heat exchanger (3) to condense. Thereafter, the refrigerant is supplied to the first bypass pipe (8
After a), the pressure is reduced by the indoor electric expansion valve (6), and heat is exchanged with the indoor air in the indoor heat exchanger (7) to evaporate and cool the indoor air. Then, this gas refrigerant is returned to the suction side of the compressor (1) via the four-way switching valve (2). By performing such a circulation operation of the refrigerant, indoor cooling is performed.

【0026】−冷蓄熱運転− この冷蓄熱運転時には、水循環回路(B) にあっては、三
方電磁弁(CRV) がポンプ(P) の上流側を蓄熱タンク(T)
に連通させる第1の切換え状態となる。そして、ポンプ
(P) が駆動して該水循環回路(B) において水が循環する
(図2の実線で示す矢印参照)。一方、冷媒循環回路
(A) では、四路切換弁(2) が図4中実線側に切換わり、
第1三方電磁弁(CRV-1) が、第1ポート(P-1) と第3ポ
ート(P-3)とを連通させる切換え状態となり、第2三方
電磁弁(CRV-2) が、第2ポート(P-2) と第3ポート(P-
3) とを連通させる切換え状態となる。また、第2室外
電動膨張弁(52a) は所定開度に制御される。また、室内
電動膨張弁(6) は全閉状態に、第1室外電動膨張弁(5)
は全開状態にされる。これにより、図4に矢印で示すよ
うに、圧縮機(1) から吐出された冷媒は、四路切換弁
(2) を経て室外熱交換器(3) に導入され、該室外熱交換
器(3) において外気との間で熱交換を行って凝縮する。
その後、この冷媒は、第1バイパス管(8a)を経て、予熱
器(40)に導入し、水循環回路(B) を循環する水を加熱す
る。その後、この冷媒は、第2室外動膨張弁(52a) によ
り減圧される。そして、この低圧となった冷媒は、過冷
却熱交換器(42)に導入され、水との間で熱交換を行い、
水を冷却して蒸発する。その後、この蒸発したガス冷媒
は第2バイパス管(8b)を経て圧縮機(1) の吸入側に戻さ
れる。
-Cold heat storage operation- In this cold heat storage operation, in the water circulation circuit (B), a three-way solenoid valve (CRV) connects the upstream side of the pump (P) to the heat storage tank (T).
In a first switching state. And the pump
(P) is driven to circulate water in the water circulation circuit (B) (see the arrow indicated by the solid line in FIG. 2). On the other hand, the refrigerant circuit
In (A), the four-way switching valve (2) switches to the solid line side in FIG.
The first three-way solenoid valve (CRV-1) is in a switching state in which the first port (P-1) and the third port (P-3) are connected, and the second three-way solenoid valve (CRV-2) is in the switching state. 2 port (P-2) and 3rd port (P-
3) A switching state is established to communicate with. The second outdoor electric expansion valve (52a) is controlled to a predetermined opening. The indoor electric expansion valve (6) is fully closed, and the first outdoor electric expansion valve (5) is closed.
Is fully opened. As a result, as indicated by the arrow in FIG. 4, the refrigerant discharged from the compressor (1) is supplied to the four-way switching valve.
It is introduced into the outdoor heat exchanger (3) via (2), and heat exchanges with the outside air in the outdoor heat exchanger (3) to condense.
Thereafter, the refrigerant is introduced into the preheater (40) through the first bypass pipe (8a), and heats the water circulating in the water circulation circuit (B). Thereafter, the pressure of the refrigerant is reduced by the second outdoor expansion valve (52a). Then, the low-pressure refrigerant is introduced into the supercooling heat exchanger (42), performs heat exchange with water,
Cool the water and evaporate. Thereafter, the evaporated gas refrigerant is returned to the suction side of the compressor (1) via the second bypass pipe (8b).

