JPH10335443A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH10335443A
JPH10335443A JP9139584A JP13958497A JPH10335443A JP H10335443 A JPH10335443 A JP H10335443A JP 9139584 A JP9139584 A JP 9139584A JP 13958497 A JP13958497 A JP 13958497A JP H10335443 A JPH10335443 A JP H10335443A
Authority
JP
Japan
Prior art keywords
element isolation
isolation region
region
film
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9139584A
Other languages
Japanese (ja)
Inventor
Tomohiko Tateyama
智彦 立山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP9139584A priority Critical patent/JPH10335443A/en
Publication of JPH10335443A publication Critical patent/JPH10335443A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming an element isolation region using a trench, which can reduce dishing after polishing, by reducing a step difference before growth of a CVD oxide film to reduce a step difference in the oxide film. SOLUTION: A SiN film 3 is formed on a silicon substrate 1 through an underlying oxide film 2. Next, with use of a resist mask 4, holes are made in parts of a broad element isolation region 5 joined to an element formation region 6 and at several positions therebetween, and the SiN film 2 and underlying oxide film 3 are dry-etched. After removal of the resist, a thin oxide film 7 is selectively formed in the element isolation region 5. Next, a resist mask 9 is formed so that the broad element isolation region 5 and a narrow element isolation region 8 are opened. With use of the mask 9, the SiN film 2, oxide film 3 and silicon substrate 1 of the narrow and broad element isolation regions 8 and 5 are dry-etched. After formation of a CVD oxide film, the film is polished down to a surface of the SiN film 2 by a CMP method. Thereafter, the SiN film 2 is removed and the entire surface of the silicon oxide film 3 is removed down to the silicon substrate 1 of the region 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法であり、さらに詳しくは、トレンチを用いた素子分
離領域の形成方法に関するものである。
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming an element isolation region using a trench.

【0002】[0002]

【従来の技術】近年のLSIは高速化、高集積化が進
み、種々の素子分離の方法が要求されている。その中
で、従来において、トレンチ(溝)部に絶縁膜を埋め込
んで素子分離されるトランジスタにおいては、素子分離
用トレンチよりも浅いトレンチを形成し、トレンチ内部
にBPSGを堆積、メルトして深いトレンチ内部に充填
し、BPSGを浅いトレンチの深さまでエッチバック
し、しかる後、両方のトレンチにCVD酸化膜を成長さ
せて基板表面まで研磨、又はエッチバックして基板表面
の平坦化を行っていた。
2. Description of the Related Art In recent years, high-speed and high-integration LSIs have been developed, and various element isolation methods have been required. Among them, conventionally, in a transistor which is isolated by burying an insulating film in a trench (groove) portion, a trench shallower than an isolation trench is formed, and BPSG is deposited and melted inside the trench to form a deep trench. The inside is filled, BPSG is etched back to the depth of a shallow trench, and thereafter, a CVD oxide film is grown in both trenches, and the substrate surface is polished or etched back to planarize the substrate surface.

【0003】以下、図4の従来の素子分離形成工程を示
す図を用いて、特開平5−114646号公報に記載さ
れている従来のトレンチを用いた素子分離領域の形成方
法を説明する。
A method for forming a device isolation region using a conventional trench described in Japanese Patent Application Laid-Open No. 5-114646 will be described below with reference to FIG.

【0004】まず、シリコン基板20上に浅いトレンチ
21と深いトレンチ22を形成する(図4(a))。次
に、BPSG23を成長させ(図4(b))、その後、
BPSG23をメルトして、トレンチ21、22内に充
填する(図4(c))。
First, a shallow trench 21 and a deep trench 22 are formed on a silicon substrate 20 (FIG. 4A). Next, BPSG 23 is grown (FIG. 4B).
The BPSG 23 is melted and filled in the trenches 21 and 22 (FIG. 4C).

【0005】次に、BPSG23を浅いトレンチ21の
深さまでエッチバックを行い(図4(d))、CVD酸
化膜24を浅いトレンチ21の深さ以上の膜厚で成長さ
せ、トレンチ21、22の両方を埋め込む(図4
(e))。その後、基板表面までエッチバック又は研磨
して平坦化する(図4(f))。その後通常の工程によ
り、素子分離を行う。
Next, the BPSG 23 is etched back to the depth of the shallow trench 21 (FIG. 4D), and a CVD oxide film 24 is grown to a thickness not less than the depth of the shallow trench 21. Embed both (Fig. 4
(E)). Thereafter, the substrate surface is etched back or polished to flatten it (FIG. 4F). Thereafter, element isolation is performed by a normal process.

【0006】[0006]

【発明が解決しようとする課題】従来のトレンチを用い
た素子分離形成方法では、浅い素子分離領域において
は、素子分離を可能とするために必要な膜厚以上シリコ
ン基板を掘り込まねばならず、トレンチを埋め込むCV
D酸化膜を成長させたとき、酸化膜の最上面の段差は掘
り込んだシリコン基板の段差と同等程度になる。また、
研磨の際に、研磨のダメージから活性化領域を保護する
ために何らかの研磨ストッパを活性化領域上に形成した
方がよいため、更に段差は大きくなる。この大きな段差
の状態で研磨を行うと浅いトレンチの広い領域では、そ
の領域の酸化膜が削られ過ぎる(ディッシング)という
問題が生じる。
In a conventional device isolation forming method using a trench, in a shallow device isolation region, a silicon substrate must be dug more than a film thickness necessary for enabling device isolation. CV filling trench
When the D oxide film is grown, the step on the uppermost surface of the oxide film is approximately equal to the step on the dug silicon substrate. Also,
At the time of polishing, it is better to form some kind of polishing stopper on the activated region in order to protect the activated region from damage due to polishing, so that the step is further increased. If polishing is performed in the state of the large step, in a wide region of the shallow trench, there is a problem that an oxide film in the region is excessively ground (dishing).

【0007】本発明は、CVD酸化膜を成長する前の段
差を小さくすることにより、酸化膜の段差を小さくし、
研磨後のディッシングを低減できるトレンチを用いた素
子分離の形成方法を提供することを目的とする。
According to the present invention, a step before growing a CVD oxide film is reduced, thereby reducing the step of the oxide film.
An object of the present invention is to provide a method for forming element isolation using a trench, which can reduce dishing after polishing.

【0008】[0008]

【課題を解決するための手段】請求項1記載の本発明の
半導体装置の製造方法は、同一半導体基板において、少
なくとも第1面積を有する第1素子分離領域と該第1素
子分離領域より面積の大きい第2面積を有する第2素子
分離領域とが形成された半導体装置において、上記第1
素子分離領域は上記半導体基板に形成された一の溝に埋
設された絶縁膜から成り、上記第2素子分離領域は上記
半導体基板に形成された複数の溝に埋設された絶縁膜
と、該溝以外の領域に形成された選択酸化膜とから成る
ことを特徴とするものである。
According to a first aspect of the present invention, there is provided a method of manufacturing a semiconductor device according to the present invention, wherein a first element isolation region having at least a first area and an area larger than the first element isolation region are formed on the same semiconductor substrate. A semiconductor device in which a second element isolation region having a large second area is formed;
The element isolation region includes an insulating film embedded in one groove formed in the semiconductor substrate. The second element isolation region includes an insulating film embedded in a plurality of grooves formed in the semiconductor substrate. And a selective oxide film formed in the other region.

【0009】また、請求項2記載の本発明の半導体装置
の製造方法は、上記第1素子分離領域の溝及び第2素子
分離領域の溝には、同一工程で形成された酸化膜が埋設
されていることを特徴とする、請求項1記載の半導体装
置である。
According to a second aspect of the present invention, in the method of manufacturing a semiconductor device, an oxide film formed in the same step is buried in the groove of the first element isolation region and the groove of the second element isolation region. 2. The semiconductor device according to claim 1, wherein:

