JPH1036852A - Carbonization thermal decomposition reactor for waste - Google Patents

Carbonization thermal decomposition reactor for waste

Info

Publication number
JPH1036852A
JPH1036852A JP20041296A JP20041296A JPH1036852A JP H1036852 A JPH1036852 A JP H1036852A JP 20041296 A JP20041296 A JP 20041296A JP 20041296 A JP20041296 A JP 20041296A JP H1036852 A JPH1036852 A JP H1036852A
Authority
JP
Japan
Prior art keywords
heating
waste
reactor
gas
reactor body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20041296A
Other languages
Japanese (ja)
Other versions
JP3431407B2 (en
Inventor
Akira Taguchi
彰 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP20041296A priority Critical patent/JP3431407B2/en
Publication of JPH1036852A publication Critical patent/JPH1036852A/en
Application granted granted Critical
Publication of JP3431407B2 publication Critical patent/JP3431407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbonization thermal decomposition reactor for waste which has a simplified structure by constituting a reactor body from a cylinder comprising a plurality of parallel arrayed heating tubes and a fin for connecting the heating tubes to each other. SOLUTION: A reactor body 1 comprises a cylindrical barrel section 19, a plurality of heating tubes arranged parallel to one another within the barrel section, a fin for connecting the heating tubes to each other, and a shelf-like projection section. The heating tube and the end section of the fin are supported and fixed, so as to be hermetically sealed, onto a tube plate 8 for closing both side portions of the reactor body 1. Thus, a carbonization thermal decomposition reactor is provided. A waste A is introduced through a feed port 4 into the reactor body 1 where it is heated, in an oxygen-shielded state, to about 400 to 500 deg.C by a heating gas G flowing through the heating tubes. The waste A stays in the reactor body 1 for about one hr while undergoing agitation and mixing by rotation and consequently is thermally decomposed. As a result, about 75wt.% carbonization gas B and about 25wt.% thermal decomposition residue C are produced. The rotation of the body 1 permits the carbonization-gas B to be introduced through an outlet 16 into a melt combustion apparatus. On the other hand, the thermal decomposition residue C is discharged from an outlet 17 and classified into fine particles and coarse particles, and the fine particles are stored in a silo.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は都市ゴミ等の廃棄物
の乾留熱分解反応器の改良に関するものであり、主とし
て都市ゴミ等の廃棄物の乾留熱分解溶融燃焼処理に利用
されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a dry distillation pyrolysis reactor for waste such as municipal waste, and is mainly used for dry distillation pyrolysis melting and burning of waste such as municipal waste. .

【0002】[0002]

【従来の技術】図6は従前の廃棄物の乾留熱分解に用い
る反応器本体の概要を示すものであり、図7は反応器本
体内の加熱管の配置の一例を示すものである。図6及び
図7に於いて、1は円筒形の反応器本体、2は加熱ガス
入口、2aは加熱ガス入口ケーシング、3は加熱ガス出
口、3aは加熱ガス出口ケーシング、4は廃棄物供給
口、5は熱分解生成物出口、6は鋼板製円筒胴、7は加
熱管、8は管板、8aは支持板、9はベローズ機構であ
る。
2. Description of the Related Art FIG. 6 shows an outline of a conventional reactor body used for dry distillation pyrolysis of waste, and FIG. 7 shows an example of an arrangement of heating tubes in the reactor body. 6 and 7, 1 is a cylindrical reactor main body, 2 is a heated gas inlet, 2a is a heated gas inlet casing, 3 is a heated gas outlet casing, 3a is a heated gas outlet casing, and 4 is a waste supply port. Reference numeral 5 denotes a pyrolysis product outlet, 6 denotes a cylindrical body made of a steel plate, 7 denotes a heating tube, 8 denotes a tube plate, 8a denotes a support plate, and 9 denotes a bellows mechanism.

【0003】而して、廃棄物供給口4から反応器本体1
内へ供給された被乾留物(廃棄物)Aは、空気の遮断下
に於いて加熱管7内を流通する高温加熱ガスGによって
400℃〜500℃の温度に加熱され、これにより所謂
乾留熱分解をされて熱分解生成物に変換される。
[0003] Thus, the reactor body 1 is connected to the waste supply port 4.
The to-be-dried material (waste) A supplied to the inside is heated to a temperature of 400 ° C. to 500 ° C. by the high-temperature heating gas G flowing through the heating pipe 7 while shutting off the air, thereby forming a so-called dry distillation heat. Decomposed and converted to pyrolysis products.

【0004】前記反応器本体1内に形成された熱分解生
成物は、反応器本体1の回動と共に順次熱分解生成物出
口5側へ繰り出され、分離搬出装置(図示省略)に於い
て乾留ガスBと熱分解残渣Cとに分離されたあと、前者
の乾留ガスBは溶融燃焼装置(図示省略)へ導入され
る。また、後者の熱分解残渣Cは分離搬出装置(図示省
略)から取り出されたあと、不燃物の除去処理や固形可
燃物の粉砕処理を経て溶融燃焼装置(図示省略)ヘ供給
され、ここで乾留ガスBと共に約1200℃の温度下で
溶融燃焼される。
The pyrolysis products formed in the reactor main body 1 are sequentially fed out to the pyrolysis product outlet 5 side with the rotation of the reactor main body 1, and are carbonized in a separation / conveyance device (not shown). After being separated into the gas B and the pyrolysis residue C, the former carbonized gas B is introduced into a melting and burning apparatus (not shown). Further, the latter pyrolysis residue C is taken out from a separation / carrying-out device (not shown), and then supplied to a melting and burning device (not shown) through a process of removing incombustibles and a process of pulverizing solid combustibles. It is melted and burned at a temperature of about 1200 ° C. together with the gas B.

【0005】ところで、前記加熱管7内を流れる加熱ガ
スGによって廃棄物Aを加熱し、これを乾留熱分解する
に当っては、加熱ガスGの保有する熱エネルギーを適切
且つ効果的に廃棄物Aへ伝達することが肝要である。即
ち、加熱ガスGから加熱管7の管壁を経て廃棄物Aへ
伝わる熱の総括的な伝達係数を高めること及び廃棄物
Aを出来るだけ均一に所要の温度にまで加熱し、均等に
乾留熱分解させること、等が欠くことのできない要件と
なる。
When the waste A is heated by the heating gas G flowing through the heating pipe 7 and pyrolyzed by pyrolysis, the heat energy of the heating gas G is appropriately and effectively applied to the waste. It is important to communicate to A. That is, the overall transfer coefficient of heat transmitted from the heating gas G to the waste A through the tube wall of the heating tube 7 is increased, and the waste A is heated as uniformly as possible to a required temperature, and the dry distillation heat is evenly distributed. Decomposition is an essential requirement.

【0006】また、廃棄物Aの乾留熱分解はほぼ酸素遮
断下で行わねばならないため、反応器本体1には高度の
気密性が要求され、加熱管7を支持する管板8と加熱管
7との間のシール性に対しては、反応器本体1内が還元
性雰囲気であるのに対して加熱管7内を通る加熱ガスG
が酸化性雰囲気であるため、厳しい管理が必要となる。
何故なら、反応器本体1内の温度と加熱管7を通過する
加熱ガス温度との間には大きな温度差があるため、反応
器本体1と加熱管7とでは熱膨張量が異なってシール性
の確保が困難なうえ、万一酸素の漏入があれば、乾留性
能や乾留生成物に悪影響を及ぼすのみならず、乾留ガス
B中に含まれている塩化水素ガス等の腐蝕性物質が、酸
化性雰囲気の下で加熱管7を含む反応器本体1に対して
激しい腐蝕を起すからである。
Further, since the pyrolysis of the waste A must be carried out almost in the absence of oxygen, the reactor body 1 is required to have a high degree of hermeticity, and the tube plate 8 supporting the heating tube 7 and the heating tube 7 are required. In the sealing property between the heating gas G and the heating gas G passing through the heating pipe 7 while the inside of the reactor body 1 is in a reducing atmosphere.
Because of the oxidizing atmosphere, strict control is required.
This is because there is a large temperature difference between the temperature inside the reactor body 1 and the temperature of the heated gas passing through the heating pipe 7, so that the reactor body 1 and the heating pipe 7 have different amounts of thermal expansion, and the sealing property is different. In addition, if oxygen leaks, it is not only adversely affecting the carbonization performance and carbonization products, but also corrosive substances such as hydrogen chloride gas contained in carbonization gas B, This is because severe corrosion occurs in the reactor body 1 including the heating tube 7 in an oxidizing atmosphere.

【0007】そのため、従前のこの種乾留熱分解用の反
応器本体1に於いては、図6の部分詳細である図8及び
図9に示すように各加熱管7の一端側を管板8へ嵌め込
んでこれを溶接固着すると共に、各加熱管7の他端側に
は伸縮自在なベローズ機構9を設け、当該ベローズ機構
9を介して加熱管7を管板8に対して移動可能に支持す
る構成としている。
For this reason, in the conventional reactor body 1 for this type of dry distillation pyrolysis, one end of each heating tube 7 is connected to a tube sheet 8 as shown in FIGS. The heating pipes 7 are fixed by welding, and the other end of each heating pipe 7 is provided with an extendable bellows mechanism 9 so that the heating pipe 7 can be moved relative to the tube sheet 8 via the bellows mechanism 9. It is designed to support.

【0008】しかし、多数の加熱管7の一端側をベロー
ズ機構9を介して支持固定する構造とすると、反応器本
体1の製造コストが上昇するうえ、ベローズ機構9は、
薄肉金属製である為、不慮の剪断力に対し、損傷を生じ
易く、その補修に手数を要すると云う問題がある。
However, if one end of each of the heating tubes 7 is supported and fixed via the bellows mechanism 9, the manufacturing cost of the reactor body 1 increases, and the bellows mechanism 9 is
Since it is made of a thin metal, there is a problem that damage is apt to occur due to an unexpected shearing force, and it takes time to repair it.

【0009】また、従前の反応器本体1では、鋼製胴部
6の内周面近傍の廃棄物Aを均等に加熱する必要から、
加熱管7が比較的胴部6の内周面近傍に配置されてい
る。そのため、胴部内周面とこれに近い位置にある加熱
管7(最外側の加熱管)との間の空隙Sは比較的狭くな
っており、廃棄物Aの入れ換わりの少ない死角になり易
くなっている。その結果、反応器本体1の運転が継続さ
れる間に廃棄物Aが前記空隙S内へ封じ込められ且つそ
れがそのまま炭化されることになり、反応器本体1内の
乾留熱分解スペースをクリーンな状態に保持することが
著しく困難になると共に、最外側に位置する加熱管の胴
部6と対向する面が廃棄物Aへの伝熱面として機能しな
くなると云う問題がある。更に、放射状に配置されてい
る加熱管同士の間にも隙間があるため、ひもやワイヤー
等の線状廃棄物が絡まり、その絡まりの成長によって前
記隙間が閉塞し、伝熱面が減少すると云う問題も生じ
る。
Further, in the conventional reactor body 1, since the waste A in the vicinity of the inner peripheral surface of the steel body 6 needs to be heated evenly,
The heating tube 7 is relatively arranged near the inner peripheral surface of the body 6. Therefore, the gap S between the inner peripheral surface of the body and the heating tube 7 (outermost heating tube) located at a position close to the inner surface is relatively narrow, and the blind spot in which the waste A is not easily replaced is easily formed. ing. As a result, while the operation of the reactor body 1 is continued, the waste A is sealed in the gap S and carbonized as it is, and the dry distillation pyrolysis space in the reactor body 1 is cleaned. It is extremely difficult to maintain the state, and there is a problem that the surface of the outermost heating tube facing the body 6 does not function as a heat transfer surface to the waste A. Furthermore, since there is a gap between the heating tubes arranged radially, a linear waste such as a cord or a wire is entangled, and the growth of the entanglement closes the gap, thereby reducing the heat transfer surface. Problems arise.

【0010】[0010]

【発明が解決しようとする課題】本発明は従前の乾留熱
分解反応器の反応器本体1に於ける上述の如き問題、即
ち加熱管7と管板8間のシール性の確保が著しく困難
で、乾留熱分解反応器の製造コストの大幅な引下げを図
ることができないうえ、反応器本体1の補修や管理に手
数が掛かること、及び反応器本体1内の乾留熱分解ス
ペースをクリーンな状態に保持することが困難で、円筒
胴6の内周面と最外側の加熱管7との間が固形の熱分解
生成物によって閉塞され、熱伝達効率が低下し易いこと
等の問題を解決せんとするものであり、廃棄物Aの乾留
熱分解を円滑且つ高効率で達成することができ、しかも
加熱管7と管板8との間の気密性を長期に亘って確実に
確保できると共に、構造が簡単で加工・組立性に優れ、
製造原価の大幅な引下げを可能とした廃棄物の乾留熱分
解反応器を提供するものである。
SUMMARY OF THE INVENTION In the present invention, it is extremely difficult to secure the sealing property between the heating tube 7 and the tube sheet 8 as described above in the reactor body 1 of the conventional dry distillation pyrolysis reactor. In addition, the manufacturing cost of the carbonization pyrolysis reactor cannot be significantly reduced, and the repair and management of the reactor body 1 is troublesome, and the carbonization pyrolysis space in the reactor body 1 is kept clean. It is difficult to hold the space between the inner peripheral surface of the cylindrical body 6 and the outermost heating tube 7 because the solid thermal decomposition product blocks the space between the inner surface and the outermost heating tube 7. The pyrolysis of the waste A can be smoothly and efficiently achieved, and the airtightness between the heating pipe 7 and the tube sheet 8 can be reliably ensured for a long period of time. Is simple and has excellent processing and assemblability.
An object of the present invention is to provide a reactor for pyrolysis of waste, which has enabled a significant reduction in production costs.

【0011】[0011]

【課題を解決するための手段】本件発明は、加熱管を通
して加熱ガスを流通させ、当該加熱ガスの熱により円筒
形の反応器本体内の被乾留物を加熱するようにした廃棄
物の乾留熱分解反応器に於いて、前記反応器本体を複数
本の平行に配列した加熱管と、隣接する加熱管同士を連
結するひれとから円筒形に形成したことを発明の基本構
成とするものである。
SUMMARY OF THE INVENTION The present invention relates to a dry distillation heat source for waste, in which a heating gas is circulated through a heating pipe, and the material to be dried in the cylindrical reactor body is heated by the heat of the heating gas. In the cracking reactor, the basic configuration of the present invention is that the reactor body is formed in a cylindrical shape from a plurality of heating tubes arranged in parallel and fins connecting adjacent heating tubes. .

【0012】上記構成とすることにより、本件発明の乾
留熱分解反応器に於いては、反応器本体の長軸方向の膨
張量と加熱管そのものの長軸方向の膨張量とが同一とな
り、加熱管と加熱管の両端部を支持固定する管板との間
に膨張量の差による応力が生じない。その結果、反応器
本体1の乾留熱分解ゾーンの気密性の確保が極めて容易
となる。また、従前の反応器本体のように、円筒胴内周
面と最外側に位置する加熱管との間に固形の熱分解生成
物が挾着されることも皆無となり、反応器本体の乾留熱
分解ゾーンを極めてクリーンな状態に保持することがで
きる。
With the above configuration, in the dry distillation pyrolysis reactor of the present invention, the amount of expansion in the major axis direction of the reactor body and the amount of expansion in the major axis direction of the heating tube itself become the same, There is no stress due to the difference in the amount of expansion between the tube and the tube plate supporting and fixing both ends of the heating tube. As a result, it is extremely easy to secure the airtightness of the dry distillation pyrolysis zone of the reactor body 1. Further, unlike the conventional reactor body, solid thermal decomposition products are not pinched between the inner peripheral surface of the cylindrical barrel and the outermost heating tube, and the dry distillation heat of the reactor body is eliminated. The decomposition zone can be kept very clean.

【0013】[0013]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態を説明する。図1は本発明に係る乾留熱分解反
応器の概要説明図であり、従来例を示す前記図6から図
9と共通する部位には、これと同一の参照番号を付すも
のとする。図1に於いて、1は反応器本体、2は加熱ガ
ス入口、2aは加熱ガス入口ケーシング、3は加熱ガス
出口、3aは加熱ガス出口ケーシング、4は廃棄物供給
口、5は熱分解生成物出口、19は円筒状胴部、7は加
熱管、7aはひれ、8は管板、8aは支持板、10はご
み供給フィーダ、11は反応器本体支持台、12は支持
ローラ、13は回転駆動装置、14はギア、15は分離
搬出装置、16は乾留ガス出口、17は乾留残渣出口、
18は支持架台である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic explanatory view of a dry distillation pyrolysis reactor according to the present invention, and portions common to FIGS. 6 to 9 showing a conventional example are denoted by the same reference numerals. In FIG. 1, 1 is a reactor body, 2 is a heated gas inlet, 2a is a heated gas inlet casing, 3 is a heated gas outlet casing, 3a is a heated gas outlet casing, 4 is a waste supply port, and 5 is a pyrolysis product. A product outlet, 19 is a cylindrical body, 7 is a heating tube, 7a is a fin, 8 is a tube plate, 8a is a support plate, 10 is a refuse supply feeder, 11 is a reactor main body support base, 12 is a support roller, and 13 is a support roller. Rotary drive device, 14 is a gear, 15 is a separation carrying-out device, 16 is a carbonization gas outlet, 17 is a carbonization residue outlet,
Reference numeral 18 denotes a support base.

【0014】前記反応器本体1は、複数本の加熱管7と
ひれ7aとから成る円筒状の胴部19と、その内部に配
設した複数本の加熱管7とひれ7aと支持板8aから成
る複数の棚板状突設部20とから構成されている。即
ち、円筒状の胴部19は、図2に示す如く複数本の加熱
管7を円形状に配列し、隣接する加熱管7同士を適宜の
横幅を有する加熱管7と同長の平板状のひれ7aを介し
て溶接等により相互に連結することにより形成されてい
る。また、棚板状突設部20は、複数本の加熱管7を胴
部19から内方へ向けて直線状に配列し、隣接する加熱
管7同士をひれ7aを介して溶接により相互に連結する
ことにより形成されている。
The reactor main body 1 comprises a cylindrical body 19 comprising a plurality of heating tubes 7 and fins 7a, and a plurality of heating tubes 7, fins 7a and a support plate 8a disposed therein. And a plurality of shelf-shaped protruding portions 20. That is, the cylindrical body 19 has a plurality of heating tubes 7 arranged in a circle as shown in FIG. 2, and the adjacent heating tubes 7 are formed into a flat plate having the same length as the heating tubes 7 having an appropriate width. It is formed by connecting mutually by welding or the like via the fin 7a. Further, the shelf plate-shaped protruding portion 20 arranges a plurality of heating tubes 7 linearly inward from the body portion 19 and connects the adjacent heating tubes 7 to each other by welding via fins 7a. It is formed by doing.

