JPH10338717A - Propylene homopolymer - Google Patents

Propylene homopolymer

Info

Publication number
JPH10338717A
JPH10338717A JP9149420A JP14942097A JPH10338717A JP H10338717 A JPH10338717 A JP H10338717A JP 9149420 A JP9149420 A JP 9149420A JP 14942097 A JP14942097 A JP 14942097A JP H10338717 A JPH10338717 A JP H10338717A
Authority
JP
Japan
Prior art keywords
melt
molecular weight
propylene homopolymer
measured
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9149420A
Other languages
Japanese (ja)
Inventor
Fumio Tatsumi
富美男 巽
Shuji Machida
修司 町田
Mitsugi Kanzawa
貢 神澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP9149420A priority Critical patent/JPH10338717A/en
Priority to DE69835745T priority patent/DE69835745T2/en
Priority to US09/424,985 priority patent/US6573352B1/en
Priority to KR10-1999-7011304A priority patent/KR100507458B1/en
Priority to PCT/JP1998/002480 priority patent/WO1998055520A1/en
Priority to CN98807879A priority patent/CN1117104C/en
Priority to EP98923126A priority patent/EP0987279B1/en
Priority to TW087108888A priority patent/TW513442B/en
Publication of JPH10338717A publication Critical patent/JPH10338717A/en
Priority to US10/417,155 priority patent/US6800711B2/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject homopolymer having a sufficient melt tension, melt viscoelastic properties and the like, and excellent in melt processability by securing specific relationships between melt index and molecular weight distribution, and between melt tension and intrinsic viscosity, and also by securing a specific intrinsic viscosity. SOLUTION: This homopolymer is obtained by securing the relationships of MI5 /MI2.16 >=0.24×Mw /Mn +3.1 (MI5 is melt index at 230 deg.C and load of 5.0 kg; MI2.16 is melt index at 230 deg.C and load of 2.16 kg; Mw is weight-average molecular weight; and Mn is number-average molecular weight), and logMS>=3.17×log[η]-0.68 (MS is melt tension at 230 deg.C and [η] is intrinsic viscosity at 135 deg.C in tetralin as the solvent, and also securing the intrinsic viscosity [η] in the range of 0.1 to 15.0 dl/g. This polymer can be controlled for its melt tension, and is suitable for, e.g. foaming, sheet forming and blow molding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プロピレン単独重
合体に関し、さらに詳しくは、従来のプロピレン系重合
体と同等又は同等以上の物性を有するとともに、溶融加
工特性に優れ、特に大型ブロー成形や押出し発泡成形な
どに好適に用いられるプロピレン単独重合体に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a propylene homopolymer, and more particularly to a propylene homopolymer, which has properties equal to or higher than that of a conventional propylene polymer, has excellent melt processing characteristics, and is particularly suitable for large-size blow molding and extrusion. The present invention relates to a propylene homopolymer suitably used for foam molding and the like.

【0002】[0002]

【従来の技術】従来、ポリプロピレンは、(1)剛性な
どの機械的強度が高く、かつ物性バランスに優れる、
(2)化学的に安定で、耐候性に優れ、化学薬品などに
浸されにくい、(3)融点が高く、耐熱性に優れる、
(4)軽量で安価である、などの特徴を有するととも
に、溶融成形性に優れ、押出成形,ブロー成形,射出成
形,インフレーション成形などの溶融成形法を適用しう
ることから、多くの分野において、広範囲に用いられて
いる。このような特徴を有するポリプロピレンは、その
優れた特性を活かして、自動車部品などに積極的に利用
されているが、さらなる性能向上や、成形時の工程省力
化などの低コスト化が強く求められている。したがっ
て、従来は射出成形によって製造していた大型部品をブ
ロー成形によって製造することができれば、その製造コ
ストを大きく削減することが可能となる。
2. Description of the Related Art Conventionally, polypropylene has (1) a high mechanical strength such as rigidity and an excellent balance of physical properties.
(2) It is chemically stable, has excellent weather resistance and is not easily immersed in chemicals, etc. (3) It has a high melting point and excellent heat resistance.
(4) It has features such as light weight and inexpensiveness, is excellent in melt moldability, and can be applied to melt molding methods such as extrusion molding, blow molding, injection molding, and inflation molding. Widely used. Polypropylene having such characteristics is actively used for automobile parts, etc., taking advantage of its excellent properties.However, further improvements in performance and cost reductions such as labor saving in the molding process are strongly demanded. ing. Therefore, if large parts conventionally manufactured by injection molding can be manufactured by blow molding, the manufacturing cost can be greatly reduced.

【0003】しかしながら、従来のポリプロピレンにお
いては、溶融張力及び溶融粘弾性が不足し、大型ブロー
成形におけるパリソンの安定性に劣るために、ドローダ
ウンの現象が起こりやすく、大型部品の成形は困難であ
った。また、溶融張力を向上させるために高分子量化さ
せた場合には、溶融流動性が低下し、複雑な形状の成形
には適応できないという問題が生じる。また、発泡成形
体の分野においては、軽量化,断熱性,制振性などとと
もに、耐熱性を有する発泡成形体に対する要求が高ま
り、ポリプロピレン製発泡成形体が期待されているが、
従来のポリプロピレンでは溶融張力が不足し、充分に満
足しうる発泡成形体は得られにくいのが実状である。こ
のポリプロピレンの利用分野をさらに拡大させるために
は、押出成形加工性の改良が必要である。従来、ポリオ
レフィンの溶融加工性を改善しようとする試みが種々な
されており、例えば、ポリオレフィンの製造時における
重合触媒や重合処方を改良して、その分子量分布を拡大
することにより、溶融加工性を改善する方法、ポリオレ
フィンを部分的に架橋させて溶融加工性を改善する方法
などが試みられている。
[0003] However, in the conventional polypropylene, the melt tension and the melt viscoelasticity are insufficient, and the stability of the parison in large blow molding is inferior. Was. Further, when the molecular weight is increased to improve the melt tension, the melt fluidity is reduced, and there is a problem that the method cannot be applied to molding of a complicated shape. In the field of foamed molded articles, demands for foamed articles having heat resistance as well as weight reduction, heat insulating properties, vibration damping properties, etc. are increasing, and foamed articles made of polypropylene are expected.
In fact, the melt tension of conventional polypropylene is insufficient, and it is difficult to obtain a sufficiently satisfactory foam molded article. In order to further expand the field of use of this polypropylene, it is necessary to improve the extrusion processability. Conventionally, various attempts have been made to improve the melt processability of polyolefins.For example, by improving the polymerization catalyst and polymerization recipe during the production of polyolefins and expanding the molecular weight distribution, the melt processability is improved. And a method of partially cross-linking a polyolefin to improve melt processability.