【0010】また、請求項3記載の本発明の半導体装置
の製造方法は、上記半導体基板上に耐酸化膜を形成し、
上記第2素子分離領域となる領域において、素子領域と
接する部分を含む半導体基板上の上記耐酸化膜を複数箇
所開口し、該開口領域の上記半導体基板露出部を選択的
に酸化し、選択酸化膜を形成した後、上記第1素子分離
領域となる領域及び第2素子分離領域となる領域の耐酸
化膜を除去し、該耐酸化膜及び上記選択酸化膜をマスク
に、上記半導体基板をエッチングし、上記第1素子分離
領域となる領域及び上記第2素子分離領域となる領域に
溝を形成し、その後、上記溝に絶縁膜を埋め込むことで
第1素子分離領域及び第2素子分離領域を形成すること
を特徴とする、請求項1の半導体装置の製造方法。
According to a third aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising forming an oxidation-resistant film on the semiconductor substrate,
In the region to be the second element isolation region, the oxidation-resistant film on the semiconductor substrate including a portion in contact with the element region is opened at a plurality of positions, and the semiconductor substrate exposed portion of the opening region is selectively oxidized to selectively oxidize. After forming the film, the oxidation-resistant film in the region to be the first element isolation region and the region to be the second element isolation region is removed, and the semiconductor substrate is etched using the oxidation-resistant film and the selective oxidation film as a mask. Then, a groove is formed in the region to be the first element isolation region and the region to be the second element isolation region, and then the first element isolation region and the second element isolation region are buried by filling an insulating film in the groove. The method for manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is formed.

【0011】更に、請求項4記載の本発明の半導体装置
の製造方法は、上記溝を形成した後、上記半導体基板全
面に絶縁膜を形成することにより上記溝に上記絶縁膜を
形成することを特徴とする、請求項3記載の半導体装置
の製造方法である。
Further, according to a fourth aspect of the present invention, in the method of manufacturing a semiconductor device according to the present invention, after forming the groove, an insulating film is formed on the entire surface of the semiconductor substrate to form the insulating film in the groove. A method for manufacturing a semiconductor device according to claim 3, characterized in that:

【0012】[0012]

【実施の形態】以下、実施の形態に基づいて本発明につ
いて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments.

【0013】図1は本発明の一実施の形態の素子分離領
域形成後の半導体基板の構造断面図であり、図2は本発
明の一実施の形態の半導体装置の前半の製造工程図であ
り、図3は本発明の一実施の形態の半導体装置の後半の
製造工程図である。図1乃至図3において、1はシリコ
ン基板、2は耐酸化膜及びCMP研磨ストッパとしての
SiN膜(例えば膜厚500Å程度)、3は下地酸化膜
(膜厚数10Å程度)、4、9はレジストマスク、5は
広い素子分離領域、6は素子形成領域、7は選択酸化
膜、8は狭い素子分離領域、10a、10bはCVD酸
化膜である。
FIG. 1 is a structural sectional view of a semiconductor substrate after an element isolation region according to one embodiment of the present invention is formed, and FIG. 2 is a manufacturing process diagram of a first half of a semiconductor device according to one embodiment of the present invention. FIG. 3 is a manufacturing process diagram of the latter half of the semiconductor device according to the embodiment of the present invention. 1 to 3, reference numeral 1 denotes a silicon substrate, 2 denotes an oxidation-resistant film and a SiN film (for example, a film thickness of about 500)) as a CMP polishing stopper, 3 denotes a base oxide film (about 10 数 film thickness), and 4 and 9 denote A resist mask, 5 is a wide element isolation region, 6 is an element formation region, 7 is a selective oxide film, 8 is a narrow element isolation region, and 10a and 10b are CVD oxide films.

【0014】本発明は、図1に示すように、広い素子分
離領域5は、CVD酸化膜10bが埋設された複数のト
レンチ部と選択酸化膜7から成り、また、狭い素子分離
領域は、CVD酸化膜10aが埋設された単一のトレン
チ部から成る。
According to the present invention, as shown in FIG. 1, a wide device isolation region 5 is composed of a plurality of trenches in which a CVD oxide film 10b is buried and a selective oxide film 7, and a narrow device isolation region is a CVD device. It has a single trench portion in which oxide film 10a is buried.

【0015】以下、図2及び図3を用いて、本発明の製
造工程を説明する。
Hereinafter, the manufacturing process of the present invention will be described with reference to FIGS.

【0016】まず、シリコン基板1上に下地酸化膜3を
介してSiN膜2を形成する(図2(a))。
First, an SiN film 2 is formed on a silicon substrate 1 with a base oxide film 3 interposed therebetween (FIG. 2A).