【0015】前記円筒状胴部19及び棚板状突設部20
を形成する各加熱管7及びひれ7aの両端部は、図3に
示す如く管板8へ溶接により固着されており、胴部19
と管板8により形成された円筒形の空間部が廃棄物Aの
乾留熱分解用スペースとなる。また、管板8の両外側に
は、鏡板21と短円筒体22と管板8とから成る空間部
23が形成されており、一方は高温加熱ガスの受入部と
して、他方は低温加熱ガスの排出部として夫々機能する
ものである。
The cylindrical body portion 19 and the shelf-shaped projecting portion 20
The ends of each of the heating tubes 7 and fins 7a which form the pipe are fixed to the tube sheet 8 by welding as shown in FIG.
The cylindrical space formed by the tube sheet 8 and the tube sheet 8 becomes a space for dry distillation pyrolysis of the waste A. Further, on both outer sides of the tube sheet 8, a space portion 23 composed of the end plate 21, the short cylindrical body 22 and the tube sheet 8 is formed, one of which is a receiving portion for high-temperature heating gas, and the other is for receiving low-temperature heating gas. Each functions as a discharge unit.

【0016】尚、加熱管7とひれ7aから胴部19を形
成する方法には、加熱管7とひれ7aを溶接して平らな
板体を形成し、その後これを円筒形に彎曲加工する方法
と、最初から加熱管7とひれ7aを円形状に配列し、そ
れらを順に溶接することにより円筒形の胴部とする方法
とがあるが、本実施形態に於いては前者の工法を採用し
ている。
The body 19 is formed from the heating tube 7 and the fin 7a by welding the heating tube 7 and the fin 7a to form a flat plate, and thereafter bending the plate into a cylindrical shape. From the beginning, there is a method in which the heating tube 7 and the fins 7a are arranged in a circular shape and they are sequentially welded to form a cylindrical body, but in the present embodiment, the former method is adopted. ing.

【0017】また、加熱管7とひれ7aについても、夫
々独立した加熱管7とひれ7aとを溶接するようにして
もよいし、或いはひれ付きの加熱管を用いてこれ等を相
互に溶接することにより、円筒状の胴部とするようにし
てもよい。尚本実施形態に於いては、夫々独立した加熱
管とひれとを溶接することにより、円筒状の胴部19を
形成している。
The heating tube 7 and the fin 7a may be independently welded to the heating tube 7 and the fin 7a, or they may be welded to each other using a finned heating tube. Thus, a cylindrical body may be used. In the present embodiment, the cylindrical body 19 is formed by welding independent heating tubes and fins.

【0018】前記加熱管7とひれ7aとから成る円筒状
胴部19の外周面には、加熱管支持板8aの支持部に作
用する加熱管、取付金物及び廃棄物の自重によって生じ
る曲げ応力減少用の補強用リング24やローラ受け部に
作用するドラム自重によって生じる曲げ応力及び剪断応
力減少用の補強用リング25、ギヤー受け部の補強用リ
ング26等が適宜に設けられており、これ等によって胴
部19の機械的強度の向上が図られている。
On the outer peripheral surface of the cylindrical body 19 comprising the heating tube 7 and the fin 7a, a bending stress reduction caused by the weight of the heating tube, the mounting hardware, and the waste acting on the support portion of the heating tube support plate 8a is provided. And a reinforcing ring 25 for reducing bending stress and shear stress generated by the weight of the drum acting on the roller receiving portion, a reinforcing ring 26 for the gear receiving portion, and the like are appropriately provided. The mechanical strength of the trunk 19 is improved.

【0019】また、前記加熱管7とひれ7aとから成る
棚板状突設部20は、適宜の間隔で支持板8aを設ける
ことにより補強されている。尚、当該棚板状突設部20
は、被乾留物Aの加熱の他に、胴部19の回転時に内部
の被乾留物Aを上方へ持ち上げたあとこれを落下させる
ことにより、被乾留物Aを攪拌する機能を果するもので
ある。
The shelf-like projections 20 composed of the heating tubes 7 and the fins 7a are reinforced by providing support plates 8a at appropriate intervals. Note that the shelf plate-shaped projecting portion 20
In addition to heating the material to be distilled A, the material to be dried A is stirred up by lifting the material to be dried A inside when rotating the body portion 19 and then dropping it. is there.

【0020】図4は、本発明に係る廃棄物乾留熱分解反
応器を用いた廃棄物の乾留熱分解溶融燃焼処理プラント
の一例を示すものである。図4を参照して、トラック等
により搬入されて来た廃棄物Aは先ず廃棄物ピット31
に貯わえられる。この廃棄物ピット31は廃棄物Aの搬
入が数日間途絶えても、溶融燃焼処理プラントの正常な
運転を維持できるだけの容量をもっている。ピット31
内の廃棄物Aはロータリーシュレッダー32により約1
50mm以下の大きさに破砕されたあと、クレーン33
を介して反応器本体1のホッパー35へ移送され、フィ
ーダ10によって順次本体1内へ供給されて行く。尚、
このとき、必要に応じて、下水汚泥タンク34内に貯え
られた下水汚泥もホッパー35内へ供給されて行く。
FIG. 4 illustrates an example of a plant for dry distillation pyrolysis melting and burning of waste using the waste carbonization pyrolysis reactor according to the present invention. Referring to FIG. 4, waste A carried in by a truck or the like first has a waste pit 31.
Is stored in The waste pit 31 has a capacity enough to maintain normal operation of the melting and burning treatment plant even if the introduction of the waste A is interrupted for several days. Pit 31
The waste A inside is reduced to about 1 by the rotary shredder 32.
After being crushed to a size of 50 mm or less, the crane 33
Is transferred to the hopper 35 of the reactor main body 1 via the feeder 10, and is sequentially supplied into the main body 1 by the feeder 10. still,
At this time, the sewage sludge stored in the sewage sludge tank 34 is also supplied into the hopper 35 as necessary.

【0021】本体1内へ供給された廃棄物A等は、ほぼ
酸素が遮断された状態の下で常温から400℃〜500
(中心温度約450℃)の温度に加熱され、約1時間程
度本体1内に、回転による攪拌混合を受け乍ら滞留す
る。
The waste A and the like supplied into the main body 1 are heated from normal temperature to 400.degree.
(The center temperature is about 450 ° C.) and stays in the main body 1 for about 1 hour while being stirred and mixed by rotation.

【0022】前記本体1は水平に対して約1.5度の傾
斜角度で入口側を上方に、出口側を下方に位置せしめた
状態で回転自在に支持されており、運転中は約1〜3R
PMの回転速度で回転駆動される。その結果、本体1内
の廃棄物Aはこの間に熱分解されることになり、乾留ガ
スBと固形の熱分解残渣Cが本体1内に生成される。
The main body 1 is rotatably supported at an inclination angle of about 1.5 degrees with respect to the horizontal, with the inlet side positioned upward and the outlet side positioned downward. 3R
The rotation is driven at the rotation speed of PM. As a result, the waste A in the main body 1 is thermally decomposed during this time, and the dry distillation gas B and the solid pyrolysis residue C are generated in the main body 1.

