JPH1034330A - Welded structure between pipes and manufacture thereof - Google Patents

Welded structure between pipes and manufacture thereof

Info

Publication number
JPH1034330A
JPH1034330A JP19602096A JP19602096A JPH1034330A JP H1034330 A JPH1034330 A JP H1034330A JP 19602096 A JP19602096 A JP 19602096A JP 19602096 A JP19602096 A JP 19602096A JP H1034330 A JPH1034330 A JP H1034330A
Authority
JP
Japan
Prior art keywords
pipe
welding
branch pipe
groove
torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19602096A
Other languages
Japanese (ja)
Inventor
Yasushi Sato
恭 佐藤
Koichi Mitsuhata
浩一 光畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP19602096A priority Critical patent/JPH1034330A/en
Publication of JPH1034330A publication Critical patent/JPH1034330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the metallurgical quality and the reliability of a welding part and to reduce the man-hours of the welding by forming three-dimensional bevel surface containing a perpendicular line to the pipe axis of a branched pipe and equalizing the depth of the welding bevel with the thickness of the branched pipe. SOLUTION: An MIG welder 9 for welding the narrow bevel is fitted to the tip part of a manipulator 8 and a torch angle of the welder 9 is fixed so that the bevel surface always becomes the right angle to the pipe axis 12 of the branched pipe 2. The manipulator 8 having a function enabling the control only to two axes of the arrow marks (c) and (d) can be used. The torch of the welder 9 is inserted between the bevels to execute the welding while adjusting the position in the (c) direction by rotating along the outer periphery of the branched pipe. The inserting depth of torch of the welder 9 may be adjusted in manual in each round. The system of the welding method for the narrow bevel is not specially limited but may be used in the conventional technique of the MIG(metal inert gas) welding method, a TIG(tungsten inert gas) welding method, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属材料からなる
管と管を接合するための構造に係わり、特にボイラ、化
学プラント等、高温あるいは高圧の条件下で使用される
大径厚肉管の接合に好適な管と管の溶接構造物およびそ
の作製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for joining pipes made of a metal material to each other, and in particular, to a large-diameter thick-walled pipe used under high-temperature or high-pressure conditions, such as a boiler or a chemical plant. The present invention relates to a pipe-to-pipe welded structure suitable for joining and a method for producing the same.

【0002】[0002]

【従来の技術】発電用ボイラや各種熱交換器等において
は、多数の伝熱管群および伝熱管を集合する管寄せとが
高温、高圧の条件下で使用されている。図9は、ボイラ
加熱器の管寄せ回りの構造の一例を示す。管寄せ5に
は、数十列の伝熱管6と、さらに、これらの伝熱管群か
ら集合した蒸気を後流側の機器へ移送するための連絡管
7が接合されている。これらの管と管の接合は溶接によ
って行われるが、特に管寄せ5や連絡管7は、大きなも
のでは80〜120mmもの厚さとなるので、これらの
厚肉大径管の溶接部は製品の品質上重要な部位となる。
近年、発電用ボイラは大型化し、また蒸気条件も高温、
高圧化しつつあるため、管の肉厚の増加、あるいは高温
強度と耐食性に優れた高Cr系高強度鋼の採用は不可欠
なものとなってきており、厚肉大径管の溶接部の信頼性
の向上はますます重要視されるようになっている。図1
0(a)、(b)は、図9の管寄せ5に相当する主管1
と、それよりやや径の小さい枝管2(図9の連絡管7に
相当)との溶接構造を示す従来技術の一例で、最も簡単
な構造として広く一般に用いられているものである。主
管1に、枝管2の内径と等しい径の穴を加工し、また枝
管2の先端の一部を加工して開先面3′を形成し、主管
1と枝管2を直角に突合せ溶接するものである。なお、
以下に示す図において、(a)は主管の管軸を含み枝管
の管軸に平行な断面図を表わし、(b)は枝管の管軸を
含み主管の管軸に直角な断面図を表わす。高温配管に用
いられる管材は、通常、製管後に焼きならし−焼きもど
し(あるいは焼き入れ−焼きもどし)処理を行い組織を
調整している。しかし、溶接部の溶接金属4は、凝固組
織のままの不均質な状態で使用され、また微小なブロー
ホールや介在物等の欠陥が残存する可能性もあることか
ら、強度的に弱点部位となるが、図10(a)、(b)
に示すような一般的な構造の場合には溶接金属4の量が
多くなる結果、溶接部の品質の信頼性には問題があっ
た。厚肉大径管の溶接方法に関しては、例えば、特開昭
61−7065号公報、特公昭62−58826号公
報、特開平6−47537号公報、その他、多くの提案
がなされている。しかし、これらの提案のほとんどは、
多軸制御の複雑で高価なマニピュレータを利用した溶接
作業の高度な自動化に関するものであって、上記の冶金
的な問題については全く考慮されていない。溶接金属の
量を低減するために提案された構造として、狭開先溶接
法を用いた例を、図11(a)、(b)に示す。これ
は、主管1と枝管2の双方に、開先角度45°前後の3
次元形状の開先面3および開先面3′を形成し、狭開先
溶接法によって主管1と枝管2を溶接するものである。
図11(a)、(b)の構造では、図10(a)、
(b)の場合に比べて、強度的に弱点部位である溶接金
属4の量を大幅に低減できるので、溶接部の信頼性は大
きく向上する。しかし、開先形状が3次元であるため、
溶接の際に、少なくとも図11(a)に示す(ロ:斜め
上下方向)、(ハ:上下方向)、(ニ:回転方向)の3
軸を制御する必要があり、高価な3軸マニピュレータ
と、その制御装置が必要であるという問題があった。
2. Description of the Related Art In a power generation boiler, various heat exchangers and the like, a large number of heat transfer tube groups and a header for collecting the heat transfer tubes are used under high temperature and high pressure conditions. FIG. 9 shows an example of a structure around a tube of a boiler heater. Connected to the header 5 are dozens of rows of heat transfer tubes 6, and further, communication tubes 7 for transferring the steam collected from these heat transfer tube groups to downstream equipment. The joining of these pipes is performed by welding. Particularly, since the header 5 and the connecting pipe 7 are as large as 80 to 120 mm in thickness, the welded portions of these thick-walled large-diameter pipes have a high quality. It is an important part.
In recent years, boilers for power generation have become larger and steam conditions have been higher,
Due to the increasing pressure, it has become indispensable to increase the wall thickness of the pipe, or to use high-Cr high-strength steel with excellent high-temperature strength and corrosion resistance. Is becoming increasingly important. FIG.
0 (a) and (b) are main pipes 1 corresponding to header 5 in FIG.
This is an example of the prior art showing a welded structure of a branch pipe 2 having a slightly smaller diameter (corresponding to the connecting pipe 7 in FIG. 9), which is widely and generally used as the simplest structure. A hole having a diameter equal to the inner diameter of the branch pipe 2 is formed in the main pipe 1, and a part of the tip of the branch pipe 2 is formed to form a groove surface 3 ′, and the main pipe 1 and the branch pipe 2 are joined at right angles. It is to be welded. In addition,
In the drawings shown below, (a) is a cross-sectional view including the pipe axis of the main pipe and parallel to the pipe axis of the branch pipe, and (b) is a cross-sectional view including the pipe axis of the branch pipe and perpendicular to the pipe axis of the main pipe. Express. The structure of the pipe material used for the high-temperature piping is usually adjusted by normalizing and tempering (or quenching and tempering) after pipe production. However, the weld metal 4 of the welded portion is used in an inhomogeneous state with a solidified structure, and there is a possibility that defects such as minute blowholes and inclusions may remain. However, FIGS. 10 (a) and 10 (b)
In the case of the general structure shown in FIG. 1, the amount of the weld metal 4 is increased, and there is a problem in the reliability of the quality of the welded portion. With respect to a method for welding a thick-walled large-diameter pipe, many proposals have been made, for example, Japanese Patent Application Laid-Open No. Sho 61-7065, Japanese Patent Publication No. Sho 62-58826, Japanese Patent Application Laid-Open No. Hei 6-47537, and others. However, most of these proposals
The present invention relates to a high degree of automation of a welding operation using a complicated and expensive manipulator of multi-axis control, and does not consider the above metallurgical problem at all. FIGS. 11A and 11B show an example in which a narrow groove welding method is used as a structure proposed to reduce the amount of weld metal. This is because both the main pipe 1 and the branch pipe 2 have a groove angle of about 45 °.
A three-dimensional groove face 3 and a groove face 3 'are formed, and the main pipe 1 and the branch pipe 2 are welded by a narrow groove welding method.
In the structure of FIGS. 11A and 11B, FIG.
As compared with the case of (b), the amount of the weld metal 4 which is a weak point in terms of strength can be greatly reduced, so that the reliability of the welded portion is greatly improved. However, since the groove shape is three-dimensional,
At the time of welding, at least three of (b: oblique vertical direction), (c: vertical direction), and (d: rotational direction) shown in FIG.
There is a problem that the axes need to be controlled, and an expensive three-axis manipulator and its control device are required.

【0003】[0003]

【発明が解決しようとする課題】上述した従来技術にお
いては、高価な多軸制御のマニピュレータを利用した溶
接作業の高度な自動化に関するものであり、また溶接金
属の量および冶金的な問題については全く考慮されてい
なかった。
The above-mentioned prior art relates to a high degree of automation of welding work using an expensive multi-axis control manipulator, and does not deal with the amount of weld metal and metallurgical problems. Was not taken into account.