【0017】次に、レジストマスク4にて、広い素子分
離領域5の素子形成領域6と接する部分とその間の数箇
所を開口し、SiN膜2、下地酸化膜3をドライエッチ
ングする。このときのエッチング条件としては、例え
ば、SiN/Siの選択比が1.5程度の条件となるよ
うに、CF4の流量を100sccm、圧力を50mT
orr、磁場強度を80Gauss、RFパワーを40
0Wでドライエッチングを行う。この際の広い素子分離
領域上のレジストの線幅は、狭い素子分離領域の線幅
(例えば、0.5μm)と同程度にパターニングする
(図2(b))。
Next, the resist mask 4 is used to open a part of the wide element isolation region 5 which is in contact with the element formation region 6 and several places therebetween, and dry-etch the SiN film 2 and the base oxide film 3. The etching conditions at this time are, for example, a flow rate of CF 4 of 100 sccm and a pressure of 50 mT so that the selection ratio of SiN / Si is about 1.5.
orr, field strength 80 Gauss, RF power 40
Dry etching is performed at 0W. At this time, patterning is performed so that the line width of the resist on the wide element isolation region is substantially equal to the line width of the narrow element isolation region (for example, 0.5 μm) (FIG. 2B).

【0018】次に、レジストマスク4を除去後、SiN
膜2を耐酸化膜として熱酸化により、広い素子分離領域
5に選択的に選択酸化膜7(例えば膜厚が1000Å程
度)を形成する。次に、レジストを塗布し、フォトリソ
工程により、広い素子分離領域5と狭い素子分離領域8
とが開口したレジストマスク9を形成する(図2
(c))。
Next, after removing the resist mask 4, SiN
Using the film 2 as an oxidation resistant film, a selective oxidation film 7 (for example, having a thickness of about 1000 °) is selectively formed in the wide element isolation region 5 by thermal oxidation. Next, a resist is applied, and a wide element isolation region 5 and a narrow element isolation region 8 are formed by a photolithography process.
A resist mask 9 having an opening is formed (FIG. 2).
(C)).

【0019】次に、レジストマスク9を用いて狭い素子
分離領域8と広い素子分離領域5のSiN膜2、酸化膜
3、シリコン基板1をドライエッチングする。このとき
のシリコン基板1のエッチング条件は、例えば、シリコ
ン/シリコン酸化膜の選択比が80程度の条件となるよ
うに、HBrの流量を50sccm、O2の流量を6s
ccm、圧力を0.90Pa、コイル電流をイン40
A、アウト20A、RFパワーをソース1500W、バ
イアス70Wでドライエッチングを行う。この際、広い
素子分離領域は薄い酸化膜7以外の場所のみ選択的にエ
ッチングする。また、形成する溝の深さは、素子分離を
可能にする深さ(例えば3000Å程度)とする(図2
(d))。
Next, the SiN film 2, the oxide film 3, and the silicon substrate 1 in the narrow element isolation region 8 and the wide element isolation region 5 are dry-etched using a resist mask 9. The etching conditions of the silicon substrate 1 at this time are, for example, a HBr flow rate of 50 sccm and an O 2 flow rate of 6 s so that the selection ratio of the silicon / silicon oxide film is about 80.
ccm, pressure 0.90Pa, coil current in 40
A, out 20A, RF etching at 1500 W source, and 70 W bias for dry etching. At this time, the wide element isolation region is selectively etched only at locations other than the thin oxide film 7. Further, the depth of the groove to be formed is set to a depth (for example, about 3000 °) that enables element isolation (FIG. 2).
(D)).

【0020】次に、レジストマスク9を除去した後、C
VD酸化膜10を例えば3500Å程度形成する(図3
(a))。
Next, after the resist mask 9 is removed, C
The VD oxide film 10 is formed, for example, at about 3500 ° (FIG.
(A)).

【0021】次に、CVD酸化膜10をCMP研磨スト
ッパであるSiN膜2の表面が露出までCMP法を用い
て研磨する(図3(b))。この際、後のシリコン酸化
膜3及び10のエッチング工程の際、シリコン基板1表
面をより平坦化するため、ある程度SiN膜2もエッチ
ングすることにより、SiN膜2の厚さを薄くすること
が望ましい。
Next, the CVD oxide film 10 is polished by the CMP method until the surface of the SiN film 2 serving as a CMP polishing stopper is exposed (FIG. 3B). At this time, in the later etching step of the silicon oxide films 3 and 10, it is desirable to reduce the thickness of the SiN film 2 by etching the SiN film 2 to some extent in order to further flatten the surface of the silicon substrate 1. .

【0022】しかる後、約150℃のリン酸を用いて5
0分のウエットエッチングによりSiN膜2を除去し
(図3(c))、フッ酸を用いたウエットエッチング又
はCMP法を用いて素子形成領域6のシリコン基板1ま
でシリコン酸化膜3及び10の全面除去を行い、素子形
成領域6におけるシリコン基板1表面を露出させる。こ
の際、狭い素子分離領域8と広い素子分離領域5にはC
VD酸化膜10a、10bが充填されてる(図3
(d))。
Thereafter, the phosphoric acid is added with phosphoric acid at about 150 ° C. for 5 minutes.
The SiN film 2 is removed by wet etching for 0 minutes (FIG. 3 (c)), and the entire surface of the silicon oxide films 3 and 10 up to the silicon substrate 1 in the element formation region 6 by wet etching using hydrofluoric acid or CMP. Removal is performed to expose the surface of the silicon substrate 1 in the element formation region 6. At this time, the narrow element isolation region 8 and the wide element isolation region 5 have C
VD oxide films 10a and 10b are filled (FIG. 3
(D)).

【0023】この後、通常の工程によりトレンチの素子
分離領域に囲まれた素子形成領域内に素子を形成する。
Thereafter, an element is formed in an element forming region surrounded by the element isolation region of the trench by a usual process.

【0024】[0024]

【発明の効果】以上、詳細に説明したように、本発明を
用いることにより、従来法よりも、素子分離領域を埋め
込む酸化膜堆積時のウエハ面内のバラツキ、CMP法に
よる平坦化後のディッシングを低減することが可能とな
り、広い素子分離領域のエッジ部分との間に数箇所深い
トレンチを形成することにより、充分な分離特性も得ら
れ、寄生容量も低減できる。
As described above in detail, by using the present invention, the variation in the wafer surface at the time of depositing an oxide film burying the element isolation region and the dishing after the planarization by the CMP method can be achieved as compared with the conventional method. By forming a trench that is several places deeper with the edge portion of a wide element isolation region, sufficient isolation characteristics can be obtained and the parasitic capacitance can be reduced.

【0025】また、素子分離領域の溝に同一の酸化膜を
充填することにより、分離特性の信頼性をより高めるこ
とができる。
Further, by filling the same oxide film in the groove of the element isolation region, the reliability of the isolation characteristics can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の半導体装置の構造断面
図である。
FIG. 1 is a structural sectional view of a semiconductor device according to an embodiment of the present invention.

【図2】本発明の一実施の形態の半導装置の前半の製造
工程図である。
FIG. 2 is a manufacturing process diagram of a first half of a semiconductor device according to an embodiment of the present invention.

【図3】本発明の一実施の形態の半導装置の後半の製造
工程図である。
FIG. 3 is a manufacturing process diagram of the latter half of the semiconductor device according to the embodiment of the present invention;

【図4】従来のトレンチを用いた素子分離の形成工程図
である。
FIG. 4 is a view showing a process of forming an element using a conventional trench.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 SiN膜 3 下地酸化膜 4、9 レジストマスク 5 広い素子分離領域 6 素子形成領域 7 選択酸化膜 8 狭い素子分離領域 10、10a、10b CVD酸化膜 Reference Signs List 1 silicon substrate 2 SiN film 3 base oxide film 4, 9 resist mask 5 wide element isolation region 6 element formation region 7 selective oxide film 8 narrow element isolation region 10, 10a, 10b CVD oxide film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 同一半導体基板において、少なくとも第
1面積を有する第1素子分離領域と該第1素子分離領域
より面積の大きい第2面積を有する第2素子分離領域と
が形成された半導体装置において、 上記第1素子分離領域は上記半導体基板に形成された一
の溝に埋設された絶縁膜から成り、上記第2素子分離領
域は上記半導体基板に形成された複数の溝に埋設された
絶縁膜と、該溝以外の領域に形成された選択酸化膜とか
ら成ることを特徴とする半導体装置。
1. A semiconductor device in which a first element isolation region having at least a first area and a second element isolation region having a second area larger than the first element isolation region are formed on the same semiconductor substrate. The first element isolation region includes an insulating film buried in one groove formed in the semiconductor substrate, and the second element isolation region includes an insulating film buried in a plurality of grooves formed in the semiconductor substrate. And a selective oxide film formed in a region other than the trench.
【請求項2】 上記第1素子分離領域の溝及び第2素子
分離領域の溝には、同一工程で形成された酸化膜が埋設
されていることを特徴とする、請求項1記載の半導体装
置。
2. The semiconductor device according to claim 1, wherein an oxide film formed in the same step is buried in the groove of the first element isolation region and the groove of the second element isolation region. .
【請求項3】 上記半導体基板上に耐酸化膜を形成し、
上記第2素子分離領域となる領域において、素子領域と
接する部分を含む半導体基板上の上記耐酸化膜を複数箇
所開口し、 該開口領域の上記半導体基板露出部を選択的に酸化し、
選択酸化膜を形成した後、上記第1素子分離領域となる
領域及び第2素子分離領域となる領域の耐酸化膜を除去
し、 該耐酸化膜及び上記選択酸化膜をマスクに、上記半導体
基板をエッチングし、上記第1素子分離領域となる領域
及び上記第2素子分離領域となる領域に溝を形成し、 その後、上記溝に絶縁膜を埋め込むことで第1素子分離
領域及び第2素子分離領域を形成することを特徴とす
る、請求項1の半導体装置の製造方法。
3. An oxidation-resistant film is formed on the semiconductor substrate,
In a region to be the second element isolation region, the oxidation-resistant film on the semiconductor substrate including a portion in contact with the element region is opened at a plurality of locations, and the semiconductor substrate exposed portion of the opening region is selectively oxidized,
After forming the selective oxidation film, the oxidation-resistant film in the region to be the first element isolation region and the region to be the second element isolation region is removed, and the semiconductor substrate is formed by using the oxidation-resistant film and the selective oxidation film as a mask. Is etched to form a groove in the region to be the first element isolation region and the region to be the second element isolation region, and thereafter, the first element isolation region and the second element isolation region are buried with an insulating film in the groove. 2. The method for manufacturing a semiconductor device according to claim 1, wherein a region is formed.
【請求項4】 上記溝を形成した後、上記半導体基板全
面に絶縁膜を形成することにより上記溝に上記絶縁膜を
形成することを特徴とする、請求項3記載の半導体装置
の製造方法。
4. The method for manufacturing a semiconductor device according to claim 3, wherein after forming the groove, the insulating film is formed in the groove by forming an insulating film on the entire surface of the semiconductor substrate.
JP9139584A 1997-05-29 1997-05-29 Semiconductor device and manufacture thereof Pending JPH10335443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9139584A JPH10335443A (en) 1997-05-29 1997-05-29 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9139584A JPH10335443A (en) 1997-05-29 1997-05-29 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH10335443A true JPH10335443A (en) 1998-12-18

Family

ID=15248674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9139584A Pending JPH10335443A (en) 1997-05-29 1997-05-29 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH10335443A (en)

Similar Documents

Publication Publication Date Title
US6228727B1 (en) Method to form shallow trench isolations with rounded corners and reduced trench oxide recess
US5385861A (en) Planarized trench and field oxide and poly isolation scheme
US6207534B1 (en) Method to form narrow and wide shallow trench isolations with different trench depths to eliminate isolation oxide dishing
JP2000012676A (en) Method of isolating elements through trenches of semiconductor device
JP2001160589A (en) Trench isolation structure, semiconductor device having it, and trench isolation method
JPH0410740B2 (en)
KR100273615B1 (en) Semiconductor device and fabrication method thereof
JP3688816B2 (en) Manufacturing method of semiconductor device
US6238997B1 (en) Method of fabricating shallow trench isolation
JP3127893B2 (en) Semiconductor device and method of manufacturing semiconductor device
US5851901A (en) Method of manufacturing an isolation region of a semiconductor device with advanced planarization
JPH10289946A (en) Manufacture of semiconductor device
US6103594A (en) Method to form shallow trench isolations
JP2762973B2 (en) Method for manufacturing semiconductor device
JPH10335443A (en) Semiconductor device and manufacture thereof
JP3160928B2 (en) Element isolation formation method
JP3053009B2 (en) Method for manufacturing semiconductor device
KR100237749B1 (en) Method of forming a device isolation film of semiconductor device
JP3190144B2 (en) Manufacturing method of semiconductor integrated circuit
KR100559553B1 (en) Method for manufacturing shallow trench isolation layer of the semiconductor device
JP2995948B2 (en) Method for manufacturing semiconductor device
JP3005557B1 (en) Method for manufacturing semiconductor device
KR19990051399A (en) Device Separation Method of Semiconductor Device
KR20020002943A (en) Method of forming isolation film
JP2002100670A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term