【0023】尚、本体1内に於ける廃棄物Aの熱分解は
通常約1時間程度で完了し、概ね75wt%の乾留ガス
Bと25wt%の熱分解残渣Cとが生成される。また、
生成された熱分解残渣Cは、本体1内で攪拌・混合され
ることによりほぼ完全に均一化され、一様な大きさの粒
子となる。
The thermal decomposition of the waste A in the main body 1 is usually completed in about one hour, and approximately 75 wt% of the dry distillation gas B and 25 wt% of the thermal decomposition residue C are generated. Also,
The generated pyrolysis residue C is almost completely homogenized by being stirred and mixed in the main body 1, and becomes particles of a uniform size.

【0024】前記反応器本体1内の乾留ガスBと熱分解
残渣Cは、本体1の回動に伴なってこれに隣接する分離
搬出装置15内へ排出され、ここで分離された乾留ガス
Bは、溶融燃焼装置40へ供給され、所謂溶融燃焼が行
なわれる。また、熱分解残渣Cの方は振動コンベア41
上で約450℃の温度から約80℃の温度にまで冷却さ
れたあと、分離器42で細粒と粗大粒に分級される。
尚、前記分級された粗大粒27には砂、ガラス、金属等
の不燃物が多く含まれ、これ等はリサイクルできるよう
に分離される(図示省略)。
The carbonized gas B and the pyrolysis residue C in the reactor main body 1 are discharged into the separation / conveying device 15 adjacent to the main body 1 as the main body 1 rotates, and the carbonized gas B separated here is separated. Is supplied to the melting and burning device 40 to perform so-called melting and burning. In addition, the pyrolysis residue C is obtained from the vibration conveyor 41.
After the above is cooled from a temperature of about 450 ° C. to a temperature of about 80 ° C., it is classified by the separator 42 into fine particles and coarse particles.
The classified coarse particles 27 contain a large amount of incombustible substances such as sand, glass, and metal, which are separated so as to be recyclable (not shown).

【0025】分離器42としては通常5mmサイズの篩
が使用されており、この篩を通った細粒28は一時的に
サイロ44に貯蔵される。又、この細粒28の約30〜
40%は固体の炭素から成る。
As the separator 42, a sieve having a size of 5 mm is usually used, and the fine particles 28 passing through the sieve are temporarily stored in a silo 44. In addition, about 30-
Forty percent consists of solid carbon.

【0026】前記細粒28のうち、粒径が1mm以上の
ものはローラクラッシャ43で微粒化され、サイロ44
にその細粒28と共に貯えられる。そして、サイロ44
内の細粒28は空気輸送によって溶融燃焼装置40へ送
られて、乾留ガスBと共に燃焼される。尚、前記分離器
42の使用によって細粒中の炭素量は約30%増加し、
その結果、発熱量は約10,000kj/kgとなる。
Of the fine particles 28, those having a particle size of 1 mm or more are atomized by a roller crusher 43,
Is stored together with the fine particles 28. And silo 44
The fine particles 28 in the inside are sent to the melting and burning device 40 by pneumatic transportation, and are burned together with the carbonization gas B. The use of the separator 42 increases the amount of carbon in the fine particles by about 30%.
As a result, the calorific value is about 10,000 kj / kg.

【0027】前記乾留ガスBと炭素を含有している細粒
28は溶融燃焼装置40で約1300℃で燃焼され、ガ
ス冷却室45に入る。この燃焼温度は灰の溶融点よりも
100〜150℃高いので、スラグ29は溶融状態で溶
融燃焼装置40から出て、水冷スラグとなる。
The fine particles 28 containing the carbonized gas B and carbon are burned at about 1300 ° C. in the melting and burning apparatus 40 and enter the gas cooling chamber 45. Since this combustion temperature is 100 to 150 ° C. higher than the melting point of the ash, the slag 29 exits the molten combustion device 40 in a molten state and becomes a water-cooled slag.

【0028】前記水冷スラグ30は不活性であるため、
このまヽの状態で処分又は有価物利用することができ
る。また、溶融燃焼装置40内ではその温度と滞留時間
によりすべての有機物が破壊される。更に、溶融燃焼装
置40には、多段階燃焼用空気の供給と組合せた排ガス
再燃焼法、サイクロン燃焼法など、良好な燃焼を維持す
るための各種の公知の手段を使用又は組合せることがで
きる。例えば、平均空気過剰率λ=1.3とすることに
より、燃焼室内の均等な温度分布と攪拌効果によって、
低NOx状態に於ける完全燃焼を達成することができ
る。その結果、スラグ中の未燃炭素は0.2%(重量)
以下に抑えられる。
Since the water-cooled slag 30 is inert,
In this state, it can be disposed or used as valuables. Further, in the melting and burning apparatus 40, all organic substances are destroyed by the temperature and the residence time. Furthermore, various known means for maintaining good combustion, such as an exhaust gas reburning method combined with the supply of multi-stage combustion air and a cyclone combustion method, can be used or combined with the melt combustion apparatus 40. . For example, by setting the average excess air ratio λ = 1.3, the uniform temperature distribution in the combustion chamber and the stirring effect
Complete combustion in low NOx conditions can be achieved. As a result, unburned carbon in slag is 0.2% (weight)
It can be suppressed below.

【0029】排ガス中の熱エネルギーは廃熱ボイラ46
で回収され、発電設備47による発電や地域暖房用に供
せられる。前記廃熱ボイラ46による熱回収によって、
排ガス温度は約200℃まで冷却される。また、排ガス
は、その后、バグフィルター又は電気集塵器等の集塵装
置48で処理され、ダスト成分が除去される。更に、除
去されたダストは、再び溶融燃焼装置40へ戻して溶融
燃焼され、スラグとして取り出される。
The heat energy in the exhaust gas is transferred to a waste heat boiler 46.
And is used for power generation by the power generation equipment 47 and district heating. By the heat recovery by the waste heat boiler 46,
The exhaust gas temperature is cooled to about 200 ° C. Further, the exhaust gas is thereafter processed by a dust collecting device 48 such as a bag filter or an electric dust collector to remove dust components. Further, the removed dust is returned to the melting and burning device 40 to be melted and burned, and is taken out as slag.