【0004】一方、エチレン系重合体においては、最
近、メタロセン触媒とアルミノキサンなどを組み合わせ
た触媒系によって、分子量分布が狭いにもかかわらず、
溶融張力が改良されたエチレン系重合体が提案されてい
る(特開平4−213306号公報)。また、拘束幾何
付加型触媒により製造されるエチレン系重合体について
も、同様に分子量分布が狭いにもかかわらず、溶融張力
が改良されることが開示されており(特開平3−163
088号公報)、長鎖分岐の存在が示唆されている。そ
して、この長鎖分岐の生成は、重合時に分子鎖末端がビ
ニル基であるエチレン系重合体が生成し、これがマクロ
モノマーとして再び重合するという機構が提案されてい
る。ところで、ポリプロピレンの溶融張力を改良する方
法としては、これまで、(1)溶融張力の高い高分子量
の高密度ポリエチレンを混合する方法(特公平6−55
868号公報)、(2)クロム系触媒によって製造され
る溶融張力の高い高密度ポリエチレンを混合する方法
(特開平8−92438号公報)、(3)一般的な高圧
ラジカル重合法により製造される低密度ポリエチレンを
混合する方法、(4)一般的なポリプロピレンに光照射
することにより溶融張力を高める方法、(5)一般的な
ポリプロピレンに架橋剤や過酸化物の存在下、光照射す
ることにより溶融張力を高める方法、(6)一般的なポ
リプロピレンにスチレンなどのラジカル重合性モノマー
をグラフトする方法、(7)プロピレンとポリエンを共
重合させる方法(特開平5−194778号公報、特開
平5−194779号公報)などが試みられている。
[0004] On the other hand, in the case of ethylene-based polymers, recently, despite the narrow molecular weight distribution due to the catalyst system combining a metallocene catalyst and aluminoxane, etc.
An ethylene polymer having an improved melt tension has been proposed (JP-A-4-213306). It is also disclosed that the ethylene-based polymer produced by the constrained geometry addition type catalyst has an improved melt tension despite its narrow molecular weight distribution (Japanese Patent Laid-Open No. 3-163).
088), suggesting the existence of long-chain branching. A mechanism has been proposed in which the generation of the long-chain branch is such that an ethylene-based polymer having a vinyl group at the molecular chain end is generated at the time of polymerization, and this is polymerized again as a macromonomer. By the way, as a method for improving the melt tension of polypropylene, a method of mixing (1) a high-molecular-weight high-density polyethylene with a high melt tension (Japanese Patent Publication No. 6-55)
868), (2) a method of mixing high-density polyethylene having a high melt tension produced by a chromium-based catalyst (Japanese Patent Application Laid-Open No. 8-92438), and (3) a general high-pressure radical polymerization method. A method of mixing low-density polyethylene, (4) a method of increasing melt tension by irradiating general polypropylene with light, and (5) a method of irradiating general polypropylene with light in the presence of a crosslinking agent or peroxide. (6) a method of grafting a radical polymerizable monomer such as styrene to general polypropylene, and (7) a method of copolymerizing propylene and a polyene (JP-A-5-194778, JP-A-5-194778). No. 194779) has been attempted.

【0005】しかしながら、前記(1)〜(3)の方法
においては、溶融張力を高める成分の弾性率,強度,耐
熱性が不足するために、ポリプロピレン本来の特徴が損
なわれるのを免れない。また、前記(4)及び(5)の
方法においては、副反応として起こる架橋反応を制御す
ることが困難であって、ゲルの発生により外観不良や機
械特性に悪影響が生じる上、成形加工性を任意に制御す
ることに限界があり、制御範囲が狭いという問題があ
る。さらに、前記(6)の方法においては、ポリプロピ
レンの化学的安定性が損なわれ、しかもスチレン系のグ
ラフト体では樹脂リサイクル性に問題が生じ、また、前
記(7)の方法においては、溶融張力の改良効果が小さ
く、充分な効果が発揮されない上、ゲルの発生も懸念さ
れる。
However, in the above-mentioned methods (1) to (3), the elasticity, strength and heat resistance of the component for increasing the melt tension are insufficient, so that the inherent characteristics of polypropylene are inevitably lost. Further, in the methods (4) and (5), it is difficult to control a cross-linking reaction occurring as a side reaction. There is a limit in arbitrarily controlling, and there is a problem that a control range is narrow. Further, in the method (6), the chemical stability of the polypropylene is impaired, and in the case of the styrene-based graft, a problem occurs in the resin recyclability. In the method (7), the melt tension is reduced. The effect of improvement is small, sufficient effect is not exhibited, and generation of gel is also concerned.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
状況下で、従来のプロピレン系重合体と同等又は同等以
上の物性を有するとともに、充分な溶融張力,溶融粘弾
性,溶融流動性などを有し、溶融加工特性に優れ、特に
大型ブロー成形や押出し発泡成形などに好適に用いられ
るプロピレン単独重合体を提供するものである。
SUMMARY OF THE INVENTION Under such circumstances, the present invention provides a material having the same or higher physical properties as the conventional propylene-based polymer and having sufficient melt tension, melt viscoelasticity, melt fluidity, etc. The present invention provides a propylene homopolymer having excellent melt processing properties and particularly suitably used for large-size blow molding, extrusion foam molding and the like.

【0007】[0007]

【課題を解決するための手段】本発明者らは、溶融加工
特性に優れたプロピレン単独重合体を開発すべく鋭意研
究を重ねた結果、メルトインデックスと分子量分布、溶
融張力と極限粘度とがそれぞれ特定の関係にあり、かつ
所定の極限粘度を有するプロピレン単独重合体が、その
目的に適合しうることを見出した。本発明は、かかる知
見に基づいて完成したものである。すなわち、本発明
は、(a)温度230℃において測定した荷重5.0kg
でのメルトインデックスMI5 (g/10分)と荷重2.
16kgでのメルトインデックスMI2.16(g/10
分)との比MI5 /MI2.16と、ゲルパーミエーション
クロマトグラフィー法で測定した重量平均分子量Mwと
数平均分子量Mnとの比Mw/Mnとが、式 MI5 /MI2.16≧0.240×Mw/Mn+3.1 ・・・(I) の関係を満たすこと、及び(b)温度230℃において
測定した溶融張力MS(g)と、テトラリン溶媒中、温
度135℃において測定した極限粘度〔η〕(dl/
g)とが、式 logMS≧3.17×〔η〕−0.68 ・・・(II) の関係を満たし、かつ該極限粘度〔η〕が0.1〜15.0
dl/gの範囲にあることを特徴とするプロピレン単独
重合体を提供するものである。
Means for Solving the Problems The present inventors have conducted intensive studies to develop a propylene homopolymer having excellent melt processing properties. As a result, the melt index and the molecular weight distribution, the melt tension, and the intrinsic viscosity were each determined. It has been found that a propylene homopolymer having a specific relationship and a predetermined intrinsic viscosity can be suitable for the purpose. The present invention has been completed based on such findings. That is, the present invention relates to (a) a load of 5.0 kg measured at a temperature of 230 ° C.
Index MI 5 (g / 10 min) and load 2.
Melt index MI 2.16 at 16 kg (g / 10
The ratio MI 5 / MI 2.16 with min), the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn measured by gel permeation chromatography is of the formula MI 5 / MI 2.16 ≧ 0.240 × Mw / Mn + 3.1 (I), and (b) the melt tension MS (g) measured at a temperature of 230 ° C. and the intrinsic viscosity [η] measured in a tetralin solvent at a temperature of 135 ° C. (Dl /
g) satisfies the relationship of logMS ≧ 3.17 × [η] −0.68 (II), and the intrinsic viscosity [η] is 0.1 to 15.0.
The present invention provides a propylene homopolymer characterized by being in the range of dl / g.

【0008】[0008]

【発明の実施の形態】本発明のプロピレン単独重合体
は、プロピレンモノマーのみから製造され、分子量分布
が狭い上、溶融流動の非ニュートン性や溶融張力の制御
が可能であって、物性と加工性のバランスに優れる長鎖
分岐型のプロピレン単独重合体であり、以下に示す性状
を有する。まず、温度230℃において測定した荷重5.
0kgでのメルトインデックスMI5 (g/10分)と
荷重2.16kgでのメルトインデックスMI2.16(g/
10分)との比MI5 /MI2.16と、ゲルパーミエーシ
ョンクロマトグラフィー(GPC)法で測定した重量平
均分子量Mwと数平均分子量Mnとの比Mw/Mnと
が、式 MI5 /MI2.16≧0.240×Mw/Mn+3.1 ・・・(I) の関係を満たすことが必要である。MI5 /MI2.16
“0.240×Mw/Mn+3.1”の値より小さい場合に
は、溶融加工性に劣り、本発明の目的が達せられない。
溶融加工性の面から、好ましくは、 MI5 /MI2.16≧0.240×Mw/Mn+3.8 より好ましくは、 MI5 /MI2.16≧0.240×Mw/Mn+4.5 である。
BEST MODE FOR CARRYING OUT THE INVENTION The propylene homopolymer of the present invention is produced from only a propylene monomer, has a narrow molecular weight distribution, can control the non-Newtonian property of melt flow, and can control the melt tension. Is a long-chain branched propylene homopolymer having an excellent balance of the following properties and has the following properties. First, the load measured at a temperature of 230 ° C. 5.
The melt index MI 5 at 0 kg (g / 10 minutes) and the melt index MI 2.16 at a load of 2.16 kg (g /
The ratio MI 5 / MI 2.16 with 10 min), the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn measured by gel permeation chromatography (GPC) method, wherein MI 5 / MI 2.16 ≧ 0.240 × Mw / Mn + 3.1 (I) If MI 5 / MI 2.16 is smaller than the value of “0.240 × Mw / Mn + 3.1”, the melt processability is poor, and the object of the present invention cannot be achieved.
From the viewpoint of melt processability, preferably, MI 5 / MI 2.16 ≧ 0.240 × Mw / Mn + 3.8, more preferably MI 5 / MI 2.16 ≧ 0.240 × Mw / Mn + 4.5.

【0009】なお、上記Mw/Mnは、GPC法によ
り、下記の装置及び条件で測定したポリエチレン換算の
重量平均分子量(Mw)及び数平均分子量(Mn)より
算出した値である。 装置: 本体 Waters ALC/GPC 150
C カラム 東ソー製 TSK MH+GMH6×2本 条件: 温度 135℃ 溶媒 1,2,4−トリクロルベンゼン 流量 1.0ミリリットル/分 次に、温度230℃において測定した溶融張力MS
(g)と、テトラリン溶媒中、温度135℃において測
定した極限粘度〔η〕(dl/g)とが、式 logMS≧3.17×log〔η〕−0.68 ・・・(II) の関係を満たすことが必要である。logMSが“3.1
7×log〔η〕−0.68”の値より小さい場合には、
溶融加工性に劣り、本発明の目的が達せられない。溶融
加工性の面から、好ましくは logMS≧3.17×log〔η〕−0.57 より好ましくは logMS≧3.17×log〔η〕−0.46 特に好ましくは logMS≧3.17×log〔η〕−0.35 である。
The above Mw / Mn is a value calculated from the weight average molecular weight (Mw) and the number average molecular weight (Mn) in terms of polyethylene measured by the GPC method using the following apparatus and conditions. Apparatus: Main unit Waters ALC / GPC 150
C column Tosoh TSK MH + GMH 6 × 2 condition: temperature 135 ° C. solvent 1,2,4-trichlorobenzene flow rate 1.0 ml / min. Next, melt tension MS measured at 230 ° C.
(G) and an intrinsic viscosity [η] (dl / g) measured in a tetralin solvent at a temperature of 135 ° C. are represented by the following formula: logMS ≧ 3.17 × log [η] −0.68 (II) It is necessary to satisfy the relationship. logMS is "3.1
If the value is smaller than 7 × log [η] −0.68 ″,
Inferior in melt processability, and the object of the present invention cannot be achieved. From the viewpoint of melt processability, preferably logMS ≧ 3.17 × log [η] −0.57, more preferably logMS ≧ 3.17 × log [η] −0.46, particularly preferably logMS ≧ 3.17 × log [Η] −0.35.

【0010】また、前記極限粘度〔η〕は0.1〜15.0
dl/gの範囲にあることが必要である。この〔η〕が
0.1dl/g未満では溶融加工性に劣るとともに機械的
強度が不充分であり、また15.0dl/gを超えると溶
融粘度が高く、溶融加工性が低下する。溶融加工性及び
機械的強度のバランスなどの面から、この〔η〕として
は、0.4〜10.0dl/gが好ましく、特に0.6〜6.0
dl/gの範囲が好ましい。なお前記溶融張力MSは、
東洋精機社製キャピログラフ1Bを用い、下記の条件で
測定した値である。 キャピラリー : 直径2.095mm,長さ8.0m
m シリンダー径 : 9.6mm シリンダー押出速度: 10mm/分 巻き取り速度 : 3.14 m/分 温度 : 230℃
The intrinsic viscosity [η] is 0.1 to 15.0.
It needs to be in the range of dl / g. This [η] is
If it is less than 0.1 dl / g, the melt processability is poor and the mechanical strength is insufficient. If it exceeds 15.0 dl / g, the melt viscosity is high and the melt processability is reduced. From the viewpoint of the balance between melt processability and mechanical strength, [η] is preferably from 0.4 to 10.0 dl / g, particularly preferably from 0.6 to 6.0 dl / g.
A range of dl / g is preferred. The melt tension MS is:
It is a value measured under the following conditions using Capillograph 1B manufactured by Toyo Seiki Co., Ltd. Capillary: diameter 2.095mm, length 8.0m
m Cylinder diameter: 9.6 mm Cylinder extrusion speed: 10 mm / min Winding speed: 3.14 m / min Temperature: 230 ° C

【0011】さらに、本発明のプロピレン単独重合体
は、前記重量平均分子量Mwと数平均分子量Mnとの比
Mw/Mnが1.5〜4.5の範囲にあるものが好ましい。
Mw/Mnが4.5を超えるものは分子量分布が広すぎ、
充分に満足しうる物性のものが得られにくい。また、M
w/Mnが1.5未満のものは実質上、製造することが困
難である。物性の面から、より好ましいMw/Mnは1.
5〜4.0の範囲であり、特に1.5〜3.5の範囲が好適で
ある。また示差走査型熱量計(DSC)で測定した融点
Tmは120〜165℃の範囲にあるのが好ましい。こ
の融点が120℃未満では耐熱性が不充分であり、一方
165℃を超えると成形温度が高くなりすぎ、経済的に
好ましくない。耐熱性及び成形加工の経済性を考慮する
と、この融点のより好ましい範囲は130〜165℃で
あるなお、この融点Tmは、パーキン・エルマー社製示
差走査型熱量計「DSC−7」を用い、下記の方法によ
り測定した値である。すなわち、190℃で熱プレスし
て得られたシートを試料として用い、上記DSC−7に
より、200℃で5分間溶融したのち、10℃/分の速
度で20℃まで降温し、5分間保持後、10℃/分の速
度にて昇温し、この過程でみられる吸熱ピークより融点
Tmを求める。
Further, the propylene homopolymer of the present invention preferably has a ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn in the range of 1.5 to 4.5.
If Mw / Mn exceeds 4.5, the molecular weight distribution is too wide,
It is difficult to obtain a material having sufficiently satisfactory physical properties. Also, M
When w / Mn is less than 1.5, it is practically difficult to produce. From the viewpoint of physical properties, a more preferable Mw / Mn is 1.
The range is from 5 to 4.0, and particularly preferably from 1.5 to 3.5. Further, the melting point Tm measured by a differential scanning calorimeter (DSC) is preferably in the range of 120 to 165 ° C. If the melting point is less than 120 ° C., the heat resistance is insufficient, while if it exceeds 165 ° C., the molding temperature becomes too high, which is not economically preferable. Considering the heat resistance and the economics of molding, the more preferable range of the melting point is 130 to 165 ° C. The melting point Tm is determined by using a differential scanning calorimeter “DSC-7” manufactured by Perkin-Elmer Co., Ltd. It is a value measured by the following method. That is, a sheet obtained by hot pressing at 190 ° C. is used as a sample, melted at 200 ° C. for 5 minutes by DSC-7, cooled down to 20 ° C. at a rate of 10 ° C./min, and held for 5 minutes. The temperature is raised at a rate of 10 ° C./min, and the melting point Tm is determined from the endothermic peak observed in this process.

【0012】さらに、本発明のプロピレン単独重合体
は、低分子量成分やアタクチック部の少ないものが好ま
しい。例えば、ジエチルエーテルに可溶な成分の含有量
が2重量%以下が好ましく、特に1重量%以下が好まし
い。なお、このジエチルエーテルに可溶な成分の含有量
は、下記の方法により測定した値である。すなわち、ソ
ックスレー抽出器に粉末状の重合体約3gを入れ、ジエ
チルエーテル160ミリリットルにより6時間抽出を行
った。その後、抽出溶媒をロータリーエバポレーターに
て留去し、さらに真空乾燥によりジエチルエーテルに可
溶な成分を回収し、重量を測定した。本発明のプロピレ
ン単独重合体の製造方法については、前記要件を満たす
プロピレン単独重合体が得られる方法であればよく、特
に制限はないが、例えばオレフィン重合用触媒の存在下
にプロピレンを反応させることにより得られる反応性マ
クロモノマーと、プロピレンとを、オレフィン重合用触
媒の存在下に重合させることにより、所望のプロピレン
単独重合体を効率よく製造することできる。この際、オ
レフィン重合用触媒としては特に制限はなく、様々なも
のを用いることができるが、以下に示す遷移金属化合物
及びこれと反応してイオン性の錯体を形成しうる化合物
から構成されるメタロセン系触媒が好ましく用いられ
る。
Further, the propylene homopolymer of the present invention preferably has a low molecular weight component and a small amount of atactic portion. For example, the content of the component soluble in diethyl ether is preferably 2% by weight or less, particularly preferably 1% by weight or less. The content of the component soluble in diethyl ether is a value measured by the following method. That is, about 3 g of a powdery polymer was placed in a Soxhlet extractor and extracted with 160 ml of diethyl ether for 6 hours. Thereafter, the extraction solvent was distilled off with a rotary evaporator, and the components soluble in diethyl ether were recovered by vacuum drying, and the weight was measured. The method for producing the propylene homopolymer of the present invention is not particularly limited as long as it is a method capable of obtaining a propylene homopolymer satisfying the above requirements, and for example, reacting propylene in the presence of an olefin polymerization catalyst. By polymerizing propylene with the reactive macromonomer obtained by the above in the presence of an olefin polymerization catalyst, a desired propylene homopolymer can be efficiently produced. At this time, the catalyst for olefin polymerization is not particularly limited, and various catalysts can be used, but a metallocene composed of a transition metal compound shown below and a compound capable of reacting therewith to form an ionic complex is used. A system catalyst is preferably used.

【0013】前記遷移金属化合物の代表的なものとして
は、重合体の立体構造を規制できるような、置換基を有
する二つのインデニル基が一つ又は二つの架橋基によ
り、五員環部で架橋した配位子を有する周期律表4族の
遷移金属化合物を挙げることができる。周期律表4族の
遷移金属としては、チタニウム,ジルコニウム,ハフニ
ウムが好適である。このインデニル骨格を有する周期律
表4族の遷移金属化合物としては、例えば(イ)ヘキス
ト,BASF型錯体、(ロ)二重架橋型錯体などを用い
ることができる。前記(イ)のヘキスト,BASF型錯
体としては、例えばrac−ジメチルシリレン−ビス
(2−メチル−4−フェニルインデニル)ジルコニウム
ジクロリド,rac−ジメチルシリレン−ビス(2−メ
チル−5,6−ベンゾインデニル)ジルコニウムジクロ
リド,rac−エチレンビスインデニルジルコニウムジ
クロリドなど、及びこれらジルコニウム化合物に対応す
るチタニウムやハフニウム化合物が挙げられる。一方、
前記(ロ)の二重架橋型錯体としては、例えば(1,
2’−エチレン)(2,1’−エチレン)−ビス(4,
7−ジメチルインデニル)ジルコニウムジクロリド,
(1,2’−エチレン)(2,1’−エチレン)−ビス
(4−フェニルインデニル)ジルコニウムジクロリドな
ど及びこれらのジルコニウム化合物に対応するチタニウ
ムやハフニウム化合物が挙げられる。
Typical examples of the transition metal compound include two or more indenyl groups having substituents which are capable of controlling the steric structure of the polymer and which are bridged at the five-membered ring portion by one or two bridging groups. And transition metal compounds belonging to Group 4 of the periodic table having the above ligand. As transition metals of Group 4 of the periodic table, titanium, zirconium, and hafnium are preferred. As the transition metal compound of Group 4 of the periodic table having an indenyl skeleton, for example, (a) Hoechst, a BASF-type complex, and (b) a double-bridge type complex can be used. Examples of the Hoechst and BASF-type complexes of (a) include rac-dimethylsilylene-bis (2-methyl-4-phenylindenyl) zirconium dichloride and rac-dimethylsilylene-bis (2-methyl-5,6-benzoin). (Denyl) zirconium dichloride, rac-ethylenebisindenyl zirconium dichloride, and the like, and titanium and hafnium compounds corresponding to these zirconium compounds. on the other hand,
Examples of the double-crosslinked complex (b) include (1, 1)
2′-ethylene) (2,1′-ethylene) -bis (4
7-dimethylindenyl) zirconium dichloride,
Examples thereof include (1,2′-ethylene) (2,1′-ethylene) -bis (4-phenylindenyl) zirconium dichloride and titanium and hafnium compounds corresponding to these zirconium compounds.

【0014】一方、前記遷移金属化合物と反応してイオ
ン性の錯体を形成しうる化合物としては、例えばアルミ
ニウムオキシ化合物,カチオンと複数の基が元素に結合
したアニオンとからなるイオン性化合物,ルイス酸など
が挙げられるが、これらの中で、アルミニウムオキシ化
合物が好ましく、特にアルミノキサンが好適である。こ
のアルミノキサンの例としては、メチルアルミノキサ
ン,エチルアルミノキサン,n−プロピルアルミノキサ
ン,イソブチルアルミノキサン,メチル−エチルアルミ
ノキサン,メチル−n−プロピルアルミノキサン,メチ
ル−イソプロピルアルミノキサン,エチル−n−プロピ
ルアルミノキサン,エチル−イソプロピルアルミノキサ
ンなど、及びこれらを二種以上混合したものを挙げるこ
とができる。この方法において用いられるプロピレンマ
クロモノマーは、単一のリアクターを用いて連続的にマ
クロモノマーとプロピレン単独重合体を製造することが
好ましいが、マクロモノマーのみを製造し、プロピレン
単独重合体の製造時に添加してもよく、また、単段の重
合において、マクロモノマーとプロピレン単独重合体を
同時に製造することもできる。この際、プロピレン単独
重合体を製造するための触媒と、マクロモノマー製造に
用いる触媒とは同一ものであることが好ましいが、異な
る触媒を用いることもできる。
On the other hand, examples of the compound capable of forming an ionic complex by reacting with the transition metal compound include an aluminum oxy compound, an ionic compound composed of a cation and an anion having a plurality of groups bonded to an element, and a Lewis acid. Among these, an aluminum oxy compound is preferable, and an aluminoxane is particularly preferable. Examples of the aluminoxane include methylaluminoxane, ethylaluminoxane, n-propylaluminoxane, isobutylaluminoxane, methyl-ethylaluminoxane, methyl-n-propylaluminoxane, methyl-isopropylaluminoxane, ethyl-n-propylaluminoxane, ethyl-isopropylaluminoxane and the like. And mixtures of two or more of these. As for the propylene macromonomer used in this method, it is preferable to continuously produce a macromonomer and a propylene homopolymer using a single reactor, but only the macromonomer is produced and added during the production of the propylene homopolymer. Alternatively, in a single-stage polymerization, a macromonomer and a propylene homopolymer can be simultaneously produced. At this time, the catalyst for producing the propylene homopolymer and the catalyst used for producing the macromonomer are preferably the same, but different catalysts can be used.

【0015】重合方法については特に制限はなく、スラ
リー重合法,気相重合法,塊状重合法,溶液重合法,懸
濁重合法など、いずれの方法を用いてもよい。また、重
合時に、例えば水素のような一般に用いられる連鎖移動
剤を使用することにより、得られる重合体の分子量を調
節することができる。また、溶液重合法やスラリー重合
法などにおいて重合溶媒を用いる場合、この溶媒として
は、重合に不活性なものであればよく、特に制限され
ず、例えばベンゼン,トルエン,キシレンなどの芳香族
炭化水素,ペンタン,ヘキサン,ヘプタン,オクタンな
どの脂肪族炭化水素,シクロペンタン,シクロヘキサン
などの脂環式炭化水素などを挙げることができる。さら
に、重合温度は、重合方法に応じて、通常0〜250℃
の範囲で適宜選定すればよく、重合圧力は、通常0.01
〜100kg/cm2 G、好ましく0.2〜60kg/c
2 Gの範囲で適宜選定すればよい。また、重合時間
は、通常1分〜10時間程度である。
The polymerization method is not particularly limited, and any method such as a slurry polymerization method, a gas phase polymerization method, a bulk polymerization method, a solution polymerization method, and a suspension polymerization method may be used. In addition, the molecular weight of the obtained polymer can be adjusted by using a commonly used chain transfer agent such as hydrogen during the polymerization. When a polymerization solvent is used in a solution polymerization method, a slurry polymerization method, or the like, the solvent is not particularly limited as long as it is inert to the polymerization, and examples thereof include aromatic hydrocarbons such as benzene, toluene, and xylene. And aliphatic hydrocarbons such as pentane, hexane, heptane and octane, and alicyclic hydrocarbons such as cyclopentane and cyclohexane. Further, the polymerization temperature is usually 0 to 250 ° C. depending on the polymerization method.
The polymerization pressure is usually 0.01.
100100 kg / cm 2 G, preferably 0.2-60 kg / c
It may be appropriately selected in the range of m 2 G. The polymerization time is usually about 1 minute to 10 hours.

【0016】[0016]

【実施例】次に、本発明を実施例によりさらに詳細に説
明するが、本発明は、これらの例によってなんら限定さ
れるものではない。なお、プロピレン単独重合体の物性
評価は、予め酸化防止剤としてイルガノックス1010
とBHTとの重量比1:1の混合物を4000重量pp
m添加したものについて、下記の方法に従って行った。 (1)メルトインデックスMI5 ,MI2.16 ASTM D1238に準拠して、温度230℃で荷重
5.0kgでのMI5 及び荷重2.16kgでのMI2.16
測定した。 (2)溶融張力MS 明細書本文に記載した方法に従って測定した。 (3)極限粘度〔η〕 テトラリン溶媒中、温度135℃において測定した。 (4)融点Tm 明細書本文に記載した方法に従って測定した。 (5)重量平均分子量Mw及び分子量分布Mw/Mn 明細書本文に記載した方法に従って測定した。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The evaluation of the physical properties of the propylene homopolymer was carried out in advance by using Irganox 1010 as an antioxidant.
Weight ratio of 1: 1 and BHT is 4000 weight pp
The addition of m was performed according to the following method. (1) Melt index MI 5 , MI 2.16 Load according to ASTM D1238 at a temperature of 230 ° C.
MI 5 at 5.0 kg and MI 2.16 at 2.16 kg load were measured. (2) Melt tension MS Measured according to the method described in the text of the specification. (3) Intrinsic viscosity [η] It was measured in a tetralin solvent at a temperature of 135 ° C. (4) Melting point Tm Measured according to the method described in the text of the specification. (5) Weight average molecular weight Mw and molecular weight distribution Mw / Mn Measured according to the method described in the text of the specification.

【0017】実施例1 攪拌装置付き1.6リットルステンレス製耐圧オートクレ
ーブに、窒素気流下に脱水トルエン400ミリリット
ル,メチルアルミノキサン(東ソーアグゾー社製トルエ
ン溶液)をアルミニウム原子換算で5ミリモル投入した
のち、500rpmで攪拌を開始し、90℃まで昇温
し、5分間攪拌し続けた。これに、rac−ジメチルシ
リレンビス−(2−メチル−4−フェニル−インデニ
ル)ジルコニウムジクロリド(rac−Me2 Si〔2
−Me−4−Ph−Ind〕2 ZrCl2 )のトルエン
溶液を2マイクロモル投入したのち、プロピレンをゲー
ジ圧2.0kg/cm2 Gで連続的に供給し、90℃で3
0分間重合を行った(第一段目の反応)。その後、重合
温度を60℃まで低下させ、同時にプロピレンをゲージ
圧7.0kg/cm2 Gで連続的に供給し、60℃で30
分間重合を行った(第二段目の反応)。反応終了後、未
反応プロピレンを脱圧により除去し、少量のメタノール
で触媒の失活を行ったのち、ろ過によりプロピレン単独
重合体を回収し、風乾,真空乾燥したところ、117g
の収量を得た。このプロピレン単独重合体の物性の評価
結果を第1表に示す。
EXAMPLE 1 400 ml of dehydrated toluene and 5 mmol of methylaluminoxane (toluene solution manufactured by Tosoh Agzo Co., Ltd.) were introduced into a 1.6-liter stainless steel pressure-resistant autoclave equipped with a stirrer under a nitrogen stream, and then 500 rpm in terms of aluminum atoms. , The temperature was raised to 90 ° C., and stirring was continued for 5 minutes. Thereto, rac- dimethylsilylene bis - (2-methyl-4-phenyl - indenyl) zirconium dichloride (rac-Me 2 Si [2
-Me-4-Ph-Ind] 2 ZrCl 2 ) after 2 μmol of a toluene solution was added thereto, and propylene was continuously supplied at a gauge pressure of 2.0 kg / cm 2 G.
Polymerization was performed for 0 minutes (first-stage reaction). Thereafter, the polymerization temperature was lowered to 60 ° C., and at the same time, propylene was continuously supplied at a gauge pressure of 7.0 kg / cm 2 G.
Polymerization was carried out for 2 minutes (second stage reaction). After the completion of the reaction, unreacted propylene was removed by depressurization, the catalyst was deactivated with a small amount of methanol, and then a propylene homopolymer was recovered by filtration, and air-dried and vacuum-dried to obtain 117 g.
Was obtained. Table 1 shows the evaluation results of the physical properties of the propylene homopolymer.

【0018】実施例2 実施例1において、第一段目の反応を、プロピレン圧1.
0kg/cm2 G,重合温度85℃,重合時間45分間
の条件で行い、かつ第二段目の反応を、プロピレン圧3.
0kg/cm2 G,重合温度55℃,重合時間30分間
の条件で行った以外は、実施例1と同様にしてプロピレ
ン単独重合体84.0gを得た。このプロピレン単独重合
体の物性の評価結果を第1表に示す。 比較例 市販の出光石油化学(株)製のプロピレン系重合体「出
光ポリプロE−185G」について、物性の評価を行っ
た。その結果を第1表に示す。
Example 2 In Example 1, the first-stage reaction was carried out at a propylene pressure of 1.
The reaction was carried out under the conditions of 0 kg / cm 2 G, a polymerization temperature of 85 ° C., and a polymerization time of 45 minutes.
84.0 g of a propylene homopolymer was obtained in the same manner as in Example 1 except that the polymerization was performed under the conditions of 0 kg / cm 2 G, a polymerization temperature of 55 ° C., and a polymerization time of 30 minutes. Table 1 shows the evaluation results of the physical properties of the propylene homopolymer. Comparative Example Physical properties of a commercially available propylene-based polymer “Idemitsu Polypro E-185G” manufactured by Idemitsu Petrochemical Co., Ltd. were evaluated. Table 1 shows the results.

【0019】[0019]

【表1】 [Table 1]

【0020】注1)logMS=3.17×log〔η〕
−0.68より算出 2)M5 /MI2.16=0.240×Mw/Mn+3.1より
算出
Note 1) logMS = 3.17 × log [η]
Calculated from −0.68 2) M 5 / MI 2.16 = 0.240 × Mw / Mn + 3.1

【0021】[0021]

【発明の効果】本発明のプロピレ単独重合体は、溶融張
力の制御が可能であり、発泡成形,シート成形,ブロー
成形などに適している。また、従来のプロピレン系重合
体と同等又は同等以上の物性を有するとともに、溶融加
工特性に優れ、従来のプロピレン系重合体では利用に制
約のあった成形法、例えば大型ブロー成形や押出し発砲
成形などに適用することができる。
The propylene homopolymer of the present invention can control the melt tension and is suitable for foam molding, sheet molding, blow molding and the like. In addition, it has properties equal to or higher than conventional propylene-based polymers, and has excellent melt processing properties, and conventional propylene-based polymers have restricted use in molding methods such as large blow molding and extrusion foaming. Can be applied to

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (a)温度230℃において測定した荷
重5.0kgでのメルトインデックスMI5 (g/10
分)と荷重2.16kgでのメルトインデックスMI2.16
(g/10分)との比MI5 /MI2.16と、ゲルパーミ
エーションクロマトグラフィー法で測定した重量平均分
子量Mwと数平均分子量Mnとの比Mw/Mnとが、式 MI5 /MI2.16≧0.240×Mw/Mn+3.1 ・・・(I) の関係を満たすこと、及び(b)温度230℃において
測定した溶融張力MS(g)と、テトラリン溶媒中、温
度135℃において測定した極限粘度〔η〕(dl/
g)とが、式 logMS≧3.17×log〔η〕−0.68 ・・・(II) の関係を満たし、かつ該極限粘度〔η〕が0.1〜15.0
dl/gの範囲にあることを特徴とするプロピレン単独
重合体。
1. A melt index MI 5 (g / 10) at a load of 5.0 kg measured at a temperature of 230 ° C.
Min) and melt index MI 2.16 at 2.16 kg load
The ratio MI 5 / MI 2.16 of (g / 10 min), the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn measured by gel permeation chromatography is of the formula MI 5 / MI 2.16 ≧ 0.240 × Mw / Mn + 3.1 (1) and (b) the melt tension MS (g) measured at a temperature of 230 ° C. and the limit measured at a temperature of 135 ° C. in a tetralin solvent. Viscosity [η] (dl /
g) satisfies the relationship of logMS ≧ 3.17 × log [η] −0.68 (II), and the intrinsic viscosity [η] is 0.1 to 15.0.
propylene homopolymer characterized by being in the range of dl / g.
【請求項2】 Mw/Mnが1.5〜4.5である請求項1
記載のプロピレン単独重合体。
2. The method according to claim 1, wherein Mw / Mn is 1.5 to 4.5.
The propylene homopolymer according to the above.
【請求項3】 示差走査型熱量計により測定した融点が
120〜165℃である請求項1記載のプロピレン単独
重合体。
3. The propylene homopolymer according to claim 1, which has a melting point of 120 to 165 ° C. measured by a differential scanning calorimeter.
JP9149420A 1997-06-06 1997-06-06 Propylene homopolymer Pending JPH10338717A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP9149420A JPH10338717A (en) 1997-06-06 1997-06-06 Propylene homopolymer
DE69835745T DE69835745T2 (en) 1997-06-06 1998-06-04 BRANCHED POLYPROPYLENE
US09/424,985 US6573352B1 (en) 1997-06-06 1998-06-04 Olefinic polymer
KR10-1999-7011304A KR100507458B1 (en) 1997-06-06 1998-06-04 Olefinic polymer
PCT/JP1998/002480 WO1998055520A1 (en) 1997-06-06 1998-06-04 Olefinic polymer
CN98807879A CN1117104C (en) 1997-06-06 1998-06-04 Olefinic polymer
EP98923126A EP0987279B1 (en) 1997-06-06 1998-06-04 Branched polypropylene
TW087108888A TW513442B (en) 1997-06-06 1998-06-04 Olefinic polymer
US10/417,155 US6800711B2 (en) 1997-06-06 2003-04-17 Olefin-based polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9149420A JPH10338717A (en) 1997-06-06 1997-06-06 Propylene homopolymer

Publications (1)

Publication Number Publication Date
JPH10338717A true JPH10338717A (en) 1998-12-22

Family

ID=15474730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9149420A Pending JPH10338717A (en) 1997-06-06 1997-06-06 Propylene homopolymer

Country Status (2)

Country Link
JP (1) JPH10338717A (en)
KR (1) KR100507458B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008088022A1 (en) * 2007-01-18 2008-07-24 Prime Polymer Co., Ltd. Propylene homopolymer for stress-resistant molded object, composition containing the polymer, and stress-resistant molded object obtained from the same
US8080624B2 (en) 2007-08-06 2011-12-20 Japan Polypropylene Corporation Propylene-based polymer, production method therefor, composition using the same, and application thereof
WO2013125702A1 (en) 2012-02-23 2013-08-29 日本ポリプロ株式会社 Polypropylene-based resin composition and foam sheet
WO2013125700A1 (en) 2012-02-23 2013-08-29 日本ポリプロ株式会社 Polypropylene-based resin composition and foam sheet
WO2018030495A1 (en) 2016-08-09 2018-02-15 日本ポリプロ株式会社 Decorative film and method for producing decorative molded body in which same is used
WO2019098379A1 (en) 2017-11-20 2019-05-23 日本ポリプロ株式会社 Decorative film and method for manufacturing decorative molded article using same
JP2021059678A (en) * 2019-10-08 2021-04-15 日本ポリプロ株式会社 Polypropylene resin composition
WO2022209773A1 (en) 2021-03-29 2022-10-06 日本ポリプロ株式会社 Branched propylene polymer and production method therefor
WO2023026838A1 (en) 2021-08-23 2023-03-02 日本ポリプロ株式会社 Branched propylene-based polymer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101047413B1 (en) 2009-11-17 2011-07-08 기아자동차주식회사 Indoor air conditioning system and method using battery charging control of electric vehicle
KR102090811B1 (en) 2016-11-15 2020-03-18 주식회사 엘지화학 Ethylene/alpha-olefin copolymer having excellent crack resistance

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5390194B2 (en) * 2007-01-18 2014-01-15 株式会社プライムポリマー Propylene homopolymer for stress-resistant molded article, composition containing the polymer, and stress-resistant molded article obtained therefrom
US10370465B2 (en) 2007-01-18 2019-08-06 Prime Polymer Co., Ltd. Propylene homopolymer for stress-resistant molded article, composition containing the polymer, and stress-resistant molded articles obtained therefrom
WO2008088022A1 (en) * 2007-01-18 2008-07-24 Prime Polymer Co., Ltd. Propylene homopolymer for stress-resistant molded object, composition containing the polymer, and stress-resistant molded object obtained from the same
US8080624B2 (en) 2007-08-06 2011-12-20 Japan Polypropylene Corporation Propylene-based polymer, production method therefor, composition using the same, and application thereof
WO2013125700A1 (en) 2012-02-23 2013-08-29 日本ポリプロ株式会社 Polypropylene-based resin composition and foam sheet
US9284427B2 (en) 2012-02-23 2016-03-15 Japan Polypropylene Corporation Polypropylene-based resin composition and foam sheet
US9505894B2 (en) 2012-02-23 2016-11-29 Japan Polypropylene Corporation Polypropylene-based resin composition and foam sheet
WO2013125702A1 (en) 2012-02-23 2013-08-29 日本ポリプロ株式会社 Polypropylene-based resin composition and foam sheet
WO2018030495A1 (en) 2016-08-09 2018-02-15 日本ポリプロ株式会社 Decorative film and method for producing decorative molded body in which same is used
WO2019098379A1 (en) 2017-11-20 2019-05-23 日本ポリプロ株式会社 Decorative film and method for manufacturing decorative molded article using same
JP2021059678A (en) * 2019-10-08 2021-04-15 日本ポリプロ株式会社 Polypropylene resin composition
WO2022209773A1 (en) 2021-03-29 2022-10-06 日本ポリプロ株式会社 Branched propylene polymer and production method therefor
WO2023026838A1 (en) 2021-08-23 2023-03-02 日本ポリプロ株式会社 Branched propylene-based polymer

Also Published As

Publication number Publication date
KR100507458B1 (en) 2005-08-10
KR20010013309A (en) 2001-02-26

Similar Documents

Publication Publication Date Title
TW513442B (en) Olefinic polymer
US5914289A (en) Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
EP0748824B1 (en) High stereoregular polypropylenes
US5739225A (en) Process for preparing olefin polymer, and ethylenic polymer
US5874505A (en) Polypropylene composition
KR20000068700A (en) Polypropylene resin composition and use thereof
WO2001007493A1 (en) Branched olefinic macromonomer, olefin graft copolymer, and olefin resin composition
EP1195391A1 (en) Production of polypropylene
CN109071701B (en) Supported hybrid catalyst
KR20000057837A (en) Polypropylene block-copolymer resin and process for producing it
JPH10338717A (en) Propylene homopolymer
WO2001019881A1 (en) Cross-copolymerized olefin/aromatic vinyl/diene copolymer and process for producing the same
EP1448633B2 (en) Two-step polymerization process
JP3752759B2 (en) Ethylene polymer and method for producing the same
JP2000095808A (en) Production of propylene-based polymer
JP4226088B2 (en) Propylene copolymer
JPH11292944A (en) Branched polyolefin
JPH07145202A (en) Production of poly-alpha-olefin
JP3304984B2 (en) Preactivation catalyst for olefin (co) polymer, catalyst for olefin (co) polymerization, olefin (co) polymer composition and method for producing the same
JP5422274B2 (en) Process for producing olefin-aromatic polyene copolymer
JPH10195260A (en) Molded body made of polyethylene
JP3393631B2 (en) Ethylene polymer
JP3309786B2 (en) Polypropylene composition
JPH10158351A (en) Propylene/ethylene-alpha-olefin-based block copolymer
JPH0987343A (en) Olefin block copolymer, polyolefin material, and preparation of the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017