【0004】本発明の目的は、上記従来技術における問
題点を解消し、管と管の溶接構造物およびその作製方法
において、簡易に溶接開先の加工と、溶接の施工を行う
ことが可能で、かつ溶接金属の量を極力少なくすること
ができ、溶接部の冶金的品質が良好で信頼性の高い管と
管の溶接構造物およびそれを作製する方法を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art, and in a pipe-to-pipe welded structure and a method of manufacturing the same, it is possible to easily perform welding groove processing and welding. Another object of the present invention is to provide a pipe-to-pipe welded structure which can minimize the amount of weld metal as much as possible, has good metallurgical quality at the welded portion, and has high reliability, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】上記本発明の目的を達成
するために、本発明は特許請求の範囲に記載のような構
成とするものである。すなわち、本発明は請求項1に記
載のように、主管と枝管により構成される溶接構造物で
あって、主管および枝管の各々溶接開先の開先面の全周
で、該開先面は枝管の管軸に垂直な線を含み、かつ溶接
開先の深さを上記枝管の肉厚と等しくした3次元形状の
開先面を形成し、該開先面に対し狭開先溶接法により接
合した管と管の溶接構造物とするものである。また、本
発明は請求項2に記載のように、請求項1に記載の管と
管の溶接構造物を作製する方法であって、枝管の内側に
溶接機を挿入し、該溶接機を枝管の管軸中心に回転しつ
つ、該枝管の管軸方向に往復移動することにより、上記
枝管の内面側から溶接を行う管と管の溶接構造物の作製
方法とするものである。また、本発明は請求項3に記載
のように、請求項1に記載の管と管の溶接構造物を作製
する方法であって、枝管の内径と等しい径の穴を主管側
に設けた後、該穴の内側に、ガス切断またはプラズマ切
断用トーチを挿入し、該トーチを枝管の管軸中心に回転
しつつ、該枝管の管軸方向に往復移動することにより、
上記穴の内側から切断加工を行い溶接開先を形成する溶
接構造物の作製方法とするものである。本発明の管と管
の溶接構造物は請求項1に記載のように、主管および枝
管の各々溶接開先の全周で、溶接開先面が枝管の管軸に
垂直な線を含み、かつ開先の深さが枝管の肉厚と等しく
なるように3次元形状に開先面を加工し、該開先面に対
し狭開先溶接法により接合を行うものである。開先面が
板厚方向と平行な狭開先で、開先深さが接合部の全周に
おいて枝管の板厚に等しいことから、従来の開先面が板
厚方向に対して傾斜している構造よりも少ない溶着金属
量で、冶金的に品質の良い溶接部を有する信頼性の高い
管と管の溶接構造物を実現できる効果がある。また、請
求項2に記載のように、溶接トーチの方向が常に枝管の
管軸と直角な方向で固定して溶接できるので、上記請求
項1の共通の効果に加え、簡易で安価な2軸制御のマニ
ピュレータを用いて容易に自動溶接が施工できる効果が
ある。また、請求項3に記載のように、本発明は溶接開
先形状(構造)自体を従来にない新規な形状となし、2
軸制御の簡易で安価なマニピュレータを用いて容易に開
先加工を行うことができ、請求項1の共通の効果と同様
に、狭開先溶接方法により溶接金属(溶着金属)の量を
最小限に抑制することができ、冶金的な品質の向上と信
頼性の高い溶接構造物が得られる効果がある。
Means for Solving the Problems In order to achieve the object of the present invention, the present invention is configured as described in the claims. That is, the present invention provides a welded structure comprising a main pipe and a branch pipe, wherein the main pipe and the branch pipe each have a groove around the entire groove surface of the weld groove. The surface includes a line perpendicular to the pipe axis of the branch pipe, and forms a three-dimensional groove face in which the depth of the welding groove is equal to the wall thickness of the branch pipe, and is narrowed with respect to the groove face. A pipe-to-pipe welded structure joined by a first welding method. According to a second aspect of the present invention, there is provided a method for producing a pipe-to-pipe welded structure according to the first aspect, wherein a welding machine is inserted inside a branch pipe, and the welding machine is installed. A method for producing a pipe-to-pipe welded structure that performs welding from the inner surface side of the branch pipe by reciprocating in the pipe axis direction of the branch pipe while rotating about the pipe axis of the branch pipe. . According to a third aspect of the present invention, there is provided a method for producing a pipe-to-pipe welded structure according to the first aspect, wherein a hole having a diameter equal to the inner diameter of the branch pipe is provided on the main pipe side. Thereafter, a torch for gas cutting or plasma cutting is inserted inside the hole, and the torch is reciprocated in the pipe axis direction of the branch pipe while rotating the torch about the pipe axis of the branch pipe.
The present invention provides a method for producing a welded structure in which a welding groove is formed by cutting from the inside of the hole. The pipe-to-pipe welded structure according to the present invention includes a line perpendicular to the pipe axis of the branch pipe over the entire circumference of each of the weld grooves of the main pipe and the branch pipe. The groove surface is machined into a three-dimensional shape so that the groove depth is equal to the thickness of the branch pipe, and the groove surface is joined by a narrow groove welding method. Since the groove surface is a narrow groove parallel to the plate thickness direction and the groove depth is equal to the thickness of the branch pipe over the entire circumference of the joint, the conventional groove surface is inclined with respect to the plate thickness direction. It is possible to realize a highly reliable pipe-to-pipe welded structure having a metallurgically-quality welded portion with a smaller amount of deposited metal than that of the conventional structure. Further, since the welding torch can always be fixed in a direction perpendicular to the pipe axis of the branch pipe as described in the second aspect, in addition to the common effect of the first aspect, a simple and inexpensive 2 can be obtained. There is an effect that automatic welding can be easily performed using the manipulator of the axis control. Further, as described in the third aspect, the present invention does not make the welding groove shape (structure) itself a novel shape which has never existed before.
A groove can be easily formed by using a simple and inexpensive manipulator with a simple axis control, and the amount of weld metal (weld metal) can be minimized by a narrow groove welding method, similarly to the common effect of claim 1. To improve the metallurgical quality and obtain a highly reliable welded structure.

【0006】[0006]

【発明の実施の形態】以下に本発明の実施の形態の一例
を挙げ、図面を用いて具体的に説明する。 〈実施の形態1〉図1は本発明の溶接開先の基本形状を
示すもので、まず主管側の溶接開先の形状と、その加工
方法について説明する。主管1の外面に、枝管2の内径
と等しい径の穴をあけ、枝管の管軸12の方向から枝管
2の外径に等しい円形状を、主管1の開口部に投影し
て、その形状を曲線Dとする。次に、常に枝管の管軸1
2に対して直角な直線、例えば図1中の直線A、Bある
いはCを含み、かつ曲線Dを含むように溶接開先を加工
する。こうして得られた3次元の開先面3の深さは、常
に枝管2の肉厚に等しくなる。枝管2側の開先面3′
〔図4(a)、(b)参照〕は、主管1側の開先面3と
ほぼ平行になるように加工する。次に、開先加工手順の
具体例について説明する。近年、NC制御の加工機械が
普及しているため、本発明の溶接開先を精度よく機械加
工することは可能であるが、本実施の形態では、そのよ
うな高価な機械を用いずに容易に加工できる方法とし
て、ガス切断による主管側の開先加工例を図2に示す。
図において、主管1の外面に、枝管2の内径と等しい径
の穴を加工した後、マニピュレータ8の先端部に取り付
けたガス切断トーチ10によって、上記穴の周囲から開
先面を加工する。マニピュレータ8は、図2中の矢印
(ハ)〔上下方向〕および(ニ)〔回転方向〕にだけ制
御可能な2軸制御のものでよい。(ニ)方向に、ガス切
断トーチ10を回転させつつ、(ハ)方向に往復移動さ
せて位置を調整しながらガス切断を行う。切断した後、
切断面を滑らかに研磨仕上げする必要はあるが、図1に
示した形状の開先面3を容易に加工することができる。
枝管2側の開先面3′の加工は、図3に示すように、主
管1側と同様の方法で加工することができる。このよう
にして、それぞれの開先面を加工した主管1と枝管2の
形状を図4(a)、(b)に示す。図2および図3で開
示した溶接開先の加工方法は、ボイラ等の配管材として
多く使用されている炭素鋼やフェライト系低合金鋼のほ
とんどの材料に対して適用できるものである。ただし、
近年、多く使用されるようになった9〜12%Cr系フ
ェライト鋼に対しては、切断面に生成するCr酸化物の
ためにガス切断を適用することが困難である。このよう
な材料に対しては、プラズマ切断法を用いることによ
り、ガス切断の場合と同様の効果が得られる。このプラ
ズマ切断法の実施方法は、上記図2および図3と同様
で、ガス切断トーチ10の代わりに、プラズマ切断トー
チを取り付ければよい。次に、溶接の施工方法について
説明する。図5(a)、(b)は、主管1と枝管2を、
溶接するために組み合わせた状態を示す。本実施の形態
では、狭開先溶接用のMIG溶接機9を、マニピュレー
タ8の先端部に取り付け使用している。図1に説明した
ように、開先面は、常に枝管の管軸12に対して直角
に、溶接機のトーチ角度を固定することができるため、
マニピュレータ8は、開先加工に用いたものと同様に、
図中の矢印(ハ)および(ニ)の2軸方向だけに制御で
きる機能を有するものでよい。溶接機9のトーチを開先
の間に挿入し、枝管2の外周に沿って回転させつつ
(ハ)方向に位置を調整しながら溶接を行う。溶接機9
のトーチの挿入深さは、周回ごとに手動で調整すればよ
い。狭開先溶接法の形式は、特に限定されるものではな
いが、MIG溶接法やTIG溶接法等の従来技術におい
て使用されているものでよい。ただし、9〜12%Cr
系の新しい高強度鋼に対しては、MIG溶接法では溶接
金属の表面にCr酸化物の皮膜が形成されて溶接作業性
が悪くなるので、TIG溶接法を用いるのが好ましい。
図6は、主管1と枝管2を溶接するために組み合わせた
状態、および溶接された後の状態を拡大して示したもの
である。図に示すように、本実施の形態では、接合部の
全周にわたって開先の深さWが枝管2の板厚に等しいた
め、溶接金属4の量は最少となり、図11で示した従来
の開先面が枝管の板厚方向に対して傾斜している溶接構
造に比べ、溶接金属4の量を著しく少なくすることがで
きる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. <Embodiment 1> FIG. 1 shows the basic shape of a welding groove according to the present invention. First, the shape of a welding groove on the main pipe side and a processing method thereof will be described. A hole having a diameter equal to the inner diameter of the branch pipe 2 is formed in the outer surface of the main pipe 1, and a circular shape equal to the outer diameter of the branch pipe 2 is projected from the direction of the pipe axis 12 of the branch pipe onto the opening of the main pipe 1. Let the shape be curve D. Next, always set the pipe axis 1 of the branch pipe.
The welding groove is machined so as to include a straight line perpendicular to 2, for example, the straight line A, B or C in FIG. The depth of the three-dimensional groove surface 3 thus obtained is always equal to the thickness of the branch pipe 2. Groove surface 3 'on branch pipe 2 side
4 (a) and 4 (b)] are processed so as to be substantially parallel to the groove surface 3 on the main pipe 1 side. Next, a specific example of the groove processing procedure will be described. In recent years, since NC-controlled processing machines have become widespread, it is possible to precisely machine the welding groove of the present invention, but in the present embodiment, it is easy to use such an expensive machine without using such an expensive machine. FIG. 2 shows an example of beveling on the main pipe side by gas cutting as a method that can be machined.
In the figure, a hole having a diameter equal to the inner diameter of the branch pipe 2 is formed on the outer surface of the main pipe 1, and then a groove surface is formed from the periphery of the hole by a gas cutting torch 10 attached to the tip of the manipulator 8. The manipulator 8 may be of a two-axis control type that can be controlled only by arrows (c) [vertical direction] and (d) [rotation direction] in FIG. The gas cutting is performed while rotating the gas cutting torch 10 in the direction (d) and reciprocating in the direction (c) to adjust the position. After cutting,
Although the cut surface needs to be polished smoothly, the groove surface 3 having the shape shown in FIG. 1 can be easily processed.
The groove face 3 'on the side of the branch pipe 2 can be processed by the same method as that on the side of the main pipe 1, as shown in FIG. FIGS. 4 (a) and 4 (b) show the shapes of the main pipe 1 and the branch pipe 2 in which the groove surfaces are processed as described above. The welding groove processing method disclosed in FIGS. 2 and 3 can be applied to most materials such as carbon steel and ferritic low alloy steel, which are often used as piping materials for boilers and the like. However,
In recent years, it has been difficult to apply gas cutting to 9-12% Cr-based ferritic steel, which has been widely used, due to Cr oxide generated on the cut surface. For such a material, the same effect as in the case of gas cutting can be obtained by using the plasma cutting method. The method of performing the plasma cutting method is the same as in FIGS. 2 and 3 described above, and a plasma cutting torch may be attached instead of the gas cutting torch 10. Next, a welding method will be described. FIGS. 5 (a) and 5 (b) show the main pipe 1 and the branch pipe 2,
Shows the combined state for welding. In the present embodiment, a MIG welding machine 9 for narrow groove welding is attached to the tip of the manipulator 8 and used. As described in FIG. 1, the groove face can always fix the torch angle of the welding machine at right angles to the pipe axis 12 of the branch pipe.
The manipulator 8 is similar to the one used for groove processing,
It may have a function that can be controlled only in the two axial directions indicated by arrows (c) and (d) in the figure. The torch of the welding machine 9 is inserted between the grooves, and the welding is performed while adjusting the position in the (C) direction while rotating along the outer periphery of the branch pipe 2. Welding machine 9
The insertion depth of the torch may be manually adjusted for each rotation. The type of the narrow groove welding method is not particularly limited, but may be a method used in a conventional technique such as a MIG welding method or a TIG welding method. However, 9-12% Cr
For new high-strength steels, the TIG welding method is preferably used because the MIG welding method forms a Cr oxide film on the surface of the weld metal and deteriorates welding workability.
FIG. 6 is an enlarged view showing a state where the main pipe 1 and the branch pipe 2 are combined for welding and a state after welding. As shown in the figure, in the present embodiment, the groove depth W is equal to the plate thickness of the branch pipe 2 over the entire circumference of the joint, so that the amount of the weld metal 4 is minimized, and the conventional technique shown in FIG. The amount of the weld metal 4 can be remarkably reduced as compared with the welding structure in which the groove surface is inclined with respect to the thickness direction of the branch pipe.

【0007】〈実施の形態2〉図7および図8に、本実
施の形態で例示する管と管の溶接構造物およびその作製
方法を示す。開先形状は基本的に実施の形態1と同様で
あるが、上記実施の形態1では、主管1の外側から開先
を加工して枝管2の外面側から溶接するのに対し、本実
施の形態では、主管1の内側から開先加工を行い、枝管
2の内面側から溶接する方法である。図7は、開先加工
方法を示すものである。図2の場合と同様に、主管1に
枝管2の内径と等しい穴を加工した後、この穴に、ガス
切断トーチ10を挿入し、(ニ)方向にガス切断トーチ
10を回転させつつ、(ハ)方向に往復移動させて位置
を調整し、主管1の内側からガス切断あるいはプラズマ
切断で開先を加工する方式である。この際、マニピュレ
ータ8の回転軸を枝管の管軸12と一致させておけば、
トーチの先端は必ず枝管の管軸12を中心とした同心円
上を移動するため、マニピュレータ8の位置決めは容易
に行える。穴の内径が、ガス切断トーチ10を挿入する
のに十分大きい場合は適用可能であるが、ガス切断トー
チ10の火炎が、主管1の切断面に対して常に直角に当
たるため作業性は良好である。図8(a)、(b)、
(c)は、溶接方法を示すものである。枝管2の内側に
溶接機9を挿入し、(ニ)方向に溶接機9を回転させつ
つ、(ハ)方向に往復移動させて位置を調整し、枝管1
の内面側から溶接を行う。本実施の形態では、枝管2の
内径が溶接機9の寸法に対して十分大きい場合にのみ適
用可能であるが、溶接機9の下部が主管1と接触する心
配はないので溶接作業性は優れている。特に、大径管の
溶接の場合に好適に用いられる。また、マニピュレータ
8のアームが折れ曲がっていても、(ニ)の軸心と枝管
2の軸心とを合わせておけば問題は生じない。なお、図
2、3、5、7および図8において、ガス切断用トーチ
10あるいは溶接機9を、枝管の管軸12中心に回転す
るマニピュレータに取り付けて回転させる例を示した
が、枝管2の内側あるいは外側にガイドレールを固定
し、これに沿って回転させてもよい。
[Embodiment 2] FIGS. 7 and 8 show a pipe-to-pipe welded structure exemplified in this embodiment and a method of manufacturing the same. The groove shape is basically the same as that of the first embodiment. However, in the first embodiment, the groove is machined from the outside of the main pipe 1 and welded from the outer surface side of the branch pipe 2. In the embodiment, a groove is formed from the inside of the main pipe 1 and welded from the inner surface side of the branch pipe 2. FIG. 7 shows a groove processing method. As in the case of FIG. 2, after machining a hole equal to the inner diameter of the branch pipe 2 in the main pipe 1, the gas cutting torch 10 is inserted into this hole, and while rotating the gas cutting torch 10 in the (d) direction, In this method, the position is adjusted by reciprocating in the direction (c) and the groove is machined from the inside of the main pipe 1 by gas cutting or plasma cutting. At this time, if the rotation axis of the manipulator 8 is matched with the pipe axis 12 of the branch pipe,
Since the tip of the torch always moves on a concentric circle centered on the pipe axis 12 of the branch pipe, the positioning of the manipulator 8 can be easily performed. The present invention is applicable when the inner diameter of the hole is large enough to insert the gas cutting torch 10, but the workability is good because the flame of the gas cutting torch 10 always strikes the cut surface of the main pipe 1 at right angles. . 8 (a), 8 (b),
(C) shows a welding method. The welding machine 9 is inserted into the inside of the branch pipe 2, and while rotating the welding machine 9 in the direction (d), the welding machine 9 is reciprocated in the direction (c) to adjust the position.
Welding from inside of In this embodiment, the present invention is applicable only when the inner diameter of the branch pipe 2 is sufficiently large with respect to the dimension of the welding machine 9. Are better. In particular, it is suitably used for welding large-diameter pipes. Even if the arm of the manipulator 8 is bent, no problem occurs if the axis of (d) is aligned with the axis of the branch pipe 2. 2, 3, 5, 7, and 8, the gas cutting torch 10 or the welding machine 9 is attached to a manipulator that rotates around the pipe shaft 12 of the branch pipe, and is rotated. A guide rail may be fixed to the inside or outside of 2 and rotated along the guide rail.

【0008】[0008]

【発明の効果】本発明の管と管の溶接構造物およびその
作製方法では、特別に複雑で高価な加工機械あるいは溶
接装置を用いることなく、従来にない新規な開先形状
(構造)として、簡易に開先加工および狭開先溶接が施
工できるので、厚肉の大径管の接合に対して溶着金属の
量を最小限に抑制することができ、溶接部の冶金的品質
および信頼性を著しく向上することができる。また、溶
接工数が低減でき、工業的および経済的に顕著な効果が
得られる。
According to the pipe-to-pipe welded structure of the present invention and the method for producing the same, a novel groove shape (structure) which has never existed before can be obtained without using a specially complicated and expensive processing machine or welding equipment. Since groove processing and narrow groove welding can be easily performed, the amount of weld metal can be minimized for joining large-diameter pipes with thick walls, and the metallurgical quality and reliability of the welded part can be reduced. It can be significantly improved. Further, the number of welding steps can be reduced, and a remarkable effect is obtained industrially and economically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1で例示した溶接開先の基
本的な形状を示す模式図。
FIG. 1 is a schematic diagram showing a basic shape of a welding groove exemplified in Embodiment 1 of the present invention.

【図2】本発明の実施の形態1で例示した主管側の溶接
開先の加工方法を示す模式図。
FIG. 2 is a schematic view showing a method for processing a weld groove on the main pipe side exemplified in the first embodiment of the present invention.

【図3】本発明の実施の形態1で例示した枝管側の溶接
開先の加工方法を示す模式図。
FIG. 3 is a schematic view showing a method of processing a welding groove on a branch pipe illustrated in the first embodiment of the present invention.

【図4】本発明の実施の形態1で例示した主管と枝管の
溶接開先の形状を示す模式図。
FIG. 4 is a schematic view showing a shape of a welding groove of a main pipe and a branch pipe exemplified in the first embodiment of the present invention.

【図5】本発明の実施の形態1で例示した主管と枝管の
溶接方法を示す模式図。
FIG. 5 is a schematic view showing a method for welding a main pipe and a branch pipe exemplified in the first embodiment of the present invention.

【図6】本発明の実施の形態1で例示した主管と枝管の
接合状態を示す模式図。
FIG. 6 is a schematic view showing a joined state of the main pipe and the branch pipe exemplified in the first embodiment of the present invention.

【図7】本発明の実施の形態2で例示した主管側の溶接
開先の加工方法を示す模式図。
FIG. 7 is a schematic view showing a method for processing a weld groove on the main pipe side exemplified in the second embodiment of the present invention.

【図8】本発明の実施の形態2で例示した主管と枝管の
溶接方法を示す模式図。
FIG. 8 is a schematic view showing a method for welding a main pipe and a branch pipe exemplified in the second embodiment of the present invention.

【図9】従来の伝熱管群の管寄せ構造を示す模式図。FIG. 9 is a schematic view showing a conventional header structure of a heat transfer tube group.

【図10】従来の主管と枝管の接合状態を示す模式図。FIG. 10 is a schematic view showing a conventional joined state of a main pipe and a branch pipe.

【図11】従来の主管と枝管の他の接合状態を示す模式
図。
FIG. 11 is a schematic view showing another conventional joint state of a main pipe and a branch pipe.

【符号の説明】[Explanation of symbols]

1…主管 2…枝管 3…開先面 3′…開先面 4…溶接金属 5…管寄せ 6…伝熱管 7…連絡管 8…マニピュレータ 9…溶接機 10…ガス切断トーチ 11…溶接ワイヤ 12…枝管の管軸 13…(ニ)の回転軸 14…溶接機の先端の軌跡 W…溶接開先の深さ (ニ)…回転方向 (ハ)…上下方向 (ロ)…斜め上下方向 A…線分 B…線分 C…線分 D…曲線 DESCRIPTION OF SYMBOLS 1 ... Main pipe 2 ... Branch pipe 3 ... Groove face 3 '... Groove face 4 ... Weld metal 5 ... Header 6 ... Heat transfer pipe 7 ... Connecting pipe 8 ... Manipulator 9 ... Welding machine 10 ... Gas cutting torch 11 ... Welding wire 12: Pipe axis of branch pipe 13: Rotation axis of (d) 14: Trace of welding machine tip W: Depth of welding groove (d): Rotation direction (c): Vertical direction (b): Oblique vertical direction A: Line segment B: Line segment C: Line segment D: Curve

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B23K 10/00 501 B23K 10/00 501A 31/00 31/00 P 33/00 33/00 A Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location B23K 10/00 501 B23K 10/00 501A 31/00 31/00 P 33/00 33/00 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】主管と枝管により構成される溶接構造物で
あって、主管および枝管の各々溶接開先の開先面の全周
で、該開先面は枝管の管軸に垂直な線を含み、かつ溶接
開先の深さを上記枝管の肉厚と等しくした3次元形状の
開先面を形成し、該開先面に対し狭開先溶接法により接
合してなることを特徴とする管と管の溶接構造物。
1. A welded structure comprising a main pipe and a branch pipe, wherein the groove is perpendicular to the pipe axis of the branch pipe over the entire circumference of the groove of the weld groove of each of the main pipe and the branch pipe. Forming a three-dimensional grooved surface including a suitable line and having the depth of the welding groove equal to the thickness of the branch pipe, and joining the grooved surface to the grooved surface by a narrow groove welding method. A pipe-to-pipe welded structure characterized by the following.
【請求項2】請求項1に記載の管と管の溶接構造物を作
製する方法であって、枝管の内側に溶接機を挿入し、該
溶接機を枝管の管軸中心に回転しつつ、該枝管の管軸方
向に往復移動することにより、上記枝管の内面側から溶
接を行うことを特徴とする管と管の溶接構造物の作製方
法。
2. The method for producing a pipe-to-pipe welding structure according to claim 1, wherein a welding machine is inserted inside the branch pipe, and the welding machine is rotated around the pipe axis of the branch pipe. A method for producing a pipe-to-pipe welded structure, wherein welding is performed from the inner surface side of the branch pipe by reciprocating in the pipe axis direction of the branch pipe.
【請求項3】請求項1に記載の管と管の溶接構造物を作
製する方法であって、枝管の内径と等しい径の穴を主管
側に設けた後、該穴の内側に、ガス切断またはプラズマ
切断用トーチを挿入し、該トーチを枝管の管軸中心に回
転しつつ、該枝管の管軸方向に往復移動することによ
り、上記穴の内側から切断加工を行い溶接開先を形成す
ることを特徴とする管と管の溶接構造物の作製方法。
3. A method for producing a pipe-to-pipe welded structure according to claim 1, wherein a hole having a diameter equal to the inner diameter of the branch pipe is provided on the main pipe side, and a gas is provided inside the hole. Inserting a torch for cutting or plasma cutting and reciprocating in the pipe axis direction of the branch pipe while rotating the torch about the pipe axis of the branch pipe, thereby performing cutting from the inside of the hole to form a welding groove. Forming a pipe-to-tube welded structure.
JP19602096A 1996-07-25 1996-07-25 Welded structure between pipes and manufacture thereof Pending JPH1034330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19602096A JPH1034330A (en) 1996-07-25 1996-07-25 Welded structure between pipes and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19602096A JPH1034330A (en) 1996-07-25 1996-07-25 Welded structure between pipes and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH1034330A true JPH1034330A (en) 1998-02-10

Family

ID=16350893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19602096A Pending JPH1034330A (en) 1996-07-25 1996-07-25 Welded structure between pipes and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH1034330A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100391676C (en) * 2005-02-22 2008-06-04 大连新船重工有限责任公司 Technological method of partly submerged type platform complex K type node welding
JP2009034696A (en) * 2007-07-31 2009-02-19 Nippon Steel Corp Butt welded joint excellent in fatigue characteristics, and its manufacturing method
CN102500878A (en) * 2011-10-20 2012-06-20 渤海造船厂集团有限公司 Automatic tungsten argon arc welding method for completely penetrated fillet weld of nuclear power main pipeline and branch pipe
CN104384660A (en) * 2014-10-20 2015-03-04 郑州煤矿机械集团股份有限公司 Machining method of elongated slot in end part of guide rod for hydraulic support
CN109015050A (en) * 2018-09-29 2018-12-18 南京奥特电气股份有限公司 A kind of retaining wall on slope technique

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100391676C (en) * 2005-02-22 2008-06-04 大连新船重工有限责任公司 Technological method of partly submerged type platform complex K type node welding
JP2009034696A (en) * 2007-07-31 2009-02-19 Nippon Steel Corp Butt welded joint excellent in fatigue characteristics, and its manufacturing method
CN102500878A (en) * 2011-10-20 2012-06-20 渤海造船厂集团有限公司 Automatic tungsten argon arc welding method for completely penetrated fillet weld of nuclear power main pipeline and branch pipe
CN102500878B (en) * 2011-10-20 2016-06-22 渤海造船厂集团有限公司 Main nuclear power pipeline and arm full penetration angle welding automatic argon tungsten-arc welding method
CN104384660A (en) * 2014-10-20 2015-03-04 郑州煤矿机械集团股份有限公司 Machining method of elongated slot in end part of guide rod for hydraulic support
CN109015050A (en) * 2018-09-29 2018-12-18 南京奥特电气股份有限公司 A kind of retaining wall on slope technique

Similar Documents

Publication Publication Date Title
JP3735135B2 (en) Method for joining metal parts by fusion arc welding
WO2020010782A1 (en) Axial friction welding process for high-nitrogen austenitic stainless steel and non-magnetic drill collar
CN108296305A (en) A kind of manufacturing method of heavy caliber thick wall composite bimetal pipe
CN106944723A (en) A kind of low-alloy steel heat exchanger tube docking automatic soldering technique for filling melting ring
CN111702301A (en) Welding process of UNS N07208 high-temperature alloy tube for boiler with temperature exceeding 700 DEG C
JPH1034330A (en) Welded structure between pipes and manufacture thereof
CN111037065A (en) Welding method for inner hole welding of tube plate of small-aperture heat exchange tube
CN105414751A (en) Butt-joint pipe fitting laser welding device and welding method
CN103495794B (en) The duct butt-welding method of T23 steel pipe and T91 steel pipe
JPH03243286A (en) Joining method for clad tube
CN110666305A (en) Narrow gap welding process of G115 steel
JPH0557450A (en) Method for welding dissimilar metal
JP2005088048A (en) Flange for absorbing welding deformation for piping joint, and piping joint using the same
JP2000107858A (en) Welded structure of pipe jointing part and welding method thereof
JP2563684B2 (en) Welding method of stainless clad steel pipe
CN113458550A (en) Intelligent robot welding jig
JP2001259831A (en) Replacing method for matching member of rpv nozzle
EP0026434B1 (en) Method of welding tube to tube plate
CN111618462A (en) Metal material pipeline girth welding assembly positioning welding method
JP2002361425A (en) Inert gas arc welding method and equipment
JP2004050286A (en) Method and structure for welding steel pipe of different thickness
JPS6358679B2 (en)
CN108772664A (en) A kind of positioning tool connect for butt welding of steel tube
JP2000061674A (en) Production of gas insulation switchgear
JPH09164480A (en) Weld structure of ferritic heat resistant steel tube