【0030】前記排ガスは更に公知の排ガス処理装置4
9例えばスクラバーなどで洗滌され、HClやSO2
どの有害物質が除去される。また、排ガスは、例えば選
択触媒還元法によるNOx除去装置や、活性炭吸着塔4
9などを経てダイオキシン類が除去されたのち、煙突5
0から大気放出される。
The exhaust gas is further subjected to a known exhaust gas treatment device 4.
9 For example, harmful substances such as HCl and SO 2 are removed by washing with a scrubber or the like. Further, the exhaust gas is supplied to, for example, a NOx removal device using a selective catalytic reduction method, an activated carbon adsorption tower 4 or the like.
After the dioxins have been removed through 9 and so on, the chimney 5
It is released to the atmosphere from zero.

【0031】前記乾留熱分解反応器1に於ける廃棄物A
の加熱には、加熱用熱媒体として通常、化石燃料の燃焼
ガスが使用され、この高温加熱ガスGが反応器本体1内
に設置された加熱管7を通過して廃棄物Aを間接加熱す
る。
Waste A in the dry distillation pyrolysis reactor 1
In general, fossil fuel combustion gas is used as a heating medium for heating, and this high-temperature heating gas G passes through a heating pipe 7 installed in the reactor body 1 to indirectly heat the waste A. .

【0032】図5は反応器本体1内の廃棄物Aを加熱す
る高温加熱ガスGの流れを示す配管系統図である。高温
加熱ガスGのループ管路は加熱ガス入口2、加熱管7、
加熱ガス出口3、ループ配管36、ブロアー37、熱交
換器38、バーナ加熱器39等から成っている。
FIG. 5 is a piping diagram showing the flow of the high-temperature heating gas G for heating the waste A in the reactor body 1. The loop path of the high-temperature heating gas G is the heating gas inlet 2, the heating pipe 7,
It comprises a heating gas outlet 3, a loop pipe 36, a blower 37, a heat exchanger 38, a burner heater 39 and the like.

【0033】500〜600℃(通常は520℃)に加
熱された加熱ガスGは、反応器本体1の出口部に隣接す
る加熱ガス入口ケーシング2aから加熱管7内へ入り、
加熱管7を通過する間に廃棄物Aに熱エネルギーを供給
し、250〜350℃(通常は300℃)の温度となっ
て反応器本体1の入口部に隣接する加熱ガス出口ケーシ
ング2b内へ入り、ここからループ配管36へ導出され
て行く。
The heating gas G heated to 500 to 600 ° C. (usually 520 ° C.) enters the heating pipe 7 from the heating gas inlet casing 2 a adjacent to the outlet of the reactor body 1,
Heat energy is supplied to the waste A while passing through the heating pipe 7 to reach a temperature of 250 to 350 ° C. (normally 300 ° C.) and into the heated gas outlet casing 2 b adjacent to the inlet of the reactor body 1. It enters and is led out from here to the loop pipe 36.

【0034】ループ配管36内には加熱ガスGを循環す
るためのブロアー37、ガスを加熱するための熱交換器
38、バーナー加熱器39が設けられている。尚、熱交
換器38には通常公知のシェルアンドチューブ式熱交換
器が使用されており、廃熱ボイラ46から約400℃の
過熱蒸気を取出し、これによって加熱ガスを間接加熱
し、通常300℃にて出口ケーシング2bから戻って来
る加熱ガスを約360℃にまで昇温する。また、加熱ガ
スの加熱に用いた過熱蒸気は、再び廃熱ボイラ46へ戻
される。更に、ループ配管36には、熱交換器38をバ
イパスするバイパス配管36aが設けられており、プラ
ント始動時の蒸気がまだ供給されない時期に使用され
る。
A blower 37 for circulating the heating gas G, a heat exchanger 38 for heating the gas, and a burner heater 39 are provided in the loop pipe 36. A generally known shell-and-tube heat exchanger is used as the heat exchanger 38. Superheated steam of about 400 ° C. is taken out from the waste heat boiler 46, and the heating gas is indirectly heated by this. The temperature of the heated gas returned from the outlet casing 2b is raised to about 360 ° C. The superheated steam used for heating the heating gas is returned to the waste heat boiler 46 again. Further, the loop pipe 36 is provided with a bypass pipe 36a that bypasses the heat exchanger 38, and is used when steam is not supplied yet at the time of starting the plant.

【0035】熱交換器38にて約360℃に昇温された
加熱ガスGはバーナ加熱器39へ入り、ここで化石燃料
(通常はガス)又は油の直接燃焼によって通常520℃
に加熱される。また、化石燃料の燃焼用には空気予熱器
51で約200℃に予熱された新鮮空気が、配管52を
通して供給される。
The heated gas G heated to about 360 ° C. in the heat exchanger 38 enters a burner heater 39, where it is usually heated to 520 ° C. by direct combustion of fossil fuel (usually gas) or oil.
Heated. In addition, fresh air preheated to about 200 ° C. by the air preheater 51 is supplied through a pipe 52 for fossil fuel combustion.

【0036】ループ管路内にはバーナ加熱器39で燃焼
した燃焼ガスが循環し、廃棄物加熱のための熱媒体の作
用をする。このガスは腐蝕性でないため、加熱管7の内
壁が腐蝕されることはない。また、このガスは、バーナ
加熱器39に於いて発生する燃焼ガスの分だけ増量する
ので、余分のガスは配管53を通して抜き出し、煙突5
0へ放出する。尚、このガスは約300℃の温度を有し
ているので、空気予熱器51でバーナー加熱器39用の
燃焼用空気を加熱するために使用される。
The combustion gas burned by the burner heater 39 circulates in the loop pipe, and acts as a heat medium for heating the waste. Since this gas is not corrosive, the inner wall of the heating tube 7 is not corroded. Further, since this gas is increased by an amount corresponding to the combustion gas generated in the burner heater 39, the excess gas is extracted through the pipe 53 and the chimney 5
Release to zero. Since this gas has a temperature of about 300 ° C., it is used for heating the combustion air for the burner heater 39 by the air preheater 51.

【0037】[0037]

【発明の効果】本発明に於いては、加熱管とひれとを連
結した構造体によって反応器本体の円筒状胴部を形成し
ているため、胴部自体の熱膨張が加熱管自体の熱膨張と
なる。その結果、従前の反応器本体のように、胴部と加
熱管との熱膨張差による気密性への悪影響を避けるた
め、加熱管と管板の接続部にベローズ機構を用いると云
うような配慮は全く不要となり、加熱管はその両端部を
管板へ直接に溶接固着することができる。これにより、
反応器本体内の気密性が長期に亘って確実に保持される
と共に、乾留熱分解反応器本体の構造の簡素化及び重量
低下や組立作業性の向上が図れ、反応器本体の製造コス
トの大幅な引下げが可能になると共に、故障の頻度も少
なくなって補修費の削減が図れる。また、反応器本体全
体としての熱膨張は、加熱ガス出口ケーシング部や加熱
ガス入口ケーシング部で従来技術と同様の方法によって
容易に吸収することができ、反応器本体1には熱膨張に
起因する問題が殆んど皆無となる。
According to the present invention, since the cylindrical body of the reactor body is formed by the structure in which the heating tube and the fin are connected, the thermal expansion of the body itself is caused by the heat of the heating tube itself. It becomes swelling. As a result, in order to avoid the adverse effect on the airtightness due to the difference in thermal expansion between the body and the heating tube as in the conventional reactor body, consideration was given to using a bellows mechanism at the connection between the heating tube and the tube plate. Is completely unnecessary, and the heating tube can be directly welded and fixed to both ends of the heating tube. This allows
The airtightness in the reactor main body is reliably maintained for a long time, and the structure of the dry distillation pyrolysis reactor main body can be simplified, the weight can be reduced, and the assembly workability can be improved. In addition to making it possible to reduce the cost, the frequency of failures is reduced and the repair cost can be reduced. Further, the thermal expansion of the entire reactor body can be easily absorbed in the heated gas outlet casing and the heated gas inlet casing by the same method as in the related art, and the reactor body 1 is caused by the thermal expansion. Almost no problems.

【0038】また、本発明では、胴部を形成する加熱管
の外側面は断熱材等で保温されており、廃棄物に対する
熱伝達面として機能することはできないが、従前の反応
器本体に於いても、胴部内壁面と加熱管との間の空間部
は熱分解生成物が固着した状態になっており、加熱管の
外側面は実質的に伝熱面として機能していない。その結
果、加熱管を通過する加熱ガスから廃棄物への熱伝達の
点で、本発明の反応器本体が従前の反応器本体に比較し
て劣ることはなく、しかも本発明では、隣接する加熱管
同士を平板状のひれを介して溶接により連結する構成と
しているため、ひれが伝熱に大きく貢献することにな
り、従前の反応器本体に比較して加熱管数を減少させる
ことができて廃棄物の乾留熱分解スペースが拡大される
ことになる。
In the present invention, the outer surface of the heating tube forming the body is kept warm by a heat insulating material or the like, and cannot function as a heat transfer surface for waste. Even so, the space between the inner wall surface of the body and the heating tube is in a state where the pyrolysis products are fixed, and the outer surface of the heating tube does not substantially function as a heat transfer surface. As a result, the reactor body of the present invention is not inferior to the conventional reactor body in terms of heat transfer from the heating gas passing through the heating pipe to the waste. Since the tubes are connected by welding via flat fins, the fins greatly contribute to the heat transfer, and the number of heating tubes can be reduced as compared with the conventional reactor body. The space for pyrolysis of waste will be expanded.

【0039】更に、本発明に於いては、円筒状の胴部そ
のものを加熱管とひれによって形成しているため、従前
の反応器本体のように鋼板製の胴部内壁面の近傍に加熱
管を配置しなくても、本体内の廃棄物を均等に加熱する
ことができる。その結果、従前の反応器本体のように胴
部内周面と加熱管との間の空隙が所謂死角となり、ここ
に廃棄物が封じ込められて炭化したりするようなことが
皆無となり、本体内の乾留熱分解スペースが常にクリー
ンな状態に保持される。
Further, in the present invention, since the cylindrical body itself is formed by the heating tube and the fin, the heating tube is provided near the inner wall surface of the steel body like the conventional reactor body. Even without disposing, the waste in the main body can be heated evenly. As a result, the gap between the inner peripheral surface of the body and the heating pipe becomes a so-called blind spot as in the case of the conventional reactor main body, and there is no such thing that waste is contained therein and carbonized, and the inside of the main body is eliminated. The pyrolysis space is always kept clean.

【0040】本発明は上述の通り、反応器本体の構造の
簡素化及び乾留熱分解スペースの気密性の確保等の点で
優れた実用的効用を奏するものである。
As described above, the present invention has excellent practical effects in terms of simplification of the structure of the reactor main body and securing of the airtightness of the pyrolysis pyrolysis space.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る廃棄物乾留熱分解反応器の概要説
明図である。
FIG. 1 is a schematic explanatory view of a waste carbonization pyrolysis reactor according to the present invention.

【図2】図1のイ−イ視断面拡大概要図である。FIG. 2 is a schematic enlarged cross-sectional view taken along the line II in FIG.

【図3】図1のP部の部分拡大断面図である。FIG. 3 is a partially enlarged cross-sectional view of a portion P in FIG. 1;

【図4】本発明に係る廃棄物乾留熱分解反応器を用いた
廃棄物乾留熱分解溶融燃焼処理プラントの説明図であ
る。
FIG. 4 is an explanatory view of a waste carbonization pyrolysis melting and burning treatment plant using the waste carbonization pyrolysis reactor according to the present invention.

【図5】廃棄物乾留熱分解反応器の加熱ガス系統の説明
図である。
FIG. 5 is an explanatory diagram of a heating gas system of a waste carbonization pyrolysis reactor.

【図6】従前の廃棄物乾留熱分解反応器の反応器本体の
断面概要図である。
FIG. 6 is a schematic sectional view of a reactor body of a conventional waste carbonization pyrolysis reactor.

【図7】図6のロ−ロ視断面図である。FIG. 7 is a sectional view taken along the roll of FIG. 6;

【図8】図6のQ部の部分拡大図である。8 is a partially enlarged view of a portion Q in FIG. 6;

【図9】図6のR部の部分拡大図である。FIG. 9 is a partially enlarged view of a portion R in FIG. 6;

【符号の説明】[Explanation of symbols]

Aは被乾留物(廃棄物)、Bは乾留ガス、Cは熱分解残
渣、Gは加熱ガス、1は反応器本体、2は加熱ガス入
口、2aは入口ケーシング、3は加熱ガス出口、3aは
出口ケーシング、4は廃棄物供給口、5は熱分解生成物
出口、7は加熱管、7aはひれ、8は管板、8aは支持
板、10はごみ供給フィーダ、11は反応器本体支持
台、12は支持ローラ、13は回転駆動装置、14はギ
アー、15は分離搬出装置、16は乾留ガス出口、17
は乾留残渣出口、18は支持架台、19は円筒状の胴
部、20は棚板状の突設部、21は鏡板、22は短円筒
体、23は空間部、24は補強用リング、25は補強用
リング、26は補強用リング、27は粗大粒、28は細
粒、29はスラグ、30は水冷スラグ、31は廃棄物ピ
ット、32はロータリシュレッター、33はクレーン、
34は下水汚泥タンク、35はホッパー、36はループ
配管、36aはバイパス管路、37はブロアー、38は
熱交換器、39はバーナ加熱器、40は溶融燃焼装置、
41は振動コンベア、42は分離器、43はローラクラ
ッシャ、44はサイロ、45はガス冷却室、46は廃熱
ボイラ、47は発電設備、48は集塵装置、49は活性
炭吸着塔等の処理装置、50は煙突、51は空気予熱
器、52は配管、53は配管。
A is a substance to be carbonized (waste), B is a carbonized gas, C is a pyrolysis residue, G is a heated gas, 1 is a reactor body, 2 is a heated gas inlet, 2a is an inlet casing, 3 is a heated gas outlet, 3a Is an outlet casing, 4 is a waste supply port, 5 is a pyrolysis product outlet, 7 is a heating tube, 7a is a fin, 8 is a tube plate, 8a is a support plate, 10 is a refuse supply feeder, and 11 is a reactor main body support. Table, 12 is a supporting roller, 13 is a rotary drive device, 14 is a gear, 15 is a separation / conveyance device, 16 is a carbonization gas outlet,
Is a carbonization residue outlet, 18 is a support base, 19 is a cylindrical body, 20 is a shelf-shaped protruding portion, 21 is a head plate, 22 is a short cylinder, 23 is a space, 24 is a reinforcing ring, 25 Is a reinforcing ring, 26 is a reinforcing ring, 27 is a coarse grain, 28 is a fine grain, 29 is a slag, 30 is a water-cooled slag, 31 is a waste pit, 32 is a rotary shletter, 33 is a crane,
34 is a sewage sludge tank, 35 is a hopper, 36 is a loop pipe, 36a is a bypass pipe, 37 is a blower, 38 is a heat exchanger, 39 is a burner heater, 40 is a melting and burning device,
41 is a vibration conveyor, 42 is a separator, 43 is a roller crusher, 44 is a silo, 45 is a gas cooling room, 46 is a waste heat boiler, 47 is a power generation facility, 48 is a dust collector, 49 is a treatment of an activated carbon adsorption tower, etc. The apparatus, 50 is a chimney, 51 is an air preheater, 52 is piping, and 53 is piping.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加熱管を通して加熱ガスを流通させ、当
該加熱ガスの熱により反応器本体内の被乾留物を加熱す
るようにした廃棄物の乾留熱分解反応器に於いて、前記
反応器本体を複数本の平行に配列した加熱管と、隣接す
る加熱管同士を連結するひれとから円筒形に形成したこ
とを特徴とする廃棄物の乾留熱分解反応器。
In a waste pyrolysis reactor for waste, wherein a heating gas is circulated through a heating pipe and heat of the heating gas heats a material to be dry-distilled in the reactor body, the reactor body is Characterized in that the reactor is formed into a cylindrical shape from a plurality of heating tubes arranged in parallel and fins connecting adjacent heating tubes to each other.
【請求項2】 加熱管及びひれの両端部を反応器本体の
両側部を閉鎖する管板へ溶接により気密状に支持固定す
る構成とした請求項1に記載の廃棄物の乾留熱分解反応
器。
2. The dry distillation pyrolysis reactor for waste according to claim 1, wherein both ends of the heating tube and the fin are air-tightly supported and fixed by welding to a tube plate closing both sides of the reactor body. .
JP20041296A 1996-07-30 1996-07-30 Dry distillation pyrolysis reactor for waste Expired - Fee Related JP3431407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20041296A JP3431407B2 (en) 1996-07-30 1996-07-30 Dry distillation pyrolysis reactor for waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20041296A JP3431407B2 (en) 1996-07-30 1996-07-30 Dry distillation pyrolysis reactor for waste

Publications (2)

Publication Number Publication Date
JPH1036852A true JPH1036852A (en) 1998-02-10
JP3431407B2 JP3431407B2 (en) 2003-07-28

Family

ID=16423897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20041296A Expired - Fee Related JP3431407B2 (en) 1996-07-30 1996-07-30 Dry distillation pyrolysis reactor for waste

Country Status (1)

Country Link
JP (1) JP3431407B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100577927B1 (en) * 1999-09-10 2006-05-09 미쓰이조오센가부시끼가이샤 Waste treatment facility with pyrolysis reactor
JP2017214497A (en) * 2016-06-01 2017-12-07 株式会社エム・アイ・エス Carbonization gasifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100577927B1 (en) * 1999-09-10 2006-05-09 미쓰이조오센가부시끼가이샤 Waste treatment facility with pyrolysis reactor
JP2017214497A (en) * 2016-06-01 2017-12-07 株式会社エム・アイ・エス Carbonization gasifier

Also Published As

Publication number Publication date
JP3431407B2 (en) 2003-07-28

Similar Documents

Publication Publication Date Title
JPH1036852A (en) Carbonization thermal decomposition reactor for waste
JP2003279013A (en) Waste gasifying and fusing system
JP3639404B2 (en) Waste carbonization pyrolysis melting combustion equipment
JPH0849822A (en) Device and method for treating waste
JP3431396B2 (en) Method and apparatus for pyrolysis of waste
JP2007057113A (en) Vertical refuse incinerator provided with water tube wall
JP3732640B2 (en) Waste pyrolysis melting combustion equipment
JPH10311526A (en) Horizontal high temperature air heater and waste treating apparatus
JP3550265B2 (en) Waste treatment equipment
JPH102519A (en) Waste pyrolysis drum and method of pyrolysis
JPH1082511A (en) Thermal decomposition reactor with heat transfer tube
JPH10205731A (en) Thermal decomposition reactor and waste treatment device
JP3686152B2 (en) Pyrolysis reactor
JPH09189410A (en) Heat insulation device for thermal decomposition gas piping
JP2004077081A (en) Waste treatment equipment
JP2000213716A (en) Waste disposal plant
JP2955179B2 (en) Rotary incinerator and method of operating the same
JPH102526A (en) Pyrolysis reactor for waste disposing apparatus
JPH10332118A (en) Thermally decomposing method for waste and thermally decomposing reactor
JPH108063A (en) Vertical thermal cracking reaction furnace
JP2000246210A (en) Method and apparatus for maintenance of pyrolysis drum apparatus
JPH10246413A (en) Incinerator for waste and method
JPH1019218A (en) Vertical thermal decomposition reactor
JPH1082510A (en) Thermal decomposition reactor with heat transfer surface and waste treatment apparatus
JPH1114023A (en) Method of transferring powder carbon and equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees