JPH1034797A - Transparent conductive laminate and manufacture thereof - Google Patents

Transparent conductive laminate and manufacture thereof

Info

Publication number
JPH1034797A
JPH1034797A JP8198656A JP19865696A JPH1034797A JP H1034797 A JPH1034797 A JP H1034797A JP 8198656 A JP8198656 A JP 8198656A JP 19865696 A JP19865696 A JP 19865696A JP H1034797 A JPH1034797 A JP H1034797A
Authority
JP
Japan
Prior art keywords
transparent conductive
film layer
thin film
conductive film
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8198656A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sakai
▲祥▼浩 坂井
Masato Koyama
正人 小山
Masaaki Kikkai
正彰 吉開
Yuichiro Harada
祐一郎 原田
Akira Suzuki
彰 鈴木
Akiyoshi Nakajima
明美 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP8198656A priority Critical patent/JPH1034797A/en
Publication of JPH1034797A publication Critical patent/JPH1034797A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve anti-environmental property with inexpensive metal by laminating a transparent conductive thin film layer consisting mainly of indium oxide on one major surface of a transparent polymeric substrate, and laminating a metal thin film layer consisting of copper after the lapse of a specific period of time and being exposed in an atmospheric ambient once. SOLUTION: A transparent conductive film layer consisting mainly of at least indium oxide is laminated on one major surface of a transparent polymeric substrate, e.g. polyethylene terephthalate film. The transparent conductive film layer is formed mainly of indium oxide; however, it may contain 3-50wt.% tin allowing for lowering of resistivity or improvement of the film quality. In the next place, after forming the transparent conductive film layer, e.g. five seconds later, gas used during the period of forming indium tin oxide is interrupted for laminating a metal thin film layer consisting of copper as a second layer as maintaining the degree of vacuum. After the formation of the transparent conductive film layer, it is exposed in atmosphere once to then be evacuated again so as to form a metal thin film layer consisting of copper as a second layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は透明導電性積層体お
よびその製造方法に関する。より詳しくは本発明はエレ
クトロルミネッセンスディスプレイの透明電極として好
適に使用できる、耐環境性に優れた透明導電性積層体お
よびその製造方法に関する。
The present invention relates to a transparent conductive laminate and a method for producing the same. More specifically, the present invention relates to a transparent conductive laminate excellent in environmental resistance, which can be suitably used as a transparent electrode of an electroluminescence display, and a method for producing the same.

【0002】[0002]

【従来の技術】透明導電性積層体は、液晶ディスプレ
イ、エレクトロルミネッセンスディスプレイ、エレクト
ロクロミックディスプレイなどの表示素子の電極、電磁
波シールドの電磁波遮蔽膜、あるいは透明タッチパネル
などの入力装置の電極として利用されている。従来の公
知の透明導電性積層体としては、金、パラジウム、白金
などの金属薄膜と酸化インジウム、酸化錫、酸化亜鉛な
どの酸化物薄膜の積層体が知られている。
2. Description of the Related Art A transparent conductive laminate is used as an electrode of a display element such as a liquid crystal display, an electroluminescence display, an electrochromic display, an electromagnetic wave shielding film of an electromagnetic wave shield, or an electrode of an input device such as a transparent touch panel. . As a conventionally known transparent conductive laminate, a laminate of a metal thin film such as gold, palladium, and platinum and an oxide thin film such as indium oxide, tin oxide, and zinc oxide is known.

【0003】エレクトロルミネッセンスディスプレイは
透明基体上に透明導電膜を形成した透明導電性基体をベ
ースに、上記透明導電膜上に発光体層、絶縁層および背
面電極を順次形成し、更に全体を透明防湿層で被覆した
構造のものがよく知られている。発光体層には硫化亜
鉛、硫化カドミウム、セレン化亜鉛などが用いられ、絶
縁層には誘電率の高い酸化イットリウム、窒化シリコ
ン、酸化タリウムなどが用いられ、背面電極にはアルミ
ニウムが用いられている。
An electroluminescent display is based on a transparent conductive substrate having a transparent conductive film formed on a transparent substrate, and a luminescent layer, an insulating layer, and a back electrode are sequentially formed on the transparent conductive film. Structures coated with layers are well known. The light-emitting layer is made of zinc sulfide, cadmium sulfide, zinc selenide, etc., the insulating layer is made of yttrium oxide, silicon nitride, thallium oxide, etc. having a high dielectric constant, and the back electrode is made of aluminum. .

【0004】上記透明導電性基体には、発光体層で発光
した可視光を無駄なく外部に放出させるために透明性に
優れている事、長時間の使用に耐えられる事が要求され
る。
The transparent conductive substrate is required to have excellent transparency in order to emit the visible light emitted from the light emitting layer to the outside without waste, and to be able to withstand long-time use.

【0005】従来の透明導電性基体は、ガラス基体にし
たものが主流で、基体を高温に加熱する事により化学的
に安定な透明導電膜層を形成し、透明性および耐環境性
に優れた透明導電性基体が容易に得られていた。しかし
ながら、ガラス基体では割れる、重い、厚いといった問
題があり、これを解決できる高分子基体での透明電極が
強く求められてきた。
[0005] Conventional transparent conductive substrates are mainly glass substrates. By heating the substrate to a high temperature, a chemically stable transparent conductive film layer is formed, which is excellent in transparency and environmental resistance. A transparent conductive substrate was easily obtained. However, the glass substrate has problems such as cracking, heavy weight, and thickness, and there has been a strong demand for a transparent electrode using a polymer substrate that can solve this problem.

【0006】[0006]

【発明が解決しようとする課題】しかし、透明高分子基
体を使用すると、透明導電膜層を形成する際、基体温度
は高分子基体の耐熱温度に制限されるため、形成温度を
低温化せざるを得ない。そのため、耐環境性に優れた透
明導電膜層を形成するのは容易ではない。
However, when a transparent polymer substrate is used, when forming a transparent conductive film layer, the substrate temperature is limited to the heat-resistant temperature of the polymer substrate. Not get. Therefore, it is not easy to form a transparent conductive film layer having excellent environmental resistance.

【0007】エレクトロルミネッセンス用透明導電性基
体としては、少なくとも可視光75%以上、表面抵抗1
000Ω/□以下が要求される。主として酸化インジウ
ムからなる透明導電膜層を10nm以上形成すれば、可
視光および表面抵抗は満足するが、これをエレクトロル
ミネッセンスディスプレイ用透明電極として使用する
と、発光体層と透明導電膜層とが直接接触するため、電
圧を印加して長時間使用すると界面が劣化し発光輝度が
早期減退するという問題があった。
As a transparent conductive substrate for electroluminescence, at least 75% or more of visible light and a surface resistance of 1
000Ω / □ or less is required. When a transparent conductive film layer mainly composed of indium oxide is formed to a thickness of 10 nm or more, visible light and surface resistance are satisfied. However, when this is used as a transparent electrode for an electroluminescence display, the luminescent layer and the transparent conductive film layer are in direct contact. Therefore, there is a problem in that if the voltage is applied and the device is used for a long period of time, the interface is deteriorated and the light emission luminance is reduced at an early stage.

【0008】この界面の劣化を抑制する方法として、透
明導電膜層上にパラジウム薄膜の積層法(特開昭62−
18254号公報)が開発されたが、高価な材料なため
業界からは安価でかつ耐環境性に優れたエレクトロルミ
ネッセンスディスプレイ用透明導電性基体の開発を強く
求められた。
As a method of suppressing the deterioration of the interface, a method of laminating a palladium thin film on a transparent conductive film layer (Japanese Patent Laid-Open No.
No. 18254) was developed, but the industry has strongly demanded the development of a transparent conductive substrate for an electroluminescent display which is inexpensive and excellent in environmental resistance because of its expensive material.

【0009】これに対し、本発明者らは、透明高分子基
体(A)の一方の主面に、少なくとも主として酸化イン
ジウムからなる透明導電膜層(B)と銅からなる金属薄
膜層(C)を形成する事により、耐環境性に優れたエレ
クトロルミネッセンスディスプレイ用透明導電性基体を
安価に提供できる事を見いだした。ところが、驚くべき
事に、ロールツーロール型の多極式スパッタリング装置
を用いて、高分子基体上(A)に主として酸化インジウ
ムからなる透明導電膜層(B)と銅からなる金属薄膜層
(C)を連続形成したところ、耐環境性が低下しやすい
ことが判明した。
On the other hand, the present inventors have proposed that a transparent conductive film layer (B) composed mainly of indium oxide and a metal thin film layer (C) composed mainly of copper are provided on one main surface of the transparent polymer substrate (A). It has been found that by forming a transparent conductive substrate, a transparent conductive substrate for an electroluminescence display having excellent environmental resistance can be provided at low cost. However, surprisingly, using a roll-to-roll type multipolar sputtering apparatus, a transparent conductive film layer (B) mainly composed of indium oxide and a metal thin film layer (C) mainly composed of indium oxide were formed on the polymer substrate (A). ) Formed continuously, it was found that the environmental resistance was likely to decrease.

【0010】この原因について本発明者らは、鋭意検討
した結果、透明導電膜層中のインジウム成分と金属薄膜
層の銅成分との間での反応により、インジウムと銅の複
合酸化物が形成され、その結果、エレクトロルミネッセ
ンス発光層である硫化亜鉛あるいは硫化カドミウムとの
界面での劣化が生じ、発光輝度が早期減衰してしまう事
を見いだした。さらに、透明導電膜層を完全に安定させ
た後、金属薄膜層を形成する、即ち、透明導電膜層を形
成後、5秒以上経過した後、金属薄膜層を積層するか、
もしくは透明導電膜層を形成後、一度大気雰囲気にさら
した後、金属薄膜層を積層する事により、耐環境性が著
しく向上することを見いだした。
The present inventors have conducted intensive studies on the cause, and as a result, a reaction between the indium component in the transparent conductive film layer and the copper component in the metal thin film layer resulted in the formation of a composite oxide of indium and copper. As a result, it has been found that deterioration occurs at the interface with zinc sulfide or cadmium sulfide as the electroluminescence light emitting layer, and the light emission luminance is attenuated early. Furthermore, after completely stabilizing the transparent conductive film layer, the metal thin film layer is formed, that is, after forming the transparent conductive film layer, after 5 seconds or more, the metal thin film layer is laminated,
Alternatively, after forming a transparent conductive film layer, once exposing it to the air atmosphere, and then laminating a metal thin film layer, it has been found that environmental resistance is remarkably improved.

【0011】本発明の目的は、従来の技術で解決できな
かった問題を解消し、すなわち、安価な金属薄膜の積層
体の製造方法を確立させる事により、耐環境性を改善
し、かつ可視光75%以上、表面抵抗1000Ω/□以
下の透明導電性積層体を製造する事である。
An object of the present invention is to solve the problems that could not be solved by the prior art, that is, to improve the environmental resistance and to improve the visible light by establishing a method for manufacturing an inexpensive metal thin film laminate. The purpose is to produce a transparent conductive laminate having a surface resistance of 75% or more and a surface resistance of 1000Ω / □ or less.

【0012】[0012]

【課題を解決するための手段】本発明者らは、従来の問
題を解消するため、鋭意検討を重ねた結果、透明高分子
基体(A)の一方の主面に、少なくとも、主として酸化
インジウムからなる透明導電膜層(B)と、銅からなる
金属薄膜層(C)とを、ABCなる構成で積層する際、
透明導電膜層を形成後、5秒以上経過した後もしくは一
度大気雰囲気にさらした後、金属薄膜層を積層するとい
う製造方法で、安価な金属で耐環境性に優れた透明導電
性積層体になる事を見いだし本発明を完成させた。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the conventional problems, and as a result, at least one of the main surfaces of the transparent polymer substrate (A) has been mainly made of indium oxide. When the transparent conductive film layer (B) and the metal thin film layer (C) made of copper are laminated in an ABC configuration,
After the transparent conductive film layer is formed, after 5 seconds or more or once exposed to the air atmosphere, the manufacturing method of laminating the metal thin film layer makes it possible to produce a transparent conductive laminate excellent in environmental resistance with inexpensive metal. The present invention has been completed and the present invention has been completed.

【0013】本発明の第一の要旨は、透明高分子基体
(A)の一方の主面に、少なくとも、主として酸化イン
ジウムからなる透明導電膜層(B)を積層し、該透明導
電膜層(B)の上に銅からなる金属薄膜層(C)を積層
するに際して、該透明導電膜層(B)を形成後、5秒以
上経過した後または一度大気雰囲気にさらした後、該金
属薄膜層(C)を積層することを特徴とする透明導電性
積層体の製造方法であり、第二の要旨は、上記した方法
によって得られた透明導電性積層体、特にエレクトロル
ミネッセンスディスプレイの透明電極用透明導電性積層
体であり、第三の要旨は、透明高分子基体(A)の一方
の主面に、少なくとも、主として酸化インジウムからな
る透明導電膜層(B)を積層し、該透明導電膜層(B)
上に銅からなる金属薄膜層(C)を積層してなり、かつ
X線回折分析法において結晶ピークが現れないことを特
徴とする透明導電性積層体である。
The first gist of the present invention is that a transparent conductive film layer (B) mainly made of indium oxide is laminated on at least one main surface of a transparent polymer substrate (A). When laminating a metal thin film layer (C) made of copper on B), after forming the transparent conductive film layer (B), after elapse of 5 seconds or more, or once exposed to the air atmosphere, A second aspect of the present invention is a method for producing a transparent conductive laminate, comprising laminating (C) a transparent conductive laminate obtained by the above method, particularly a transparent electrode for a transparent electrode of an electroluminescence display. The third point is that a transparent conductive layer (B) mainly made of indium oxide is laminated at least on one main surface of the transparent polymer substrate (A). (B)
A transparent conductive laminate characterized in that a metal thin film layer (C) made of copper is laminated thereon and no crystal peak appears in X-ray diffraction analysis.

【0014】[0014]

【発明の実施の形態】高分子基体としては、特に限定は
ないが、例えば、ポリエチレンテレフタレート、ポリエ
ーテルサルフォン、ポリアリレート、ポリアクリレー
ト、ポリカーボネート、ポリエーテルエーテルケトン、
ポリエチレン、ポリエステル、ポリプロピレン、ポリア
ミド、ポリイミド、ポリフッ化ビニル等のホモポリマ
ー、およびこれら樹脂のモノマーと共重合可能なモノマ
ーとのコポリマー等から成る高分子基体が挙げられる。
これら高分子基体は未延伸、一軸延伸、二軸延伸の何れ
でも良い。また、高分子基体中もしくは表面上に公知の
添加剤、例えば易滑剤、帯電防止剤、ハードコート剤、
防湿コート剤、ガスバリアコート剤、腐食剤などがそれ
ぞれ添加もしくは積層されていても良い。また、高分子
基体に公知の表面処理、例えばコロナ処理、粗面化処
理、アンカーコートなどが施されていても良い。高分子
基体の厚みは特に限定はないが、作業上通常10〜25
0μmが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The polymer substrate is not particularly limited, but examples thereof include polyethylene terephthalate, polyether sulfone, polyarylate, polyacrylate, polycarbonate, polyether ether ketone,
Examples include a polymer substrate made of a homopolymer such as polyethylene, polyester, polypropylene, polyamide, polyimide, or polyvinyl fluoride, and a copolymer of a monomer of these resins with a copolymerizable monomer.
These polymer substrates may be unstretched, uniaxially stretched, or biaxially stretched. In addition, known additives in the polymer substrate or on the surface, for example, a lubricant, an antistatic agent, a hard coat agent,
A moisture-proof coating agent, a gas barrier coating agent, a corrosive agent and the like may be added or laminated. Further, the polymer substrate may be subjected to a known surface treatment, for example, a corona treatment, a roughening treatment, an anchor coat, or the like. Although the thickness of the polymer substrate is not particularly limited, it is usually 10-25
0 μm is preferred.

【0015】透明導電膜層は主として酸化インジウムか
ら形成されるが、抵抗率の低下や膜質改善のために錫を
3〜50重量%含有しても良い。また、膜厚は通常10
〜200nmが好ましい。この厚みは表面抵抗および可
視光線透過率に影響するため、要求される表面抵抗と可
視光線透過率によって厚みが決定する。
The transparent conductive film layer is mainly formed of indium oxide, but may contain 3 to 50% by weight of tin to reduce the resistivity and improve the film quality. The film thickness is usually 10
~ 200 nm is preferred. Since this thickness affects the surface resistance and the visible light transmittance, the thickness is determined by the required surface resistance and visible light transmittance.

【0016】透明導電膜層の成膜方法としては、真空蒸
着法、スパッタリング法、イオンプレーティング法とい
った従来の公知技術のいずれも採用できる。スパッタリ
ング法においては、ターゲットに酸化インジウムあるい
は錫を含有した酸化インジウムを使用しても、インジウ
ムあるいはインジウム錫合金を使用しても良い。
As a method for forming the transparent conductive film layer, any of the conventionally known techniques such as a vacuum deposition method, a sputtering method and an ion plating method can be adopted. In the sputtering method, indium oxide containing indium oxide or tin may be used as a target, or indium or an indium tin alloy may be used.

【0017】銅からなる金属薄膜層の成膜方法において
も、上記した成膜方法が利用できる。また、膜厚は通常
1〜20nmが好ましい。1nmより薄いものは耐環境
性の効果が少なく、20nmよりも厚いものは透明性が
損なわれる。すなわち、厚みは耐環境性を損なわない範
囲で経済性を考慮しなるべく薄い方が好ましい。
The above-described film forming method can also be used for forming a metal thin film layer made of copper. The thickness is usually preferably 1 to 20 nm. If it is thinner than 1 nm, the effect of environmental resistance is small, and if it is thicker than 20 nm, transparency is impaired. That is, the thickness is preferably as thin as possible in consideration of economy, as long as the environment resistance is not impaired.

【0018】透明導電膜層(B)の形成後、金属薄膜層
(C)を形成するまでの時間は5秒以上が好ましい。5
秒未満ではインジウムと銅の複合酸化物が形成されるた
め好ましくない。該複合酸化物の存在はX線回折分析に
おいて、インジウムや銅のピーク以外の第三の結晶ピー
クの検出によって推定できる。また、一度大気雰囲気に
さらす場合は、大気圧に戻せばよく、直後に真空引きを
行って、金属薄膜層を積層して良い。
The time from the formation of the transparent conductive film layer (B) to the formation of the metal thin film layer (C) is preferably 5 seconds or more. 5
If the time is less than seconds, a composite oxide of indium and copper is formed, which is not preferable. The presence of the composite oxide can be estimated by X-ray diffraction analysis by detecting a third crystal peak other than the indium and copper peaks. Further, when the metal thin film layer is once exposed to the atmosphere, the pressure may be returned to the atmospheric pressure.

【0019】上記の方法により得られた透明導電性積層
体は、耐環境性を更に向上させるために、熱処理を施し
ても良い。熱処理温度は、通常200℃以下である。
The transparent conductive laminate obtained by the above method may be subjected to a heat treatment in order to further improve environmental resistance. The heat treatment temperature is usually 200 ° C. or less.

【0020】[0020]

【実施例】以下に本発明を実施例により詳細に説明す
る。 実施例1 125μm厚のポリエチレンテレフタレートフィルムの
一方の面に、第一層として、インジウム錫酸化物を30
nm形成した(使用ターゲットは20重量%錫が含有し
たインジウム錫合金で、反応ガスはアルゴンガスと酸素
ガスを10:4の割合で導入し、0.4Pa雰囲気下で
DCマグネトロンスパッタリング法により成膜)。その
5秒後に、インジウム錫酸化物形成時に使用したガスを
遮断し、真空度は保ったまま、第二層として、銅を2n
m積層させ(反応ガスはアルゴンガスのみを導入し、
0.4Pa雰囲気下でDCマグネトロンスパッタリング
法により成膜)2層構造の透明導電性積層体を作製し
た。
The present invention will be described below in detail with reference to examples. Example 1 On one surface of a polyethylene terephthalate film having a thickness of 125 μm, 30 indium tin oxide was used as a first layer.
(The target used was an indium tin alloy containing 20% by weight of tin, the reaction gas was argon gas and oxygen gas introduced at a ratio of 10: 4, and the film was formed by DC magnetron sputtering under an atmosphere of 0.4 Pa. ). Five seconds later, the gas used during the formation of indium tin oxide was shut off, and 2 n of copper was used as the second layer while maintaining the degree of vacuum.
(reaction gas is introduced only argon gas,
A film was formed by DC magnetron sputtering under an atmosphere of 0.4 Pa) to produce a transparent conductive laminate having a two-layer structure.

【0021】実施例2 実施例1の第1層目形成後、一度大気に曝してから再度
真空に引いて、第二層目の銅を形成した以外は実施例1
と同じ条件で透明導電性積層体を作製した。
Example 2 Example 1 was repeated except that after forming the first layer of Example 1, the film was once exposed to the atmosphere and then evacuated again to form the second layer of copper.
Under the same conditions as above, a transparent conductive laminate was produced.

【0022】実施例3 実施例1の第二層目の銅の膜厚を1nmとした以外は実
施例1と同じ条件で透明導電性積層体を作製した。
Example 3 A transparent conductive laminate was produced under the same conditions as in Example 1 except that the thickness of the second layer copper was changed to 1 nm.

【0023】実施例4 実施例1の第二層目の銅の膜厚を5nmとした以外は実
施例1と同じ条件で透明導電性積層体を作製した。
Example 4 A transparent conductive laminate was produced under the same conditions as in Example 1 except that the thickness of the second layer copper was changed to 5 nm.

【0024】実施例5 実施例1の第二層目の銅の膜厚を10nmとした以外は
実施例1と同じ条件で透明導電性積層体を作製した。
Example 5 A transparent conductive laminate was produced under the same conditions as in Example 1 except that the thickness of the second layer copper of Example 1 was changed to 10 nm.

【0025】実施例6 実施例1の第一層のインジウム錫酸化物の膜厚を10n
mとした以外は実施例1と同じ条件で透明導電性積層体
を作製した。
Example 6 The film thickness of the first layer of indium tin oxide of Example 1 was 10 n.
A transparent conductive laminate was produced under the same conditions as in Example 1 except that m was used.

【0026】比較例1 実施例1の第1層目と第二層目を連続製造した以外は実
施例1と同じ条件で透明導電性積層体を作製した。
Comparative Example 1 A transparent conductive laminate was produced under the same conditions as in Example 1 except that the first layer and the second layer of Example 1 were continuously manufactured.

【0027】比較例2 実施例1の第二層目を形成しない以外は実施例1と同じ
条件で1層構造の透明導電性積層体を作製した。
Comparative Example 2 A transparent conductive laminate having a one-layer structure was produced under the same conditions as in Example 1 except that the second layer of Example 1 was not formed.

【0028】比較例3 実施例1の第二層目の銅の膜厚を25nmとした以外は
実施例1と同じ条件で透明導電性積層体を作製した。
Comparative Example 3 A transparent conductive laminate was produced under the same conditions as in Example 1 except that the thickness of the second layer copper was 25 nm.

【0029】比較例4 実施例1の第一層のインジウム錫酸化物の膜厚を5nm
とした以外は実施例1と同じ条件で透明導電性積層体を
作製した。
Comparative Example 4 The thickness of the first layer of indium tin oxide in Example 1 was 5 nm.
A transparent conductive laminate was produced under the same conditions as in Example 1 except for the above.

【0030】比較例5 実施例1の第一層のインジウム錫酸化物の膜厚を300
nmとした以外は実施例1と同じ条件で透明導電性積層
体を作製した。
Comparative Example 5 The film thickness of the first layer of indium tin oxide of Example 1 was 300
A transparent conductive laminate was produced under the same conditions as in Example 1 except that the thickness was changed to nm.

【0031】以上のようにして作製した透明導電性積層
体の表面抵抗および可視光線透過率、耐環境性は以下の
手法で評価した。 ・表面抵抗(R、Ω/□):4端子法により測定 ・可視光線透過率(Tvis %):日立製作所(株)
製、分光光度計U−3500により測定 ・耐環境性:以下の工程でエレクトロルミネッセンス発
光体層を作製し、50℃60%RHの雰囲気下で、交流
100V(周波数1kHz)の電圧を印加し発光させ、
その時の初期輝度と300時間後の輝度の変化率で評価
した。輝度計はミノルタ(株)製、LS−110を使用 エレクトロルミネッセンス発光体の作製の場合は、透明
導電性積層体上に、硫化亜鉛粉末をアセトン溶液中に分
散させた液を塗布し、その後60℃で2時間、更に12
0℃で2分間加熱処理を行う事により発光層を形成し
た。その後、更にチタン酸バリウム粉末をアセトン溶液
中に分散させた液を塗布し、その後60℃で2時間加熱
処理を行う事により誘電体層を形成した。更にその上か
ら厚さ0.2mmのアルミニウムを重ね150℃で2分
間加熱処理した。これを防湿フィルム2枚で挟み込みエ
レクトロルミネッセンス発光体を得た。以上の評価結果
を表1に示す。
The surface resistance, visible light transmittance and environmental resistance of the transparent conductive laminate produced as described above were evaluated by the following methods.・ Surface resistance (R, Ω / □): Measured by 4-terminal method ・ Visible light transmittance (Tvis%): Hitachi, Ltd.
Environmental resistance: An electroluminescent luminescent layer was prepared by the following steps, and a voltage of 100 V AC (frequency 1 kHz) was applied under an atmosphere of 50 ° C. and 60% RH to emit light. Let
The initial luminance at that time and the luminance change rate after 300 hours were evaluated. The luminance meter uses LS-110 manufactured by Minolta Co., Ltd. In the case of producing an electroluminescent luminescent material, a liquid in which zinc sulfide powder is dispersed in an acetone solution is applied onto the transparent conductive laminate, and then 60 C. for 2 hours, then 12
The light emitting layer was formed by performing a heat treatment at 0 ° C. for 2 minutes. Thereafter, a liquid in which barium titanate powder was dispersed in an acetone solution was further applied, and then heat treatment was performed at 60 ° C. for 2 hours to form a dielectric layer. Furthermore, aluminum having a thickness of 0.2 mm was overlaid thereon and heat-treated at 150 ° C. for 2 minutes. This was sandwiched between two moisture-proof films to obtain an electroluminescent luminescent material. Table 1 shows the evaluation results.

【0032】[0032]

【表1】 X線回折分析において実施例1乃至実施例6、比較例2
では第三の結晶ピークは認められなかった。比較例1、
比較例3乃至比較例5では第三の結晶ピークが認めら
れ、インジウムと銅の複合酸化物の存在が推定された。
[Table 1] Examples 1 to 6 and Comparative Example 2 in X-ray diffraction analysis
No third crystal peak was observed. Comparative Example 1,
In Comparative Examples 3 to 5, a third crystal peak was observed, and the presence of a composite oxide of indium and copper was estimated.

【0033】[0033]

【発明の効果】本発明の透明高分子基体の一方の主面
に、第一層として主として酸化インジウムからなる透明
導電膜層を形成し、別工程で第二層として銅からなる金
属薄膜層を形成する事により、耐環境性に優れたエレク
トロルミネッセンス用透明電極に適した透明導電性積層
体を提供する事ができる。
According to the present invention, a transparent conductive film layer mainly composed of indium oxide is formed on one main surface of the transparent polymer substrate of the present invention as a first layer, and a metal thin film layer composed of copper is formed as a second layer in a separate step. By forming, a transparent conductive laminate suitable for a transparent electrode for electroluminescence having excellent environmental resistance can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原田 祐一郎 愛知県名古屋市南区丹後通2丁目1番地 三井東圧化学株式会社内 (72)発明者 鈴木 彰 愛知県名古屋市南区丹後通2丁目1番地 三井東圧化学株式会社内 (72)発明者 中島 明美 愛知県名古屋市南区丹後通2丁目1番地 三井東圧化学株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuichiro Harada 2-1-1 Tango-dori, Minami-ku, Nagoya-shi, Aichi Inside Mitsui Toatsu Chemicals Co., Ltd. (72) Akira Suzuki 2-chome Tango-dori, Minami-ku, Nagoya-shi, Aichi No. 1 Mitsui Toatsu Chemical Co., Ltd. (72) Inventor Akemi Nakajima 2-1-1 Tango-dori, Minami-ku, Nagoya-shi, Aichi Prefecture

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 透明高分子基体(A)の一方の主面に、
少なくとも、主として酸化インジウムからなる透明導電
膜層(B)を積層し、該透明導電膜層(B)の上に銅か
らなる金属薄膜層(C)を積層するに際して、該透明導
電膜層(B)を形成後、5秒以上経過した後または一度
大気雰囲気にさらした後、該金属薄膜層(C)を積層す
ることを特徴とする透明導電性積層体の製造方法。
1. A transparent polymer substrate (A) having one main surface
At least a transparent conductive film layer (B) mainly made of indium oxide is laminated, and when a metal thin film layer (C) made of copper is laminated on the transparent conductive film layer (B), the transparent conductive film layer (B) is formed. A) forming a transparent conductive laminate, wherein the metal thin film layer (C) is laminated after elapse of 5 seconds or more or once exposed to the atmosphere.
【請求項2】 該透明導電膜層(B)の厚さが10〜2
00nm、該金属薄膜層(C)の厚さが1〜20nmで
あることを特徴とする請求項1記載の透明導電性積層体
の製造方法。
2. The transparent conductive film layer (B) has a thickness of 10 to 2
The method for producing a transparent conductive laminate according to claim 1, wherein the thickness of the metal thin film layer (C) is 1 to 20 nm.
【請求項3】 請求項1記載または請求項2記載の方法
によって得られた透明導電性積層体。
3. A transparent conductive laminate obtained by the method according to claim 1.
【請求項4】 請求項1記載または請求項2記載の方法
によって得られたエレクトロルミネッセンスディスプレ
イの透明電極用透明導電性積層体。
4. A transparent conductive laminate for a transparent electrode of an electroluminescence display obtained by the method according to claim 1.
【請求項5】 透明高分子基体(A)の一方の主面に、
少なくとも、主として酸化インジウムからなる透明導電
膜層(B)を積層し、該透明導電膜層(B)上に銅から
なる金属薄膜層(C)を積層してなり、かつX線回折分
析法において結晶ピークが現れないことを特徴とする透
明導電性積層体。
5. The method according to claim 1, wherein one main surface of the transparent polymer substrate (A) is
At least a transparent conductive film layer (B) mainly composed of indium oxide is laminated, and a metal thin film layer (C) composed of copper is laminated on the transparent conductive film layer (B). A transparent conductive laminate having no crystal peak.
JP8198656A 1996-07-29 1996-07-29 Transparent conductive laminate and manufacture thereof Pending JPH1034797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8198656A JPH1034797A (en) 1996-07-29 1996-07-29 Transparent conductive laminate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8198656A JPH1034797A (en) 1996-07-29 1996-07-29 Transparent conductive laminate and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH1034797A true JPH1034797A (en) 1998-02-10

Family

ID=16394861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8198656A Pending JPH1034797A (en) 1996-07-29 1996-07-29 Transparent conductive laminate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH1034797A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103632753A (en) * 2010-11-05 2014-03-12 日东电工株式会社 Transparent conductive film, method for fabricating the same and touch panel with it
WO2024004405A1 (en) * 2022-07-01 2024-01-04 日東電工株式会社 Electroconductive film
WO2024004404A1 (en) * 2022-07-01 2024-01-04 日東電工株式会社 Electroconductive film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103632753A (en) * 2010-11-05 2014-03-12 日东电工株式会社 Transparent conductive film, method for fabricating the same and touch panel with it
US9475235B2 (en) 2010-11-05 2016-10-25 Nitto Denko Corporation Transparent conductive film and touch panel therewith
US9636877B2 (en) 2010-11-05 2017-05-02 Nitto Denko Corporation Method for production of transparent conductive film
WO2024004405A1 (en) * 2022-07-01 2024-01-04 日東電工株式会社 Electroconductive film
WO2024004404A1 (en) * 2022-07-01 2024-01-04 日東電工株式会社 Electroconductive film

Similar Documents

Publication Publication Date Title
KR100270485B1 (en) Transparent conductive laminate and el element comprising of it
US7740946B2 (en) Electroconductive laminate, and electromagnetic wave shielding film for plasma display and protective plate for plasma display
JP4010587B2 (en) Transparent conductive laminate and electroluminescence light emitting device using the same
JP3483355B2 (en) Transparent conductive laminate
JPH0957892A (en) Transparent conductive laminate
JPH1034797A (en) Transparent conductive laminate and manufacture thereof
JP2002343150A (en) Transparent electric conductive film and its manufacturing method
JP3476277B2 (en) Transparent conductive laminate
KR20030064604A (en) Transparent conductive film and electroluminescence light emitting device therewith
JPH1024519A (en) Transparent conductive laminate and el element using the laminate
JPH09156022A (en) Transparent conductive laminate
JP3698493B2 (en) Transparent conductive laminate and method for producing the same
JPH09156023A (en) Transparent conductive laminate
JPH1148388A (en) Transparent conductive film
JP3489844B2 (en) Transparent conductive film and method for producing the same
JP3466001B2 (en) Transparent conductive laminate
JP3856357B2 (en) Transparent conductive laminate and method for producing the same
JP3277965B2 (en) Electroluminescence panel
JP3654841B2 (en) Transparent conductive film and method for producing the same
JPH1110780A (en) Transfer arent conductive laminate
JP3361640B2 (en) Transparent conductive laminate
JP3341277B2 (en) Transparent conductive film for electroluminescence device
JP2526642B2 (en) Transparent conductive film
JP3328994B2 (en) Transparent conductive film
JP2535641B2 (en) Transparent conductive laminate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060711