【0027】そして、本形態の特徴は、この冷蓄熱運転
における水循環回路(B) での水の循環動作にある。以
下、この水の循環動作について説明する。ポンプ(P) の
駆動に伴って蓄熱タンク(T) から取出された水は、該ポ
ンプ(P) を経て予熱器(40)に導入され、ここで冷媒との
間で熱交換を行って温度が上昇する。これにより、仮
に、蓄熱タンク(T) から取出された水中に氷が混入して
いたとしても、この氷の融解が促進されることになる。
そして、この予熱器(40)から導出した水は、第1配管(4
5a) を経た後、第2配管(45b) 及び戻し配管(49)に分流
されることになる。そして、戻し配管(49)を流れた水
は、再びポンプ(P) の上流側を流れ、蓄熱タンク(T) か
ら導出した水と混合された後、ポンプ(P) に導入され、
この際に、該ポンプ(P) 内での撹拌作用により、水と氷
が撹拌されて、ここでも氷の融解が促進される。そし
て、ポンプ(P) から導出した水は、再度、予熱器(40)に
導入されて温度が上昇する。このような動作が、過冷却
熱交換器(42)の上流側において繰り返し行われるので、
この過冷却熱交換器(42)に導入される水中の氷の量を極
端に少なく、若しくは、殆ど氷がない状態にすることが
できる。
The feature of the present embodiment resides in the water circulation operation in the water circulation circuit (B) in the cold heat storage operation. Hereinafter, the water circulation operation will be described. The water extracted from the heat storage tank (T) as the pump (P) is driven is introduced into the preheater (40) via the pump (P), where heat is exchanged with the refrigerant to obtain the temperature. Rises. As a result, even if ice is mixed in the water taken out of the heat storage tank (T), the melting of the ice is promoted.
Then, water derived from the preheater (40) is supplied to the first pipe (4
After passing through 5a), it is divided into the second pipe (45b) and the return pipe (49). Then, the water flowing through the return pipe (49) flows again upstream of the pump (P), is mixed with water derived from the heat storage tank (T), and is introduced into the pump (P).
At this time, the water and ice are stirred by the stirring action in the pump (P), and the melting of the ice is promoted here as well. Then, the water derived from the pump (P) is again introduced into the preheater (40), and the temperature rises. Since such an operation is repeatedly performed on the upstream side of the subcooling heat exchanger (42),
The amount of ice in the water introduced into the supercooling heat exchanger (42) can be extremely small, or almost no ice can be obtained.

【0028】その後、この過冷却熱交換器(42)に導入さ
れた水は過冷却状態まで冷却された後、過冷却解消部(4
3)に導入され、氷核生成器(46)で生成された氷核の周囲
で過冷却が解消してスラリー状の氷となる。この氷は、
過冷却解消部(43)から蓄熱タンク(T) に送込まれ、該蓄
熱タンク(T) に冷熱源として貯留される。
Thereafter, the water introduced into the subcooling heat exchanger (42) is cooled to a supercooled state,
Supercooling is eliminated around the ice nuclei generated by the ice nucleus generator (46) in the step (3), and the ice is turned into a slurry. This ice is
It is sent from the supercooling elimination section (43) to the heat storage tank (T) and stored in the heat storage tank (T) as a cold heat source.

【0029】−解凍運転− 上述したような冷蓄熱運転の際、過冷却熱交換器(42)に
おいて水の過冷却が解消して該過冷却熱交換器(42)が凍
結した場合には、この冷蓄熱運転を一時的に中断して解
凍運転に切り換える。この解凍運転では、冷媒循環回路
(A) では、四路切換弁(2) が図5中破線側に切換わり、
第2三方電磁弁(CRV-2) が、第3ポート(P-3) と第2ポ
ート(P-2) とを連通させる切換え状態となり、第1三方
電磁弁(CRV-1) が、第3ポート(P-3) と第1ポート(P-
1) とを連通させる切換え状態となる。また、第2室外
電動膨張弁(52a) が全開状態に、第1室外電動膨張弁
(5) が所定開度に制御(室外熱交換器(3) 出口側の過熱
度一定制御)される。これにより、図5に矢印で示すよ
うに、圧縮機(1) から吐出された冷媒は第2バイパス管
(8b)及び第2三方電磁弁(CRV-2) を経て過冷却熱交換器
(42)に導入され、その温熱によって過冷却熱交換器(42)
内の氷を融解する。そして、この冷媒は予熱器(40)、第
1バイパス管(8a)、第1三方電磁弁(CRV-1) 及び室外熱
交換器(3) を経て圧縮機(1) の吸入側に戻される循環状
態となる。
-Thawing operation-In the above-mentioned cold heat storage operation, when the supercooling heat exchanger (42) is free from supercooling of water in the supercooling heat exchanger (42), This cold storage operation is temporarily interrupted and switched to the thawing operation. In this thawing operation, the refrigerant circulation circuit
In (A), the four-way switching valve (2) switches to the broken line side in FIG.
The second three-way solenoid valve (CRV-2) is in a switching state for communicating the third port (P-3) and the second port (P-2), and the first three-way solenoid valve (CRV-1) is 3 ports (P-3) and 1st port (P-
1) A switching state is established to communicate with. When the second outdoor electric expansion valve (52a) is fully opened, the first outdoor electric expansion valve is opened.
(5) is controlled to a predetermined opening degree (constant superheat degree control on the outlet side of the outdoor heat exchanger (3)). As a result, as shown by the arrow in FIG. 5, the refrigerant discharged from the compressor (1)
(8b) and the second three-way solenoid valve (CRV-2)
(42) is introduced into the subcooled heat exchanger (42)
Thaw the ice inside. Then, the refrigerant is returned to the suction side of the compressor (1) through the preheater (40), the first bypass pipe (8a), the first three-way solenoid valve (CRV-1), and the outdoor heat exchanger (3). It becomes a circulation state.

【0030】一方、水循環回路(B) にあっては、過冷却
熱交換器(42)への吐出冷媒(ホットガス)の供給と同時
若しくは、それよりも前に三方電磁弁(CRV) を第1の切
換え状態から第2の切換え状態に切換える。
On the other hand, in the water circulation circuit (B), the three-way solenoid valve (CRV) is operated simultaneously with or before the supply of the discharged refrigerant (hot gas) to the subcooling heat exchanger (42). The first switching state is switched to the second switching state.

【0031】そして、このようにして三方電磁弁(CRV)
が第2の切換え状態に切換えられると、循環水が過冷却
解消器(43)及び蓄熱タンク(T) をバイパスして流れるこ
とになり(図2に破線で示す矢印参照)、蓄熱タンク
(T) に対する水の給排が行われなくなり、効率良く過冷
却熱交換器(42)内の氷の融解が行われる。
The three-way solenoid valve (CRV)
Is switched to the second switching state, the circulating water flows by bypassing the supercooling canceller (43) and the heat storage tank (T) (see the arrow shown by the broken line in FIG. 2), and the heat storage tank
The supply and discharge of water to (T) is not performed, and the ice in the subcooling heat exchanger (42) is efficiently melted.

【0032】−冷蓄熱利用冷房運転− この運転モードは、上述した冷蓄熱運転において蓄熱タ
ンク(T) に貯留された氷の冷熱を利用しながら室内の冷
房を行うものである。
-Cooling operation utilizing cold storage-In this operation mode, indoor cooling is performed while utilizing the cold heat of ice stored in the heat storage tank (T) in the above-described cold storage operation.

【0033】この冷蓄熱利用冷房運転時には、水循環回
路(B) にあっては、ポンプ(P) が駆動して該水循環回路
(B) において水が循環する。この際、三方電磁弁(CRV)
は、ポンプ(P) の上流側を、蓄熱タンク(T) に連通させ
る第1の切換え状態となる。一方、冷媒循環回路(A) で
は、四路切換弁(2) が図6中実線側に切換わり、第1三
方電磁弁(CRV-1) が、第1ポート(P-1) と第2ポート(P
-2) とを連通させる切換え状態となり、第2三方電磁弁
(CRV-2) が、第1ポート(P-1) と第2ポート(P-2) とを
連通させる切換え状態となる。また、室内電動膨張弁
(6) は所定開度に、第1室外電動膨張弁(5) 及び第2室
外電動膨張弁(52a) は全開状態にされる。これにより、
図6に矢印で示すように、圧縮機(1) から吐出された冷
媒は、四路切換弁(2) を経て室外熱交換器(3) に導入さ
れ、該室外熱交換器(3) において外気との間で熱交換を
行って凝縮する。その後、この冷媒は、過冷却熱交換器
(42)に導入されて、水循環回路(B) を循環している冷水
により冷却される。そして、この冷媒は、室内電動膨張
弁(6) により減圧した後、室内熱交換器(7) において室
内空気との間で熱交換を行って蒸発し、室内空気を冷却
した後、圧縮機(1) の吸入側に戻される。
In the cooling operation utilizing the cold storage heat, in the water circulation circuit (B), the pump (P) is driven to operate the water circulation circuit (B).
Water circulates in (B). At this time, a three-way solenoid valve (CRV)
Is in a first switching state in which the upstream side of the pump (P) communicates with the heat storage tank (T). On the other hand, in the refrigerant circuit (A), the four-way switching valve (2) is switched to the solid line side in FIG. 6, and the first three-way solenoid valve (CRV-1) is connected to the first port (P-1) and the second port. Port (P
-2) is switched to communicate with the second three-way solenoid valve.
(CRV-2) is in a switching state in which the first port (P-1) and the second port (P-2) communicate with each other. Also, the indoor electric expansion valve
(6) is a predetermined opening degree, and the first outdoor electric expansion valve (5) and the second outdoor electric expansion valve (52a) are fully opened. This allows
As shown by the arrows in FIG. 6, the refrigerant discharged from the compressor (1) is introduced into the outdoor heat exchanger (3) via the four-way switching valve (2), where it is passed through the outdoor heat exchanger (3). Condenses by performing heat exchange with the outside air. This refrigerant is then passed to a subcooling heat exchanger
It is introduced into (42) and cooled by the cold water circulating in the water circulation circuit (B). Then, after the refrigerant is decompressed by the indoor electric expansion valve (6), the refrigerant exchanges heat with the indoor air in the indoor heat exchanger (7) to evaporate, cools the indoor air, and then cools the compressor ( It is returned to the suction side of 1).

【0034】以上のような各運転モードの冷媒循環動作
が行われる。
The refrigerant circulation operation in each operation mode as described above is performed.

【0035】このように本形態によれば、上記冷蓄熱運
転時に、予熱器(40)から流出した水の一部をポンプ(P)
の上流側に戻すようにしたことで、過冷却熱交換器(42)
への氷の流入を抑制したために、過冷却熱交換器(42)の
凍結が抑制でき、安定した製氷動作を行うことができ
る。つまり、戻し配管(49)といった1本の配管を設ける
のみで解凍運転頻度を削減することができ、簡単な構成
でもって製氷運転効率の向上を図ることができる。
As described above, according to the present embodiment, during the cold storage operation, a part of the water flowing out of the preheater (40) is pumped (P).
By returning to the upstream side of the subcooling heat exchanger (42)
Since the inflow of ice into the water is suppressed, the freezing of the supercooling heat exchanger (42) can be suppressed, and a stable ice making operation can be performed. In other words, the thawing operation frequency can be reduced only by providing one pipe such as the return pipe (49), and the ice making operation efficiency can be improved with a simple configuration.

【0036】尚、各実施形態では、蓄熱用の蓄熱媒体と
して水を使用したが、その他ブライン水溶液等を使用す
るようにしてもよい。
In each of the embodiments, water is used as the heat storage medium for heat storage. However, a brine solution or the like may be used.

【0037】また、空気調和装置用の氷蓄熱装置に本発
明を適用した場合について説明したが、その他の蓄冷熱
を利用する装置に対しても適用可能である。
Although the case where the present invention is applied to an ice heat storage device for an air conditioner has been described, the present invention is also applicable to other devices utilizing cold storage heat.

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば以
下に述べるような効果が発揮される。請求項1記載の発
明によれば、蓄熱タンクから取出した蓄熱媒体を圧送手
段により過冷却手段に圧送して過冷却状態とし、この過
冷却状態を解消してスラリー状の氷を生成する氷蓄熱装
置に対し、圧送手段から過冷却手段に向って圧送される
蓄熱媒体の一部を圧送手段の上流側に戻す戻し配管を設
けたために、蓄熱タンクから取出した蓄熱媒体中に氷が
含まれている場合、圧送手段内部での撹拌作用などによ
る氷の融解を再度繰り返すことで、過冷却手段に導入さ
れるまでに、この氷を融解することが可能となる。この
ため、過冷却手段の凍結が抑制でき、安定した製氷動作
を行うことができ、簡単な構成でもって製氷運転効率の
向上を図ることができる。
As described above, according to the present invention, the following effects can be obtained. According to the first aspect of the present invention, the heat storage medium taken out from the heat storage tank is pressure-fed to the supercooling means by the pressure feeding means to be in a supercooled state, and the supercooled state is eliminated to generate a slurry-like ice. For the apparatus, since a return pipe is provided to return a part of the heat storage medium pumped from the pumping means toward the supercooling means to the upstream side of the pumping means, ice is contained in the heat storage medium taken out from the heat storage tank. In this case, the melting of the ice by the stirring action or the like inside the pumping means is repeated again, so that the ice can be melted before being introduced into the supercooling means. Therefore, freezing of the supercooling means can be suppressed, a stable ice making operation can be performed, and the ice making operation efficiency can be improved with a simple configuration.

【0039】請求項2記載の発明によれば、圧送手段の
下流側に蓄熱媒体を加熱する加熱手段を設け、この加熱
手段から導出した蓄熱媒体を圧送手段の上流側に戻すよ
うにしたために、蓄熱媒体を加熱手段に複数回流通させ
ることが可能になって、更に氷の融解が促進でき、過冷
却手段の凍結回避の信頼性の向上を図ることができる。
According to the second aspect of the present invention, the heating means for heating the heat storage medium is provided downstream of the pressure feeding means, and the heat storage medium derived from the heating means is returned to the upstream side of the pressure feeding means. The heat storage medium can be circulated through the heating means a plurality of times, so that the melting of the ice can be further promoted, and the reliability of avoiding freezing of the supercooling means can be improved.

【0040】請求項3記載の発明によれば、加熱手段か
ら導出した蓄熱媒体の約半分を圧送手段(P) の上流側に
戻すようにしたために、蓄熱媒体中の氷を融解するのに
十分な戻し量が得られ、氷の融解を確実に行うことがで
きる。
According to the third aspect of the invention, since about half of the heat storage medium led out of the heating means is returned to the upstream side of the pumping means (P), it is sufficient to melt the ice in the heat storage medium. A large amount of reconstitution can be obtained, and the ice can be reliably melted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態に係る空気調和装置に備えられた冷媒
循環回路の全体構成を示す図である。
FIG. 1 is a diagram illustrating an overall configuration of a refrigerant circulation circuit provided in an air conditioner according to an embodiment.

【図2】水循環回路の構成を示す図である。FIG. 2 is a diagram showing a configuration of a water circulation circuit.

【図3】通常冷房運転の冷媒循環動作を示す回路図であ
る。
FIG. 3 is a circuit diagram showing a refrigerant circulation operation in a normal cooling operation.

【図4】冷蓄熱運転の冷媒循環動作を示す回路図であ
る。
FIG. 4 is a circuit diagram showing a refrigerant circulation operation of the cold storage operation.

【図5】解凍運転の冷媒循環動作を示す回路図である。FIG. 5 is a circuit diagram showing a refrigerant circulation operation of a thawing operation.

【図6】冷蓄熱利用冷房運転の冷媒循環動作を示す回路
図である。
FIG. 6 is a circuit diagram showing a refrigerant circulation operation in a cooling operation utilizing cold storage heat.

【符号の説明】[Explanation of symbols]

(40) 予熱器(加熱手段) (42) 過冷却熱交換器(過冷却手段) (45,45A) 水配管(循環配管) (45a) 第1配管 (45b) 第2配管 (49) 戻し配管 (B) 水循環回路(蓄熱循環回路) (T) 蓄熱タンク (P) ポンプ(圧送手段) (40) Preheater (heating means) (42) Subcooling heat exchanger (supercooling means) (45,45A) Water pipe (circulation pipe) (45a) First pipe (45b) Second pipe (49) Return pipe (B) Water circulation circuit (heat storage circuit) (T) Heat storage tank (P) Pump (pumping means)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 蓄熱媒体を貯留可能な蓄熱タンク(T)
と、圧送手段(P) と、過冷却手段(42)とが循環配管(45)
によって蓄熱媒体の循環が可能に順に接続されてなる蓄
熱循環回路(B) を備えており、 上記蓄熱タンク(T) から取出した液相の蓄熱媒体を圧送
手段(P) により過冷却手段(42)に向って圧送し、該過冷
却手段(42)において過冷却状態まで冷却して、これを過
冷却手段(42)から導出した後に、その過冷却状態を解消
してスラリー状の氷を生成し、該氷を蓄熱タンク(T) に
回収して貯留する氷蓄熱装置において、 上記圧送手段(P) の上流側と下流側とを接続し、該圧送
手段(P) から過冷却手段(42)に向って圧送される蓄熱媒
体の一部を圧送手段(P) の上流側に戻す戻し配管(49)が
設けられていることを特徴とする氷蓄熱装置。
1. A heat storage tank (T) capable of storing a heat storage medium.
And the pumping means (P) and the supercooling means (42)
A heat storage circuit (B) is connected in order so that the heat storage medium can be circulated by the heat storage medium, and the liquid-phase heat storage medium taken out of the heat storage tank (T) is supercooled by a pressure-feeding means (P). ) And cooled to a supercooled state in the supercooling means (42), and after being led out from the supercooling means (42), the supercooled state is eliminated to produce slurry ice. In the ice heat storage device for collecting and storing the ice in the heat storage tank (T), the upstream side and the downstream side of the pumping means (P) are connected, and the supercooling means (42) is connected to the pumping means (P). )) Is provided with a return pipe (49) for returning a part of the heat storage medium pumped toward the upstream side of the pumping means (P).
【請求項2】 請求項1記載の氷蓄熱装置において。圧
送手段(P) の下流側には、該圧送手段(P) から圧送され
た蓄熱媒体を加熱する加熱手段(40)が設けられており、
戻し配管(49)の上流端は加熱手段(40)の下流側に接続さ
れていることを特徴とする氷蓄熱装置。
2. The ice heat storage device according to claim 1, wherein: Downstream of the pumping means (P), heating means (40) for heating the heat storage medium pumped from the pumping means (P) is provided,
An ice heat storage device, wherein an upstream end of the return pipe (49) is connected to a downstream side of the heating means (40).
【請求項3】 請求項2記載の氷蓄熱装置において、 加熱手段(40)と過冷却手段(42)とを接続する配管(45A)
は、戻し配管(49)の接続位置よりも上流側の第1配管(4
5a) と、下流側の第2配管(45b) とで成り、 第2配管(45b) の流路面積と戻し配管(49)の流路面積と
は略同一であることを特徴とする氷蓄熱装置。
3. A pipe (45A) for connecting a heating means (40) and a supercooling means (42) in the ice heat storage device according to claim 2.
Is the first pipe (4) upstream of the connection position of the return pipe (49).
5a) and a downstream second pipe (45b), wherein the flow area of the second pipe (45b) and the flow area of the return pipe (49) are substantially the same. apparatus.
JP19439496A 1996-07-24 1996-07-24 Ice storage device Expired - Fee Related JP3427628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19439496A JP3427628B2 (en) 1996-07-24 1996-07-24 Ice storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19439496A JP3427628B2 (en) 1996-07-24 1996-07-24 Ice storage device

Publications (2)

Publication Number Publication Date
JPH1038327A true JPH1038327A (en) 1998-02-13
JP3427628B2 JP3427628B2 (en) 2003-07-22

Family

ID=16323871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19439496A Expired - Fee Related JP3427628B2 (en) 1996-07-24 1996-07-24 Ice storage device

Country Status (1)

Country Link
JP (1) JP3427628B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068620A (en) * 2013-09-30 2015-04-13 ダイキン工業株式会社 Air conditioner
JP2016125714A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Heat storage type air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068620A (en) * 2013-09-30 2015-04-13 ダイキン工業株式会社 Air conditioner
JP2016125714A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Heat storage type air conditioner

Also Published As

Publication number Publication date
JP3427628B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
JP5327308B2 (en) Hot water supply air conditioning system
EP0855562B1 (en) Air conditioner
CN102597658B (en) Heat pump
CN102597657B (en) Air conditioning device
JP2008224088A (en) Hot water system
US20090223232A1 (en) Defrost system
CN102597661B (en) Air conditioning device
CN102753908B (en) Air conditioning device
JP3427628B2 (en) Ice storage device
JP2004286240A (en) Engine drive heat pump
JP2001004173A (en) Ice storage type air-conditioning device and operation method
JP4906885B2 (en) Refrigeration cycle equipment
JP4399309B2 (en) Ice heat storage device
JP2727754B2 (en) Ice making equipment
JPH1038401A (en) Heat storage type freezer
JP2008145002A (en) Air conditioning device
KR100187774B1 (en) A regenerative cooling system
JP3276013B2 (en) Thermal storage system
JP2001304619A (en) Ice storage type air conditioner
JP3454644B2 (en) Combined refrigeration system
KR101699084B1 (en) Air conditioning system
JP3788391B2 (en) Ice heat storage device
JPH05340653A (en) Ice making device
JPH1047822A (en) Ice heat storage device
JPH0810098B2 (en) Ice making equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees